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Abstract—We present an approach to improve 3D vehicle
labeling in self-driving applications through zero-shot inference
of vehicle information, leveraging Vehicle Make and Model
Recognition (VMMR) methods. The proposed approach utilizes
a Vision Language Model (VLM) to both infer a vehicle’s make,
model, and generation from image crops, and output accurate 3D
bounding box dimensions to seed manual labeling. We evaluate
the impact of iterative prompt engineering and the choice of
different VLMs on both vehicle bounding box inference and
make/model/generation recognition. When compared to strong
baselines, the proposed approach not only shows high accu-
racy but also excels in mitigating specific failure modes where
VLMs provide better dimensions than initial lidar-aided human-
annotated labels (e.g., in cases of significant vehicle occlusion).
Experiments on both public and proprietary data strongly
suggest that our conclusions are generalizable across different
labelers and datasets. The results demonstrate that integrating
VLMs into the labeling process can reduce manual labeling time
while increasing label quality.

Index Terms—autonomous vehicles, self-driving, 3D labeling,
vision language models

I. INTRODUCTION

Autonomous vehicle (AV) technology is increasingly
present on public roads [1], powered by machine learning
(ML) models that are integral to systems such as perception
[2], [3] and motion planning [4]. Similarly to ML models in
other industries, having large amounts of high-quality data
is critical for model performance and generalizability [5].
Traditionally, researchers relied on manual annotation, which
involves drawing accurate 3D bounding boxes by hand around
vehicles, pedestrians, and other traffic actors in a scene [6].
However, this manual process is tedious and challenging, as
AV data is large, complex, and multi-modal (including sensors
such as cameras, lidars, and radars) [7], [8]. Therefore, auto-
labeling approaches that automatically infer and seed bounding
boxes before manual labeling are attractive alternatives to
speed up and improve the labeling process [9], [10]. We
explore this topic and propose a novel method to improve auto-
labeling, leveraging recent advances in foundation models.

A recent development that has impacted the AV industry is
the rise of foundation models, methods that are largely self-
supervised on vast unlabeled datasets, shown to lead to im-
proved performance on a number of tasks [11]. A special kind
of foundation models are Vision Language Models (VLMs)
[12], which can take multiple modalities as inputs (e.g., camera

images, lidar sweeps, text) and are thus particularly applicable
to self-driving due to the vast quantities of multi-sensor data
that are generated in the field. For example, there exist initial
attempts to apply VLMs to end-to-end driving, aiming to
explain decisions of black-box self-driving models or even to
try directly outputting vehicle controls [13], [14]. Beyond these
onboard applications, their strong performance in computer
vision tasks [15], [16] makes VLMs promising for offboard
3D auto-labeling as well, with initial work exploring two-stage
processing of VLM 2D outputs [17], [18].

We propose a method to significantly improve auto-labeling
speed and quality for self-driving by directly inferring vehicle
3D dimensions, especially relevant in critical cases where sen-
sor data is sparse. Moreover, the proposed approach connects
the research fields of vehicle make and model recognition
(VMMR) and auto-labeling in a novel way, using make,
model, and generation information as a strong prior for vehicle
extents. Our main contributions are summarized below:

• We propose a VLM-based method that, within a single
pass, performs two coupled tasks: inferring a vehicle’s
make, model, and generation, and outputting accurate 3D
vehicle dimensions to seed label bounding boxes;

• We demonstrate an iterative prompt engineering process
that improves accuracy (e.g., by adding specific reasoning
around vehicle generation and exterior modifications);

• We evaluate the proposed method using multiple state-of-
the-art VLMs and against strong baselines, and validate
our results on both proprietary and open-sourced data,
showing large performance improvements;

• We identify and analyze failure cases, showing that our
approach can provide more accurate dimensions than
initial lidar-aided human-annotated labels in challenging
scenarios, such as in the case of occluded vehicles.

II. RELATED WORK

While recent large-scale, open-sourced datasets from indus-
try have become the backbone of AV research [5], [19], the
3D labeling process remains a manual, costly, and complex
bottleneck. This is especially true when attempting to capture
all relevant real-world situations that the AVs could encounter,
such as degraded conditions [20]. To reduce dependence on
high-quality labels, researchers have proposed approaches such
as pseudolabels [10], [21] or unsupervised methods [22],



which use limited data to help bootstrap complex detection
systems. While useful, these approaches largely supplement,
not replace, data-hungry methods. A more direct line of
research, which is also the focus of our work, is improving
auto-labels [9], which are algorithmic labels computed offline
that serve as seeds for manual labeling, or even as direct
training labels if some loss of quality is acceptable.

VLMs are becoming increasingly popular in the self-driving
industry, mirroring their overall rise in popularity. Researchers
have explored VLMs for full end-to-end driving [12], and to
improve driver models via a student-teacher setup for robust-
ness [23]. While most published work focuses on onboard
VLM applications, in this paper we investigate their less-
explored offboard use to improve auto-labeling. Earlier efforts
include [17] and [18] where authors proposed complex two-
stage processes to convert 2D VLM outputs into 3D bounding
boxes, unlike our work which directly outputs 3D dimensions.

Another relevant research area is vehicle make and model
recognition (VMMR). This is a perception task that goes
beyond just detecting vehicles, by also inferring a vehicle’s
make and model (e.g., ”Toyota RAV4”, ”Ford Fusion”) [24].
VMMR has a long history of research [25], and is an important
part of applications such as traffic surveillance and monitoring
[26]. VMMR approaches have transitioned from traditional
ML and computer vision methods [27], [28] to state-of-
the-art deep learning methods [24], [29]. A recent survey
paper [30] discussed using VLM models for VMMR, albeit
without providing implementation or analysis. In contrast, we
implement a VLM-based solution to the VMMR problem and
are the first to use its outputs to improve auto-labeling.

III. METHODOLOGY

We assume there exists a system for 3D labeling of traffic
actors that provides human labelers with multi-sensor inputs
(including multi-camera images and lidar returns), along with
seed 3D bounding boxes (usually created by an offboard
detector [9]). Labelers use this system to visualize and navigate
traffic scenes, and to modify the bounding boxes so they tightly
fit the actors at each timestep. Our task is to improve and speed
up this process in the case of vehicle labels. In particular, we
propose to improve the accuracy of seed 3D bounding boxes
by considering vehicle factory dimensions, thus reducing the
manual effort needed to produce high-quality labels.

For the offboard detector we assume an off-the-shelf vehicle
detection system relying on available sensors, outputting local-
ized 3D detections and approximate 2D bounding boxes from
which we can derive camera crops. These 2D image crops of
individual vehicles are then fed to a pretrained VLM model.
The VLM is prompted to perform the coupled task of vehicle
make, model, and generation recognition (henceforth referred
to as VMMGR) and to output the corresponding factory
dimensions. The additional generation output is critical, as
dimensions and visual design are identical or near-identical
within a generational year range (e.g., “Toyota RAV4 4th
generation 2013-2018”) but can significantly differ between
generations even for the same make and model [31], [32].

Fig. 1. Overview of the proposed auto-labeling framework; examples of image
crops resulting from viewpoint selection are shown in Figure 2.

The output dimensions are then combined with localized 3D
detections and used as seed values for the 3D bounding boxes
in the aforementioned labeling system. Figure 1 illustrates this
process, from the initial 2D camera inputs to the final, VLM-
seeded 3D bounding box.

A. Image Sampling

Following the initial detection step, we obtain multiple
frames of a vehicle across both time and various camera
viewpoints. Given the limited context window of current state-
of-the-art VLMs, we select a subset of frames as input. Our
sampling strategy is a two-step process. First, we perform
viewpoint selection: at each timestamp, we identify a camera
that provides the best view of the vehicle, determined by
selecting the camera view where the vehicle’s projected detec-
tion area (in pixels) is largest. Second, we uniformly sample
N images from these best-view frames over the vehicle’s
observed time duration, where N is the maximum input
capacity of a considered VLM.

B. VLM Setup and Prompt Engineering

As shown in Figure 1, a sequence of image crops is
provided to the VLM to determine vehicle dimensions. We
performed several iterations of prompt engineering to increase
dimension accuracy; our prompts evolved from requesting
only dimensions to also including vehicle make, model, and
generation recognition (VMMGR). Each iteration involved
reviewing dimension and VMMGR performance metrics, ana-
lyzing failures, and refining the prompt. Here we list important
iterations, with detailed results discussed in Section IV-C:

1) Basic Prompt: A short query prompt that directly
asks the VLM for vehicle dimensions given the image
sequence, with no additional guidance.

2) Vehicle Type Prompt: The prompt asks the VLM to first
classify the vehicle into high-level types (sedan, hatch-



back, SUV, pickup, van) and then use this classification
to predict vehicle dimensions.

3) Type + Market Size Class Prompt: In addition to high-
level type, this prompt asks the VLM to also determine
market size class (e.g., subcompact, compact, midsize,
full-size) and use both for dimension prediction.

4) VMMGR Prompt: Prompts the VLM to reason about
vehicle type, market size class, and, critically, the vehi-
cle’s make, model, and generation year range.

5) Refined VMMGR Prompt: We added several other
reasoning elements into the VMMGR prompt, inspired
by the chain-of-thought engineering [33]. This final
prompt incorporated the following steps:

a) Occlusion assessment: To prevent failures from
significant occlusion (which we found led to hal-
lucinated outputs or predictions on an occluding
vehicle), we added a step for the VLM to first
assess if it can confidently identify the vehicle due
to potential occlusion.

b) Make, model, generation identification: This is the
core VMMGR task from the previous prompt, ask-
ing for the vehicle’s make, model, and generation.

c) Vehicle configuration identification: Because we
found that dimensions were less accurate for vehi-
cles with multiple configurations (e.g., pickup bed
length, van wheelbase), we requested an additional
output to identify these specific configurations.

d) Modification and damage assessment: To han-
dle vehicles differing from factory specifications
(found to be common poor performers), the prompt
asks the VLM to identify any visible modifications
or damage (e.g., lifted suspension, wider fenders)
and to state whether each dimension (i.e., length,
width, height) is increased, decreased, or fits fac-
tory specifications.

e) Factory dimension retrieval: Finally, the prompt
requests the VLM to output the vehicle’s factory
dimensions (length, width, height) in meters, based
on its preceding reasoning.

For all prompts, we ask the VLM to output the fields
specified in a JSON template included within the prompt,
which can be set to null if unsure. Specifically, the complete
final refined VMMGR prompt is as follows:
## SYSTEM PROMPT
You are an expert vehicle perception system for an autonomous vehicle. Your primary
function is to analyze sequences of image frames to identify vehicles and their
attributes with high accuracy.

Your analysis must be robust. The input will be multiple frames from a video where
quality, angle, and distance may vary. You must base your conclusions on the best
available evidence across all provided frames, first determining if a clear
identification is even possible due to occlusion.

You will identify the vehicle’s make, model, configuration, and generation,
retrieve its standard factory dimensions, and critically assess it for any
modifications or damage that would alter those dimensions. Your output must
strictly adhere to the requested JSON format.

## USER PROMPT
Follow these steps carefully to analyze the vehicle in the provided image frames:

**1. Occlusion Assessment:**
- First, examine all provided frames to determine if the target vehicle is
identifiable.
- Set **‘significantly_occluded‘** to ‘true‘ if, and only if, the vehicle is so
severely blocked by other cars or objects in **every single frame** that its make,
model, and shape cannot be confidently determined.

- If ‘significantly_occluded‘ is ‘true‘, fill all other fields in the JSON with
‘null‘ and stop.
- If at least **one frame** offers a clear enough view for identification, set
‘significantly_occluded‘ to ‘false‘ and proceed to the next step.

**2. Frame Synthesis & Vehicle Identification:**
a. **Primary ID:** Synthesize information from the clearest frames to identify the
vehicle’s **make**, **model**, and **generation** (e.g., "2019-2024").
b. **Configuration ID:** For vehicles like pickup trucks, full-size SUVs, or vans,
identify the specific **configuration**.
This could be cab size (Crew Cab, Double Cab), bed length (Short, Standard, Long),
or wheelbase (e.g., Tahoe vs. Suburban).

**Prioritize side-view frames** to make this determination.

**3. Factory Dimension Retrieval:**
- Based on the identified generation AND configuration, provide the standard

**factory** dimensions (length, width, and height) in meters.

**4. Modification & Damage Assessment:**
- Inspect the vehicle for visible non-factory modifications or significant damage.
- **Height changes:** Lift kits, suspension lowering.
- **Width changes:** Wide-body kits, aftermarket fender flares, wider tires.
- **Length changes:** Aftermarket bumpers, externally mounted spare tires, bike racks.
- **Important:** A standard tow hitch should **not** be flagged as a length
modification.

**5. JSON Output Generation:**
- Format your final analysis as a single JSON object using the schema below.
- If the configuration cannot be confidently determined, set the ‘configuration‘ value
to "Best estimate - configuration unclear", but still provide your best estimate for
the dimensions.
- For modification keys, use "increased" or "decreased" only if you observe a relevant
modification; otherwise, use null.
}

json
{

"significantly_occluded": "boolean",
"make": "string or null",
"model": "string or null",
"generation_year_range": "string or null",
"vehicle_type": "string (’sedan’, ’hatchback’, ’SUV’, ’pickup truck’, ’van’,
’other’) or null",
"configuration": "string or null",
"length_m": "float or null",
"width_m": "float or null",
"height_m": "float or null",
"length_modification": "’increased’, ’decreased’, or null",
"width_modification": "’increased’, ’decreased’, or null",
"height_modification": "’increased’, ’decreased’, or null"

}

IV. EXPERIMENTS

A. Experimental Setup

We used two sources of 3D labeled data to test the proposed
approach, including an internal proprietary dataset and an
external open-source dataset. The internal dataset consists of
15-second-long snippets collected on US highways and surface
streets in Texas, Pennsylvania, and California between 2022
and 2025. The snippets comprise camera, lidar, and radar
sensor data, and were labeled with 3D bounding boxes and
vehicle types by an internal team of professional labelers.
The bounding boxes are drawn in a way to encompass the
entire vehicle body, excluding minor protrusions (e.g., small
side mirrors). We randomly sampled 3,821 vehicle labels from
these snippets for our experiments. In addition, we used the
Waymo Open Dataset [5] as an external open-source dataset.
To ensure high label quality we considered only actors within
55m of the AV, resulting in 1,931 vehicle samples.

For VLMs, we evaluated several state-of-the-art pretrained
VLMs available through publicly accessible, third-party cloud
services, without any model finetuning. In particular, we used
Llama 4 Maverick [34], Pixtral Large [35], Claude Sonnet 4
[36], as well as Gemini Flash 2.5 and Pro 2.5 [37].

For fair comparison on bounding box inference, we de-
signed a strong non-VLM oracle baseline. Critically, this base-
line uses the label’s ground-truth vehicle type during inference
to predict fixed dimensions for each of the five most common
types of vehicles (covering more than 99% of all vehicles),
namely sedan, SUV, pickup truck, van, and hatchback. These



TABLE I
PERFORMANCE COMPARISON OF VLMS USING THE REFINED VMMGR PROMPT

(LOWER IS BETTER FOR ERROR METRICS, HIGHER IS BETTER FOR IOU AND PERCENTAGE PREDICTIONS; BEST RESULTS SHOWN IN BOLD)

Metric Baseline Llama 4 Maverick Pixtral Large Claude Sonnet 4 Gemini Flash 2.5 Gemini Pro 2.5

N (# of context images) - 3 3 3 10 3 10 3 10

Absolute length error (meters) 0.3010 0.2946 0.2837 0.3142 0.2911 0.2678 0.2610 0.2635 0.2589
Absolute width error (meters) 0.1157 0.0957 0.0909 0.0885 0.0853 0.0805 0.0786 0.0778 0.0767
Absolute height error (meters) 0.0939 0.1025 0.0950 0.0995 0.0933 0.0784 0.0764 0.0765 0.0752
Relative length error (proportion) 0.0634 0.0622 0.0602 0.0668 0.0619 0.0567 0.0554 0.0560 0.0549
Relative width error (proportion) 0.0557 0.0462 0.0438 0.0427 0.0411 0.0388 0.0379 0.0376 0.0370
Relative height error (proportion) 0.0494 0.0556 0.0515 0.0537 0.0501 0.0422 0.0412 0.0412 0.0405
Intersection-over-union 0.8497 0.8559 0.8635 0.8581 0.8663 0.8794 0.8813 0.8808 0.8831
Percentage predictions 100% 86.92% 96.91% 93.10% 97.36% 99.03% 99.63% 98.82% 99.26%

TABLE II
COMPARISON OF VLM ACCURACY ON THE VMMGR TASK, SLICED BY VEHICLE TYPE (HIGHER IS BETTER, BEST RESULTS SHOWN IN BOLD)

Model Sedan SUV Pickup Truck Van Hatchback Total

Llama 4 Maverick 70.5% 65.3% 81.3% 80.6% 88.0% 74.5%
Pixtral Large 72.4% 65.8% 78.0% 85.6% 68.0% 74.2%
Claude Sonnet 4 89.7% 79.3% 87.9% 98.0% 100.0% 88.4%
Gemini Flash 2.5 97.3% 94.0% 97.3% 99.0% 96.0% 96.7%
Gemini Pro 2.5 100.0% 95.3% 98.7% 99.0% 96.0% 98.1%

fixed dimensions were determined as follows. For each type
of vehicle, there are different standard size classes into which
manufacturers categorize their vehicles (e.g., in the case of
sedans, there are subcompact, compact, midsize, and full-size
sedans). Most manufacturers’ vehicle dimensions in each size
class are fairly similar, typically down to a few centimeters
[38], [39]. For each vehicle type and size class, we retrieve
the dimensions from the best-selling vehicles in that class. To
account for the model year, we used the dimensions of 2013
models, approximating the average vehicle age in the US as
of 2025 [40]. The final predicted dimension for a type is the
mean of the size class dimensions. For the 1% of vehicles that
do not fall into one of the five main types (e.g., convertibles,
RVs, trailers), we output a mean bounding box computed over
all predictions made by the baseline on the five main types.

B. Analysis of Different VLM Approaches

We first compared the performance of different VLMs on
the internal data, using the refined VMMGR prompt which
yielded the best results in all cases. In addition, we used
a maximum allowed number of context images N for each
VLM, which was 3 for Llama and Pixtral and 10 for Claude
and Gemini. For a direct comparison, we also conducted
experiments with 3 images for Claude and Gemini.

1) Inferring Bounding Box Size: Since the prompt allows
the VLM to abstain from prediction (e.g., due to occlusion),
we report the ”Percentage predictions” metric, which is the
percentage of samples where it returned non-null dimensions.
For non-predictions, we imputed the mean of the model’s
predicted dimensions for all other samples. The results are
summarized in Table I, where we report the average values of
absolute and relative errors along the three dimensions (length,
width, height), as well as the intersection-over-union (IoU)
metric computed in the 2D overhead view.

We can see that the baseline shows very competitive per-
formance, achieving low error rates across all metrics. Unlike

the VLM methods which can abstain from outputting the
dimensions, it also achieves a 100% prediction rate. However,
it is crucial to note that the baseline acts as an oracle, using
the ground-truth actor type to infer the vehicle size.

Focusing first on the N = 3 results, the VLM methods
in general improved over this strong baseline. For example,
Llama, Pixtral, and Claude mostly improved on the length
and width metrics compared to the baseline, while all showed
worse performance on height. The Gemini 2.5 models clearly
outperformed both the baseline and the other VLMs, with
Gemini Pro achieving the strongest performance. In addition,
the N = 10 results for Claude and Gemini show a clear benefit
from the longer context, improving all considered metrics
when compared to the shorter-context variants. In particular,
Gemini Pro with N = 10 achieved the lowest errors across
all metrics, the highest IoU, and a near-perfect percentage
prediction. Given these results, in the following experiments
we set N to a maximum context allowed by a particular VLM.

2) Inferring Vehicle Make/Model/Generation: In Table II
we explore the VLM performance on the VMMGR task, sliced
by the vehicle type. A VMMMGR prediction was counted
as correct only if the make, model, and generation were all
correct. Consistent with the previous experiment, Gemini Pro
2.5 achieved the best overall performance, with the exception
of hatchbacks (although still reaching competitive accuracy).
Performance varied significantly across vehicle types, with
hatchbacks and vans being the easiest to infer correctly for
all VLMs, while SUVs and sedans presented the biggest
challenge. Such results can be explained by the level of
distinguishing visual features that each type has, as explored
further in Figure 2 which shows some notable examples where
the VLMs returned correct as well as incorrect predictions.

3) Modification Prediction: An important output of the
system is the identification of modifications or damage that
could alter the factory dimensions. This allows the system to



(a) This 1st-generation Chrysler 300
sedan was 88m away at its closest,
without visible logo or branding, yet
correctly identified by all models.

(b) Ford Focus came in two versions
in the US: a sedan and a hatchback;
all VLMs correctly identified it as
the 3rd-generation hatchback.

(c) Ford Transit has two configura-
tions that differ in length by 2m; all
VLMs identified this 90m-away ve-
hicle as the shorter Transit Connect.

(d) All models correctly identified
the 30-year-old vehicle as Chevrolet
Silverado 1990-1998 from the front
view alone.

(e) Nissan sedans of this year range
have very similar front styling, mak-
ing identification challenging; Llama
incorrectly inferred it as Sentra,
while the other VLMs correctly
identified a 5th-generation Altima.

(f) This sedan is 3 lanes away,
having very generic styling; Llama,
Pixtral, and Claude incorrectly pre-
dicted common Toyota and Hyundai
sedans, while Gemini models cor-
rectly identified a 2nd-gen Kia Forte.

(g) This Hyundai Santa Fe 2018-
2022 is 90m away at its closest
point; all VLMs output wrong pre-
diction (Llama: Volvo XC60, Pixtral:
Toyota RAV4, Claude: Honda CR-V,
Gemini: Buick Envision).

(h) This vehicle is partially occluded,
with generic styling: all VLMs pre-
dicted different Toyota SUVs, but it
is actually a 2nd-generation Toyota
Sienna minivan.

Fig. 2. Examples of VMMGR predictions, with each image showing the clearest camera crop from the input image sequence; the top row shows cases where
all VLMs provided correct predictions, while the bottom row shows interesting failure modes.

(a) Wider and taller vehicle due to
oversized tires and lifted suspension.

(b) Larger in all three dimensions due
to protruding tires and cargo racks.

Fig. 3. Examples of SUVs identified as being modified.

identify samples that likely may not match their factory specs.
We evaluated the modification output using Gemini Pro 2.5

which identified 82.93% of actors as unmodified, with the
remaining 17.07% as having some modification. A comparison
of absolute error metrics confirmed the importance of this
feature: the unmodified vehicles had significantly lower errors
(0.250m/0.068m/0.062m in length/width/height), compared
to the modified actors (0.302m/0.119m/0.140m). Illustrative
cases of vehicles found to be modified are shown in Figure 3.

In the context of auto-labeling, these findings show that the
modification prediction has promising potential to be used for:

• Intelligently flagging or filtering out predictions where
the system believes it may be less accurate, resulting in
significantly more accurate auto-labels;

• Surfacing interesting outliers that are modified or dam-
aged, allowing for special focus on these long-tail vehi-
cles during labeling and model training.

C. Analysis of Prompt Engineering

This section provides a detailed ablation study of the various
prompts introduced in Section III-B, with results summarized
in Table III. For brevity, we report ablation results for Gemini
Pro 2.5, which achieved the strongest overall performance.
We confirmed, however, that this pattern of improvement was
general and applied to all other VLMs used in Table I.

The basic prompt, which directly asks for vehicle dimen-
sions, already achieved reasonable performance, although not
always beating the baseline (such as in the length metrics).
Interestingly, the vehicle type prompt, which asks the VLM
to use the vehicle type to infer dimensions, actually led to re-
duced performance. This may be due to the prompt artificially
limiting the VLM’s reasoning capabilities by explicitly linking
the dimensions to only the high-level vehicle type.

The next iteration, which added reasoning about the vehicle
size class (e.g., subcompact, compact), significantly improved
on the previous prompt and outperformed the basic prompt on
all metrics except height. This is not surprising as, for instance,
SUVs can significantly differ in size, with their length being
under 4 meters for a subcompact SUV to nearly 6 meters
for a full-size SUV, which is a variance that reasoning about
size class can capture. The introduction of explicit VMMGR
reasoning further improved nearly all metrics compared to the
“Type + Size Class” prompt, demonstrating the benefits of this
added granularity. Lastly, using even more specific reasoning
in the refined VMMGR prompt (such as occlusion reasoning,
vehicle configuration, and modifications) yielded another per-
formance boost, resulting in the best overall prompt.



TABLE III
PERFORMANCE COMPARISON OF BASELINE VS. DIFFERENT PROMPTS USING GEMINI PRO 2.5 (BEST RESULTS SHOWN IN BOLD)

Metric Baseline Basic Vehicle Type Type + Size Class VMMGR Refined VMMGR

Absolute length error (meters) 0.3010 0.3059 0.3128 0.2808 0.2647 0.2589
Absolute width error (meters) 0.1157 0.0772 0.0991 0.0770 0.0767 0.0767
Absolute height error (meters) 0.0939 0.0699 0.0996 0.0826 0.0755 0.0752
Relative length error (proportion) 0.0634 0.0638 0.0665 0.0597 0.0561 0.0549
Relative width error (proportion) 0.0557 0.0375 0.0478 0.0371 0.0371 0.0370
Relative height error (proportion) 0.0494 0.0382 0.0511 0.0447 0.0530 0.0405
Intersection-over-union 0.8497 0.8827 0.8550 0.8766 0.8830 0.8831
Percentage predictions 100% 97.85% 99.89% 98.06% 99.86% 99.26%

TABLE IV
PERFORMANCE ON THE OPEN-SOURCED WAYMO DATASET

Metric Gemini Pro 2.5

Absolute length error (meters) 0.2654
Absolute width error (meters) 0.2475
Absolute height error (meters) 0.1396
Relative length error (proportion) 0.0678
Relative width error (proportion) 0.1216
Relative height error (proportion) 0.0709
Intersection-over-union 0.7715
Percentage predictions 91.21%

D. Surfacing and Correcting Human Labeling Errors

We considered the human-provided labels as ground-truth
so far, assuming they were perfect (as is a common practice).
However, analysis of high-error predictions revealed that for a
small number of these cases, the errors could be explained by
suboptimal human labels, as opposed to being due to incorrect
predictions. Figure 4 highlights notable examples where the
proposed approach identified potential label improvements.
We can see that, for both minor and major occlusion cases,
the VLM-based method can surpass the initial lidar-aided
human-annotated labels and provide very accurate dimensions,
highlighting its potential to create high-quality data.

E. Experiments on Open-Sourced Data

Previous experiments were conducted on proprietary data;
however, we found that similar conclusions can be derived by
evaluating on open-source data. To that end, we analyzed the
results of Gemini Pro 2.5 with the refined VMMGR prompt
on the Waymo Open Dataset [5], summarized in Table IV.

The results for length roughly align with the ones shown in
Table III. However, we observed a much higher error for width
and height. Detailed analysis found that in many cases the
model predictions were more aligned with the images than the
provided labels. In particular, the predicted width and height
are nearly always smaller than the label’s width and height.
This can be explained by the fact that the model predictions
cover factory dimensions, ignoring protrusions such as side-
view mirrors and antennas which may be included in the
Waymo labels, as illustrated in Figure 5.

These findings suggest that our results are generalizable to
other self-driving datasets, and that the proposed approach can
more broadly improve the auto-labeling process.

(a) Significantly-occluded SUV, resulting in lidar coverage on only its rear
half; by overlaying an image of the identified 2nd-generation Volvo XC90,
we can see that the label could be improved through lengthening by 0.62m.

(b) Commonly found occlusion on front vehicles, where only the rear three-
quarters are visible; overlaying the identified Cadillac XTS sedan shows a
0.35m portion that was occluded in lidar and thus not included in the label.

Fig. 4. Examples where the proposed system identified potential label
improvements. Each example shows (left) the input camera view, and (right)
a side-view diagram with projected lidar points and label box in white, along
with a reference image of the predicted vehicle overlaid to align with lidar.

Fig. 5. Examples from the Waymo dataset: (a) Front vehicle correctly
identified as a 3rd-generation Toyota Prius; however, the label is 0.4m
wider than its factory width due to included side-view mirrors; (b) Correctly
identified Ford pickup truck has height label of 2.72m which is 0.92m more
than the expected height, seemingly due to the antenna sticking out.

V. CONCLUSION

We proposed a VLM-based approach to improve auto-
labeling in self-driving applications. Our method uses a single-
pass VLM prompt that infers a vehicle’s make, model, and
generation from camera images to output accurate 3D bound-
ing box. We presented an iterative prompt engineering process
and compared our final prompt to a strong oracle baseline
and several VLMs, demonstrating the superior performance of
the proposed approach. Evaluation on both public and propri-
etary datasets showed the benefits and generalizability of this



method. Notably, we identified challenging scenarios, such as
occlusion, where the VLM-based approach can provide more
accurate dimensions than initial lidar-aided human-annotated
labels. The results strongly suggest that integrating VLM-
based reasoning into the labeling pipeline can significantly
reduce labeling time while increasing label quality.

REFERENCES

[1] F. Favaro, S. Schnelle, L. Fraade-Blanar, et al., “Determining absence
of unreasonable risk: Approval guidelines for an automated driving
system deployment,” arXiv preprint arXiv:2505.09880, 2025.

[2] I. Sumalatha, P. Chaturvedi, S. Patil, H. P. Thethi, A. A. Hameed,
et al., “Autonomous multi-sensor fusion techniques for environ-
mental perception in self-driving vehicles,” in Proceedings of the
International Conference on Communication, Computer Sciences and
Engineering (IC3SE), IEEE, 2024, pp. 1146–1151.

[3] O. A. Fawole and D. B. Rawat, “Recent advances in 3d object
detection for self-driving vehicles: A survey.,” AI, vol. 5, no. 3, 2024.

[4] M. Ganesan, S. Kandhasamy, B. Chokkalingam, and L. Mihet-Popa,
“A comprehensive review on deep learning-based motion planning
and end-to-end learning for self-driving vehicle,” IEEE Access,
vol. 12, pp. 66 031–66 067, 2024.

[5] P. Sun, H. Kretzschmar, X. Dotiwalla, et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 2443–2451.

[6] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR, 2012.

[7] J. Huang, Y. Ye, Z. Liang, Y. Shan, and D. Du, “Detecting as labeling:
Rethinking lidar-camera fusion in 3d object detection,” in Proceedings
of the European Conference on Computer Vision (ECCV), Springer,
2024, pp. 439–455.

[8] J. Domhof, J. F. Kooij, and D. M. Gavrila, “A joint extrinsic
calibration tool for radar, camera and lidar,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 3, pp. 571–582, 2021.

[9] C. R. Qi, Y. Zhou, M. Najibi, et al., “Offboard 3d object detection
from point cloud sequences,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2021,
pp. 6134–6144.

[10] J. Houston, G. Zuidhof, L. Bergamini, et al., “One thousand and one
hours: Self-driving motion prediction dataset,” in Proceedings of the
Conference on Robot Learning, PMLR, 2021, pp. 409–418.

[11] C. Zhou, Q. Li, C. Li, et al., “A comprehensive survey on pretrained
foundation models: A history from bert to chatgpt,” International
Journal of Machine Learning and Cybernetics, pp. 1–65, 2024.

[12] L. Chen, O. Sinavski, J. Hünermann, et al., “Driving with llms: Fusing
object-level vector modality for explainable autonomous driving,” in
2024 IEEE International Conference on Robotics and Automation
(ICRA), 2024, pp. 14 093–14 100.

[13] A.-M. Marcu, L. Chen, J. Hünermann, et al., “Lingoqa: Visual
question answering for autonomous driving,” in European Conference
on Computer Vision, Springer, 2024, pp. 252–269.

[14] Sep. 2023. [Online]. Available: https : / / wayve . ai / thinking / lingo -
natural-language-autonomous-driving/.

[15] A. Kirillov, E. Mintun, N. Ravi, et al., “Segment anything,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2023, pp. 3992–4003.

[16] N. Ravi, V. Gabeur, Y.-T. Hu, et al., “SAM 2: Segment anything in
images and videos,” in Proceedings of the Thirteenth International
Conference on Learning Representations (ICLR), 2025.

[17] Y. Zhou, L. Cai, X. Cheng, Z. Gan, X. Xue, and W. Ding, “Openan-
notate3d: Open-vocabulary auto-labeling system for multi-modal 3d
data,” in 2024 IEEE International Conference on Robotics and
Automation (ICRA), 2024, pp. 9086–9092.

[18] I.-J. Lee, M. Kim, K. Ryu, P. Musacchio, and J. Park, “Openbox:
Annotate any bounding boxes in 3d,” in The Thirty-ninth Annual
Conference on Neural Information Processing Systems, 2025.

[19] B. Wilson, W. Qi, T. Agarwal, et al., “Argoverse 2: Next generation
datasets for self-driving perception and forecasting,” in Proceedings
of the Neural Information Processing Systems Track on Datasets and
Benchmarks (NeurIPS), 2023.

[20] Y. Zhang, A. Carballo, H. Yang, and K. Takeda, “Perception and
sensing for autonomous vehicles under adverse weather conditions:
A survey,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 196, pp. 146–177, 2023.

[21] B. Caine, R. Roelofs, V. Vasudevan, J. Ngiam, Y. Chai, and J. Shlens,
“Pseudo-labeling for scalable 3d object detection,” arXiv preprint
arXiv:2103.02093, 2021. arXiv: 2103.02093 [cs.CV].

[22] L. Zhang, A. J. Yang, Y. Xiong, et al., “Towards unsupervised object
detection from lidar point clouds,” in CVPR, Jun. 2023, pp. 9317–
9328.

[23] Y. Xu, Y. Hu, Z. Zhang, et al., “Vlm-ad: End-to-end autonomous
driving through vision-language model supervision,” arXiv preprint
arXiv:2412.14446, 2024.

[24] F. Tafazzoli, H. Frigui, and K. Nishiyama, “A large and diverse dataset
for improved vehicle make and model recognition,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2017, pp. 1–8.

[25] S. Gayen, S. Maity, P. K. Singh, Z. W. Geem, and R. Sarkar, “Two
decades of vehicle make and model recognition – survey, challenges
and future directions,” Journal of King Saud University - Computer
and Information Sciences, vol. 36, p. 101 885, 2024.

[26] M. A. Manzoor, Y. Morgan, and A. Bais, “Real-time vehicle make
and model recognition system,” Machine Learning and Knowledge
Extraction, vol. 1, no. 2, pp. 611–629, 2019.

[27] G. Pearce and N. Pears, “Automatic make and model recognition
from frontal images of cars,” in Proceedings of the IEEE International
Conference on Advanced Video and Signal-based Surveillance (AVSS),
IEEE, 2011, pp. 373–378.

[28] A. J. Siddiqui, A. Mammeri, and A. Boukerche, “Real-time vehicle
make and model recognition based on a bag of surf features,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 11,
pp. 3205–3219, 2016.

[29] H. J. Lee, I. Ullah, W. Wan, Y. Gao, and Z. Fang, “Real-time
vehicle make and model recognition with the residual squeezenet
architecture,” Sensors, vol. 19, no. 5, p. 982, 2019.

[30] A.-V. Miu and B. Ionescu, “Can we recognize cars we’ve never
seen? a journey through zero-shot learning in vehicle recognition,”
in Proceedings of the Second Workshop on Artificial Intelligence for
Multimedia, 2025.

[31] W. Kaufman. “A year can make a big difference: Vehicle generations
and why they matter for used car shoppers.” Website: CarMax
(Edmunds Author). (Nov. 2023), [Online]. Available: https:/ /www.
carmax.com/articles /understanding- vehicle- generations (visited on
11/11/2025).

[32] T. O’Sullivan. “What’s the difference? understanding vehicle gener-
ations.” Website: CarGurus. (Nov. 2025), [Online]. Available: https:
//www.cargurus.com/Cars/articles/understanding-vehicle-generations
(visited on 11/11/2025).

[33] J. Wei, X. Wang, D. Schuurmans, et al., “Chain-of-thought prompting
elicits reasoning in large language models,” in Proceedings of the 36th
International Conference on Neural Information Processing Systems,
ser. NIPS ’22, New Orleans, LA, USA, 2022.

[34] Meta AI, Llama 4 models, 2025. [Online]. Available: https://ai.meta.
com/blog/llama-4-multimodal-intelligence/.

[35] Mistral AI Team, Pixtral Large, Mistral AI News Release, Model
announced on November 18, 2024, Nov. 2024. [Online]. Available:
https://mistral.ai/news/pixtral-large.

[36] Anthropic, Introducing the next generation of claude, 2025. [Online].
Available: https://www.anthropic.com/news/claude-4.

[37] Gemini Team, Google, “Gemini 2.5: Pushing the frontier with ad-
vanced reasoning, multimodality, long context, and next generation
agentic capabilities,” arXiv preprint arXiv:2507.06261, 2025. arXiv:
2507.06261 [cs.CL].

[38] J.D. Power, 2024 quality awards and ratings, 2024. [Online]. Avail-
able: https://www.jdpower.com/cars/ratings/quality/2024 (visited on
10/27/2025).

[39] Car and Driver, Best suvs for 2025, tested and reviewed, https://www.
caranddriver.com/rankings/best-suvs, Accessed: 2025-10-27, 2025.

[40] “Average age of vehicles in the us hits 12.8 years in 2025,” S&P
Global Mobility. (May 21, 2025), [Online]. Available: https://www.
spglobal.com/automotive-insights/en/blogs/2025/05/average-age-of-
vehicle-in-us (visited on 11/09/2025).


