
Journal of Machine Learning Research 14 (2013) 3813-3817 Submitted 4/13; Revised 9/13; Published 12/13

BudgetedSVM: A Toolbox for Scalable SVM Approximations

Nemanja Djuric NEMANJA@TEMPLE.EDU

Liang Lan LANLIANG@TEMPLE.EDU

Slobodan Vucetic VUCETIC@TEMPLE.EDU

304 Wachman Hall, Temple University

1805 North Broad Street

Philadelphia, PA 19122, USA

Zhuang Wang ZJWANG@US.IBM.COM

Global Business Services, IBM

1475 Phoenixville Pike

West Chester, PA 19380, USA

Editor: Antti Honkela

Abstract

We present BudgetedSVM, an open-source C++ toolbox comprising highly-optimized implemen-

tations of recently proposed algorithms for scalable training of Support Vector Machine (SVM) ap-

proximators: Adaptive Multi-hyperplane Machines, Low-rank Linearization SVM, and Budgeted

Stochastic Gradient Descent. BudgetedSVM trains models with accuracy comparable to LibSVM

in time comparable to LibLinear, solving non-linear problems with millions of high-dimensional

examples within minutes on a regular computer. We provide command-line and Matlab interfaces

to BudgetedSVM, an efficient API for handling large-scale, high-dimensional data sets, as well as

detailed documentation to help developers use and further extend the toolbox.

Keywords: non-linear classification, large-scale learning, SVM, machine learning toolbox

1. Introduction

Support Vector Machines (SVMs) are among the most popular and best performing classification

algorithms. Kernel SVMs deliver state-of-the-art accuracies on non-linear problems, but are char-

acterized by linear growth in the number of support vectors with data size, which may prevent

learning from truly large data. In contrast, linear SVMs cannot capture non-linear concepts, but are

very scalable and allow learning from large data with limited resources. Aimed at bridging the rep-

resentability and scalability gap between linear and non-linear SVMs, recent advances in large-scale

learning resulted in powerful algorithms that enable scalable training of non-linear SVMs, such as

Adaptive Multi-hyperplane Machines (AMM) (Wang et al., 2011), Low-rank Linearization SVM

(Zhang et al., 2012), and Budgeted Stochastic Gradient Descent (BSGD) (Wang et al., 2012). With

accuracies comparable to kernel SVM, the algorithms are scalable to millions of examples, having

training and inference times comparable to linear and orders of magnitude shorter than kernel SVM.

We present BudgetedSVM, an open-source C++ toolbox for scalable non-linear classification.

The toolbox provides an Application Programming Interface (API) for efficient training and testing

of non-linear classifiers, supported by data structures designed for handling data which cannot fit in

memory. BudgetedSVM can be seen as a missing link between LibLinear and LibSVM (Hsieh et al.,

2008; Chang and Lin, 2011), combining the efficiency of linear with the accuracy of kernel SVM.

c©2013 Nemanja Djuric, Liang Lan, Slobodan Vucetic and Zhuang Wang.



DJURIC, LAN, VUCETIC AND WANG

We also provide command-line and Matlab interfaces, providing users with an efficient, easy-to-use

tool for large-scale non-linear classification.

2. Non-linear Classifiers for Large-scale Data

Before taking a closer look at the implementation and usage details of the BudgetedSVM toolbox,

in this section we give a brief description of the implemented algorithms.

2.1 Adaptive Multi-hyperplane Machines (AMM)

Wang et al. (2011) proposed a classifier that captures non-linearity by assigning a number of linear

hyperplanes to each of C classes from a set Y . Given a D-dimensional example x, the AMM multi-

class classifier has the following form,

f (x) = argmax
i∈Y

g(i,x), where g(i,x) = max
j=1,...,bi

wT
i jx, (1)

where the ith class is assigned bi weight vectors with the total budget B = ∑i bi. AMM is learned via

Stochastic Gradient Descent (SGD). The hyper-parameters include a regularization parameter λ, the

number of training epochs e, the maximum number of non-zero weights per class Blim, bi ≤ Blim,

and weight pruning parameters k (pruning frequency) and c (pruning aggressiveness). As an initial

guideline to the users, we experimentally found that for most data sets the values e = 5 (or e = 1

for very large data), Blim = 50, k = 10,000, and c = 10 are appropriate choices, leaving only λ to be

determined by cross-validation.

When b1, . . . ,bC are fixed to 1, the AMM model reduces to linear multi-class SVM (Crammer

and Singer, 2002), and the learning algorithm is equivalent to Pegasos, a popular linear SVM solver

(Shalev-Shwartz et al., 2007). As it is a widely-used linear SVM solver, we also provide the Pegasos

algorithm directly as a shortcut in the BudgetedSVM toolbox.

2.2 Low-rank Linearization SVM (LLSVM)

Zhang et al. (2012) proposed to approximate kernel SVM optimization by a linear SVM using

low-rank decomposition of the kernel matrix. The approximated optimization is solved via Dual

Coordinate-Descent (DCD) (Hsieh et al., 2008). The binary classifier has the form

f (x) = sign
(

wT(M ·g(x))
)

,

where g(x) = [k(x,z1), . . . ,k(x,zB)]
T, {zi}i=1,...,B is a set of landmark points of size B, k(x,zi) is a

kernel function, w defines a separating hyperplane in the linearized kernel space (found using the

DCD method), and M is a B×B mapping matrix. The hyper-parameters include kernel parameters,

regularization parameter λ, and the number of landmark points B. Parameter B controls a trade-off

between speed and accuracy, while kernel parameters and λ are best determined by cross-validation.

2.3 Budgeted Stochastic Gradient Descent (BSGD)

Wang et al. (2012) proposed a budgeted algorithm which maintains a fixed number of support vec-

tors in the model, and incrementally updates them during the SGD training. The multi-class BSGD

3814



BUDGETEDSVM

Pegasos AMM LLSVM BSGD RBF-SVM

Training time O(NCS) O(NSB) O(NSB2 +NSB) O
(

N(C+S)B
)

O(INCS)

Prediction time O(CS) O(SB) O(SB2 +SB) O
(

(C+S)B
)

O(NCS)
Model size O(CD) O(DB) O(DB+B2) O

(

(C+D)B
)

O(NCS)

Table 1: Time and space complexities of the classification algorithms

classifier has the same form as (1), but with g(i,x) defined as

g(i,x) =
B

∑
j=1

αi jk(x,z j),

where {z j} j=1,...,B is the support vector set, and αi j is a class-specific parameter associated with

the jth support vector. We implemented Pegasos-style training, where the budget is maintained

through either merging (where RBF kernel is used) or random removal of support vectors. The

hyper-parameters include the number of epochs e, kernel parameters, regularization parameter λ,

and budget size B. Parameters B and e control a speed-accuracy trade-off, while kernel parameters

and λ are best determined by cross-validation.

2.4 Time and Space Complexity

Time and space complexities of the algorithms are summarized in Table 1, where N is the number

of training examples, C is the number of classes, D is the data dimensionality, data sparsity S is

the average number of non-zero features, and B is the model size for AMM, BSGD, and LLSVM.

Parameter I for SVM with RBF kernel (RBF-SVM) denotes a number of training iterations, empir-

ically shown to be super-linear in N (Chang and Lin, 2011).

3. The Software Package

BudgetedSVM can be found at http://www.dabi.temple.edu/budgetedsvm/. The software

package provides a C++ API, comprising functions for training and testing of non-linear models

described in Section 2. Each model can be easily trained and tested by calling the corresponding

train/predict function, defined in mm algs.h, bsgd.h, and llsvm.h header files. The API also

provides functions for handling large-scale, high-dimensional data, defined in budgetedSVM.h file.

BudgetedSVM sequentially loads data chunks into memory to allow large-scale training, storing

to memory only indices and values of non-zero features as a linked list. Furthermore, implementa-

tion of sparse vectors is optimized for high-dimensional data, allowing faster kernel computations

and faster updates of hyperplanes and support vectors than linked list (e.g., as in LibSVM) or array

implementation of vectors (e.g., as in MSVMpack by Lauer and Guermeur, 2011) used for regular-

scale problems, where either time or memory costs can become prohibitively large during training

in a large-scale setting. In particular, vectors are split into disjoint chunks where pointers to each

chunk are stored in an array, and memory for a chunk is allocated only if one of its elements is non-

zero. While significantly reducing time costs, we empirically found that this approach incurs very

limited memory overhead even for data with millions of features. Consequently, BudgetedSVM

vector reads and writes are performed memory-efficiently in constant time. Moreover, by stor-

ing and incrementally updating support vector ℓ2-norms after each training step, time to compute

popular kernels (e.g., linear, Gaussian, polynomial) scales only linearly with sparsity S. Further

implementation details can be found in a comprehensive developer’s guide.

3815



DJURIC, LAN, VUCETIC AND WANG

Pegasos AMM LLSVM BSGD RBF-SVM

Data set e.r. t.t. e.r. B t.t. e.r. B t.t. e.r. B t.t. e.r. t.t.

webspam 3.46 500 2.5m 2.04 500 2.0m

N = 280,000 7.94 0.5s 4.74 9 3s 2.60 1,000 6.1m 1.72 1,000 3.9m 0.77 4.0h

D = 254 1.99 3,000 0.5h 1.49 3,000 0.2h (#SV: 26,447)

rcv1 4.97 500 0.2h 3.33 500 0.8h

N = 677,399 2.73 1.5s 2.39 19 9s 4.23 1,000 0.5h 2.92 1,000 1.5h 2.17 20.2h

D = 47,236 3.05 3,000 2.2h 2.53 3,000 4.4h (#SV: 50,641)

mnist8m-bin 6.84 500 1.6h 2.23 500 2.3h

N = 8,000,000 22.71 1.1m 3.16 18 4m 4.59 1,000 3.8h 1.92 1,000 4.9h 0.43 N/A1

D = 784 2.59 3,000 15h 1.62 3,000 16.1h

Table 2: Error rates (e.r.; in %) and training times2(t.t.) on benchmark data sets

We also provide command-line and Matlab interfaces for easier use of the toolbox, which follow

the user-friendly format of LibSVM and LibLinear. For example, we can type budgetedsvm-train

-A 1 a9a train.txt a9a model.txt in the command prompt to train a classifier on the adult9a

data set. The -A 1 option specifies that we use the AMM algorithm, while the data is loaded from

a9a train.txt file and the trained model is stored to the a9a model.txt file. Similarly, we type

budgetedsvm-predict a9a test.txt a9a model.txt a9a output.txt to evaluate the trained

model, which loads the testing data from a9a test.txt file, the model from a9a model.txt file,

and stores the predictions to a9a output.txt file. We also provide a short tutorial which outlines

the basic steps for using the BudgetedSVM interfaces.

3.1 Performance Comparison

The BudgetedSVM toolbox can learn an accurate model even for data with millions of examples and

features, with training times orders of magnitude faster than RBF-SVM trained using LibSVM. For

illustration, in Table 2 we give comparison of error rates and training times on binary classification

tasks using several large-scale data sets (Wang et al., 2011). On webspam and rcv1 it took LibSVM

hours to train RBF-SVM, while BudgetedSVM algorithms with much smaller budgets achieved high

accuracy within minutes, and even seconds in the case of AMM. Similarly, RBF-SVM training on

large-scale mnist8m-bin could not be completed in a reasonable time on our test machine, while the

implemented algorithms were trained within a few hours on extremely limited budgets to achieve

low error rates. More detailed analysis of the BudgetedSVM algorithms can be found in their

respective papers.

4. Conclusion and Future Work

BudgetedSVM implements four large-scale learners. Using optimized functions and data structures

as a basis, through our and community efforts we plan to add more classifiers, such as Tighter

Perceptron (Wang and Vucetic, 2009) and BPA (Wang and Vucetic, 2010), to make BudgetedSVM

a more inclusive toolbox of budgeted SVM approximations.

Acknowledgments

This work was supported by NSF grants IIS-0546155 and IIS-1117433.

1. Listed accuracy was obtained after 2 days of P-packSVM training on 512 processors (Zhu et al., 2009).

2. We excluded data loading time (evaluated on Intel R© E7400 with 2.80GHz processor, 4GB RAM).

3816



BUDGETEDSVM

References

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans-

actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at

http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector

machines. Journal of Machine Learning Research, 2:265–292, 2002.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent

method for large-scale linear SVM. In International Conference on Machine Learning, pages

408–415, 2008.

F. Lauer and Y. Guermeur. MSVMpack: A multi-class support vector machine package. Journal of

Machine Learning Research, 12:2293–2296, 2011.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for

SVM. In International Conference on Machine Learning, pages 807–814, 2007.

Z. Wang and S. Vucetic. Tighter perceptron with improved dual use of cached data for model rep-

resentation and validation. In International Joint Conference on Neural Networks, pages 3297–

3302, 2009.

Z. Wang and S. Vucetic. Online passive-aggressive algorithms on a budget. In International Con-

ference on Artificial Intelligence and Statistics, pages 908–915, 2010.

Z. Wang, N. Djuric, K. Crammer, and S. Vucetic. Trading representability for scalability: Adaptive

multi-hyperplane machine for nonlinear classification. In ACM SIGKDD Conference on Knowl-

edge Discovery and Data Mining, 2011.

Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse of kernelization: Budgeted stochastic

gradient descent for large-scale SVM training. Journal of Machine Learning Research, 13:3103–

3131, 2012.

K. Zhang, L. Lan, Z. Wang, and F. Moerchen. Scaling up kernel SVM on limited resources: A low-

rank linearization approach. In International Conference on Artificial Intelligence and Statistics,

2012.

Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen. P-packSVM: Parallel primal gradient descent

kernel SVM. In IEEE International Conference on Data Mining, 2009.

3817


