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Abstract

While inferring common actor states (such as position or
velocity) is an important and well-explored task of the per-
ception system aboard a self-driving vehicle (SDV), it may
not always provide sufficient information to the SDV. This
is especially true in the case of active emergency vehicles
(EVs), where light-based signals also need to be captured
to provide a full context. We consider this problem and pro-
pose a sequential methodology for the detection of active
EVs, using an off-the-shelf CNN model operating at a frame
level and a downstream smoother that accounts for the tem-
poral aspect of flashing EV lights. We also explore model
improvements through data augmentation and training with
additional hard samples.

1. Introduction

Self-driving vehicles (SDVs) rely on an onboard per-
ception system to understand their surroundings, which in-
cludes detection of all traffic actors in the vicinity as well as
their tracking through time. The output of this system com-
monly includes actor type (such as vehicle, pedestrian, bicy-
clist, etc.), as well as the state of the actor (such as bounding
box size, position, velocity, acceleration, etc.), which is a
well-studied problem in the literature [7,9]. However, these
outputs may not capture all relevant attributes for some traf-
fic actors that the SDV may interact with. This is the case
when it comes to the detection of active emergency vehicles
(EVs), where the state of the emergency lights provides an
important additional piece of information to the SDV.

Vision-based detection of EVs has been a topic of sev-
eral recent studies. Most researchers proposed to first use
an object detector implemented as a convolutional neural
network (CNN) that is then run on an input camera image
to detect vehicle actors, followed by an EV-specific clas-
sifier operating on cropped images of detected actors. In
particular, the authors of [19] proposed to use YOLO [18]
to detect vehicles and crop images around them, and then

apply a VGG-16-based EV classifier trained on individual
vehicle images. In [4] the authors introduced a similar two-
stage approach with an object detector and a CNN classi-
fier, which is trained and tested on a small custom data set,
while [22] used a single-stage model by training an object
detector YOLOv4 [5] directly on a data set of two object
classes: EV and non-EV. In [10, 13] the authors explored
several existing CNN architectures (such as DenseNet [12])
for EV classifications using image crops of individual vehi-
cles as inputs, trained and evaluated on smaller data. In ad-
dition, the authors of [10] showed the benefits of using pre-
trained weights obtained by training on ImageNet data [8],
followed by a fine-tuning step used to specialize the models
for EV-specific tasks. The authors in [17] extracted color
values from the top of an image crop (where the EV siren
lights are expected to be found) provided by a vehicle detec-
tor and applied a support vector machine for classification.

In these earlier works the data came either from non-EV-
specific public sources (such as MS COCO [15]) or from
EV-specific YouTube channels [1,2,20] and CCTV footage.
The statistics in such data sets are far from what we find
in the real world though. For example, the EV-to-non-EV
ratio is unrealistically high in data sets collected from EV-
specific YouTube channels, and in general the data will not
be able to cover the numerous non-EV types and appear-
ances commonly observed on the roads. Moreover, such
data are usually biased towards close-range EVs that are
easier to classify, while for the SDV use-case one would like
to detect EVs at the first sight at long ranges, which presents
a more challenging task. Besides, the previous approaches
did not consider the EV activeness (i.e., whether or not the
EV lights are flashing). In this work we adopt the two-step
approach discussed above while addressing several limita-
tions of the prior studies. We collect on-road data from
our self-driving fleet covering rich scenes involving EVs,
including day and night, short and long ranges, highway
and urban, and various other traffic conditions. We focus on
detecting active EVs that are more important for SDVs to
respond to. In addition, we apply approaches such as data
augmentation, hard-sample mining, and output smoothing,



Table 1. Data set summary

Category Distribution
Time of logs Day: 81.1%, Night: 18.9%
Vehicle type EV: 3.4%, non-EV: 96.6%

police vehicle: 80.0%,EV type fire: 13.4%, ambulance: 6.6%
EV activeness active: 90.0%, inactive: 10.0%
Bulb state of active EVs bulb-on: 91.8%, bulb-off: 8.2%

which help further boost the performance.

An alternative approach worth mentioning is audio-
based detection [3, 6, 21, 22], which does not require an un-
obstructed line of sight to detect active EVs. However, on
highways and in general at higher ego-speeds acoustic ap-
proaches are significantly affected by ambient noise (such
as wind). We do not consider such methods in our current
work and instead focus on image-based approaches.

2. Data set and labeling

We collected on-road data logs using an autonomous
driving fleet equipped with lidar and camera sensors. For
all vehicles we perform 4D labeling (i.e., a sequence of 3D
bounding boxes) and 2D labeling (i.e., a 2D bounding box
within a camera image). We associate 4D and 2D labels and
generate a collage video of each vehicle using the camera
images. We then use it to label the actor into one of 4 cate-
gories: police car, ambulance, fire truck, and non-EV. If the
vehicle is labeled as an EV it will trigger the second-stage
labeling for activeness and bulb state. In particular, at each
time frame we label the vehicle as active if the beacon light
is flashing, and inactive otherwise. For active frames, we la-
bel it as ”bulb on” if the light is illuminated and ”bulb off”
otherwise. Note that the activeness labeling relies on the
local temporal context, while the bulb state labeling only
relies on a single frame.

We collected logs containing a total of around 12,000
unique vehicles, each with a maximum duration of 25 sec-
onds. As seen in the data summary shown in Table 1, we
observed a large fraction of non-EVs, which is more real-
istic than previous studies. We also find that the majority
of EVs are active. Active EVs usually have multiple bea-
con bulbs flashing, and thus when looking at each single
frame there is a small chance (8.2%) to observe all bulbs
being off. This motivates us to design a single-frame de-
tector for active EV actors, which also has faster inference
than a multi-frame detector.

3. Methodology

3.1. The EV detection system

The EV detection system is composed of three phases:
pre-processing, inference, and post-processing. During pre-
processing, a tracker system produces tracks of the sur-
rounding vehicles that are used as input. We project the 3D
coordinates of the corners of each vehicle track’s bounding
box into the camera image and compute the centroid. For
each centroid within the image bounds, we use the smallest
axis-aligned square that encapsulates the projected corners
to crop the image and resize it to 224 × 224 pixels. We
ignore tracks where the centroid is out of the field of view
of the forward camera, as well as those with a projected
width smaller than a certain threshold (set to 18 pixels in
this study). We then batch the valid image patches and for-
ward them to the inference module. During inference, we
run the EV classifier model (discussed in detail in the next
section) on the image patches and output probabilities in-
dicating whether a certain vehicle is an active EV or not.
Then, in order to capture the temporal component of active
flashing lights, we implemented a downstream smoother in
the post-processing phase that infers the final overall state.
The smoother is a cyclic buffer that keeps a ledger of the last
25 valid EV outputs for each vehicle track’s history and out-
puts a smoothed result. We require that there are at least 6
detected frames of the actor and more than T = 50% of per-
frame active EV outputs in the buffer to mark the vehicle as
being an active EV. This helps suppress transient positive
outputs and thus mitigate false positives (FPs), discussed
further in Section 4. The EV detection system can handle
hundreds of actors (processed as a batch) in real-time, with
an average latency of less than 10 milliseconds.

3.2. The EV classifier model

The EV classifier is a CNN using ResNet-18 (layers 1 to
4) [11] as a backbone to extract image features, followed
by a global average pooling layer and a fully-connected
layer with a single output channel that is passed through
sigmoid to output probability. The ResNet backbone uses
the weights pre-trained on the ImageNet data [8] and is not
frozen during training. We set the label as positive when a
vehicle is an EV with a “bulb on” state at the time of image
capture, and as negative otherwise. We use focal loss [14]
due to a large data imbalance. The Adam optimizer with 0
weight decay and an initial learning rate of 10−4 is used.
We apply a customized optimizer wrapper that decreases
the learning rate when there is no loss improvement for a
certain number of iterations, and stops training when the
learning rate drops to a given low value. The collected logs
are split randomly into train and test sets with a 3 : 1 ratio.
The model is implemented in PyTorch [16] and trained on a
single GPU.



Table 2. Per-frame classifier results (A: data augmentation; M:
mined data from data engine)

Model % change of % change of
max-F1 precision at 0.8 recall

Baseline 0 0
+ A 3.11 5.3
+ A + M 5.73 10.4

3.3. Techniques for data improvement

The considered problem is non-trivial due to the imbal-
ance between EVs and non-EVs and challenging image ar-
tifacts, especially at long ranges. We applied several tech-
niques to address these issues.

3.3.1 Data augmentation

Data augmentation is often applied when training an image
classifier by modifying raw images using operations such as
cropping, flipping, rotation, resizing, and others. We aug-
ment only the rare active-EV class and focus on approaches
that do not introduce unrealistic deviations and additional
bias between the classes. Our solution updates the vehicle
track bounding box as follows. The track state contains x,
y, and z coordinates of the bounding box center, as well as
its length, width, and height. To each of these states we fit
a normal distribution on the training set. Then, given an in-
put track, we sample from this distribution to generate new
bounding boxes, ensuring the augmented data is likely to be
seen in the real world. When creating the final train data
set we use a sampling ratio of 2× on positive examples, and
also downsample negative examples by 5×.

3.3.2 Data engine: Mine, label, and retrain

As EVs are very rare compared to other traffic actors, we
explored additional sourcing methods to find relevant data
in the collected data logs. Another practical problem is that
the proposed model may produce FPs, and we would like to
collect such hard samples to help train a better classifier. To
address these two problems, we developed a data engine to
continuously improve the learned model. In particular, we
mine the data in the newly collected logs to find the events
with active-EV detections by the EV classifier, regardless
of whether or not they were true or false positives. Then,
we label such events and add them to the data set, before
retraining the EV classifier model.

4. Results

We performed hyper-parameter tuning to train a strong
initial model, which is used as a baseline to which other

Figure 1. Example detections (top row: true positives, bottom row:
difficult true negatives)

Table 3. Per-actor results of the output smoother for various
smoother threshold T

T
% change of % change of % change of

precision recall F1 score
0% 0 0 0
30% 10.30 -0.68 5.07
50% 9.87 -0.51 4.87
70% 6.80 -20.0 -7.02

experiments are compared. The results are shown in Ta-
ble 2. By using data augmentation discussed in Section
3.3.1, we see 3.11% boost in the max-F1 score compared
to the baseline. If we also add more training data collected
through hard-sample mining (nearly doubling the number
of vehicles) and retrain the model, we see an improvement
of 5.73% in max-F1. Moreover, this method improves the
precision by more than 10% at a fixed 0.8 recall. More im-
portantly, the data engine helps to continuously iterate and
improve the model by adding useful data as it is collected.

In Figure 1 we show examples of true positives (TPs)
and difficult true negatives (TNs) of the improved ”+ A +
M” model from Table 2. The TPs that are shown in the first
row cover different types of EVs, various weather and light
conditions, as well as multiple viewing angles. The difficult
negative cases (shown in the second row) were false posi-
tives of the baseline model, but then successfully predicted
as TNs by the improved model. It is interesting to note that
such difficult cases were usually caused by some other light
sources, including brake lights from vehicles queued ahead,
flashing lights of construction vehicles, or sun reflections.

Beyond the learned EV model, we also evaluated the per-
formance of the downstream smoother. Using a different
setup of the smoother we show the corresponding changes
in precision, recall, and F1 score in Table 3, where we
tune the threshold T (i.e., the minimum fraction of pos-
itive outputs in the buffer required to output a final posi-
tive state). As can be seen, when the threshold is 30% and
50%, we reach a higher F1 score and precision with very
small regression in recall, which shows the effectiveness of
smoother in mitigating FPs. However, when the threshold



is set to a high value (such as 70%), the system starts to
generate more FNs which hurts the overall performance.

5. Conclusion
We considered the problem of detecting active emer-

gency vehicles in the context of self-driving vehicles. We
proposed to use a frame-level EV detector whose outputs
are fed to an output smoother, which captures the temporal
dimension of such actors. Finally, we evaluated the method
on large-scale, real-world data, and made further improve-
ments by data augmentation and by training with additional
hard samples mined using a data engine.

References
[1] Youtube Channel: TGG—Global Emer-

gency Responses. [Online]. Available:
https://www.youtube.com/c/TGGGlobalEmergencyResponses,
2020. 1

[2] Youtube Channel: Demonracer2. [Online]. Available:
https://www.youtube.com/user/demonracer2, 2020. 1

[3] Muhammad Asif, Muhammad Usaid, Munaf Rashid,
Tabarka Rajab, Samreen Hussain, and Sarwar Wasi. Large-
scale audio dataset for emergency vehicle sirens and road
noises. Scientific data, 9(1):1–9, 2022. 2

[4] Abhishek Baghel, Aprajita Srivastava, Aayushi Tyagi,
Somya Goel, and Preeti Nagrath. Analysis of ex-yolo algo-
rithm with other real-time algorithms for emergency vehicle
detection. In Proceedings of First International Conference
on Computing, Communications, and Cyber-Security (IC4S
2019), pages 607–618. Springer, 2020. 1

[5] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 1

[6] Michela Cantarini, Leonardo Gabrielli, and Stefano Squar-
tini. Few-shot emergency siren detection. Sensors,
22(12):4338, 2022. 2

[7] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 1907–1915, 2017. 1

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1, 2

[9] Duarte Fernandes, António Silva, Rafael Névoa, Cláudia
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