

Predicting Motion of Vulnerable Road Users using High-Definition Maps and Efficient ConvNets

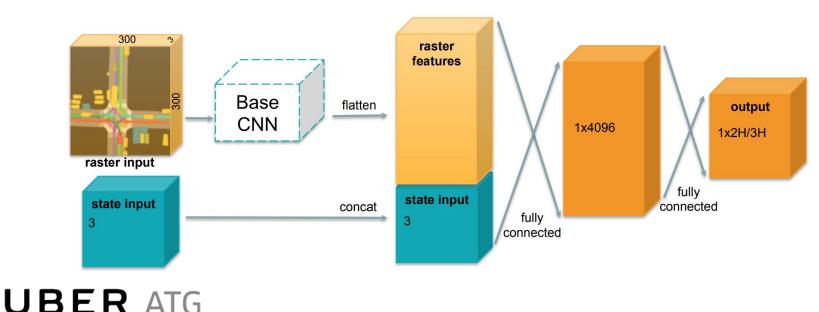
Fang-Chieh Chou, Tsung-Han Lin, Henggang Cui, Vladan Radosavljevic, Thi Nguyen, Tzu-Kuo Huang, Matthew Niedoba, Jeff Schneider, Nemanja Djuric

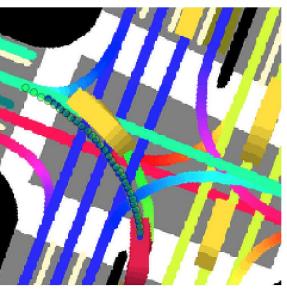
UBER

ATG

Trajectory prediction in autonomous driving

- Goal: predicting future trajectory (x,y positions) of traffic actors around the ego vehicle.
- Inputs:
 - Reliable detection and tracking (current and past states of actors).
 - Scene context: HD map with lane graph, traffic light.
- Previous work (RasterNet) rasterizes the scene context and fuses the state input in one convolutional network for accurate vehicle trajectory predictions.





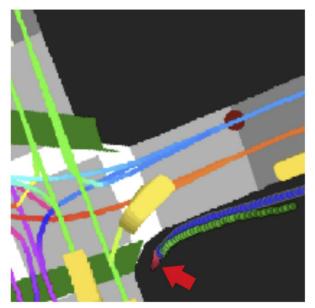
Djuric, N., et al. "Uncertainty-aware short-term motion prediction of traffic actors for autonomous driving." WACV 2020.

Key Contributions

- Extended RasterNet for VRU (vulnerable road users, i.e. pedestrians and bicyclists in this work) trajectory prediction.
- Improved network architecture for backbone layers and raster-state fusion, for faster inference and more accurate predictions.
- Performed detailed ablation study on different rasterization settings to identify the optimal setting, and to provide insights into which parts of the system contribute the most to the accuracy.

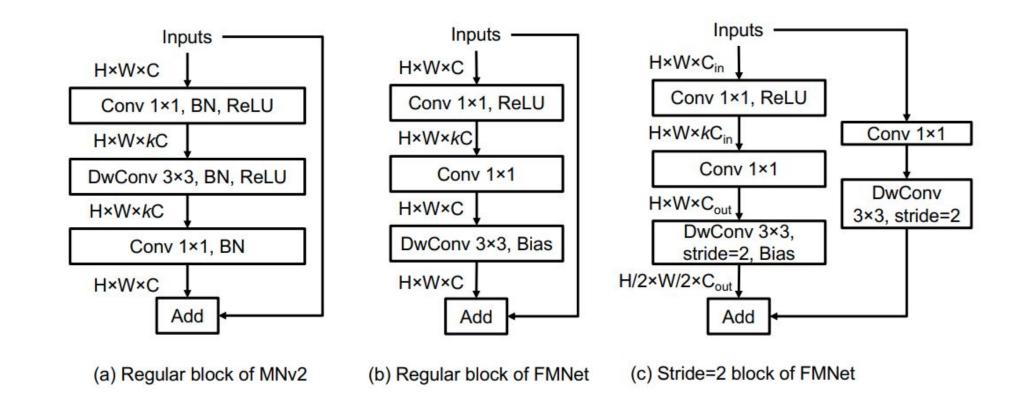
Trajectory prediction for VRUs

- We rasterize the target actor and surrounding scene context into an RGB image.
- By default, target actor is placed at bottom-center.
- Raster is rotated such that the target actor's orientation points to north.
- Traffic light information:
 - Colored circles represents the traffic light color of the lane.
 - Green crosswalks means the vehicles have the right of way.



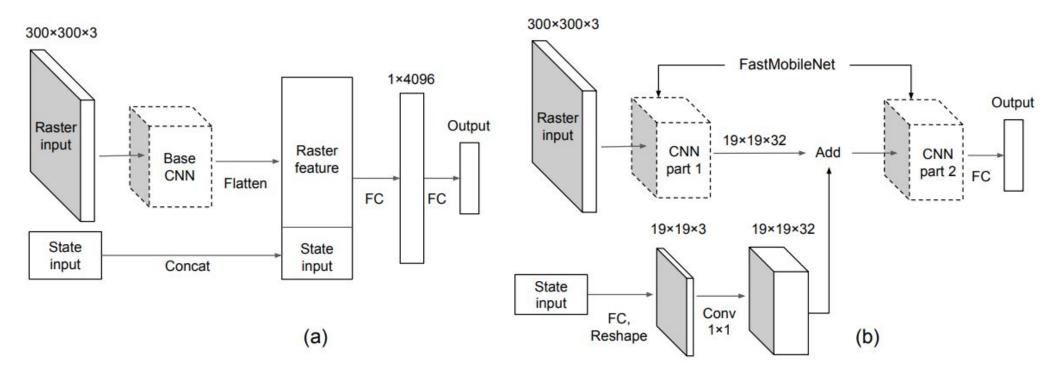
Improved backbone networks (FastMobileNet, FMNet)

- Modified MobileNet-V2 (MNv2) architecture with faster inference.
- Moved the depthwise convolution to operate on less channels .
- Removed BatchNorm for faster inference.



Improved state-raster spatial fusion

- Learned projection of state inputs to the 2D CNN feature map.
- Benefits: better metrics due to spatial fusion. Faster inference without expensive final FC fusion layer.



Network architecture improvement results

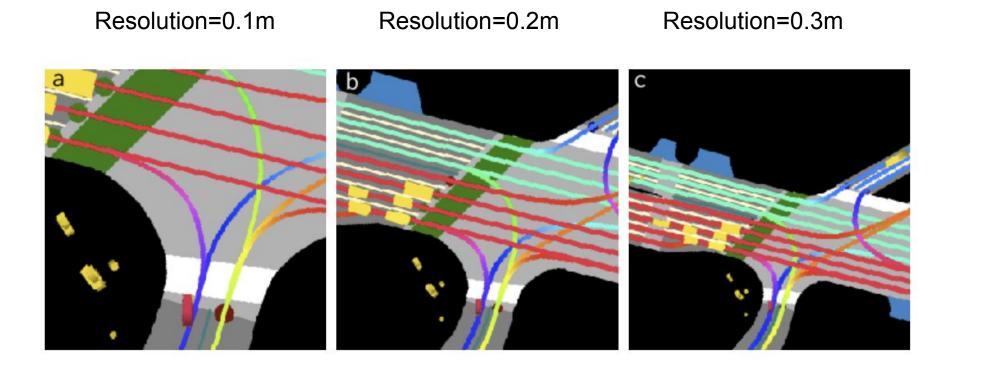
- Latency is measured at batch-size=32 on a GTX 1080Ti.
- FMNet has much improved latency due to less number of tensor operations and memory access operations (MAC).
- Spatial fusion further improves latency and average displacement error (ADE).

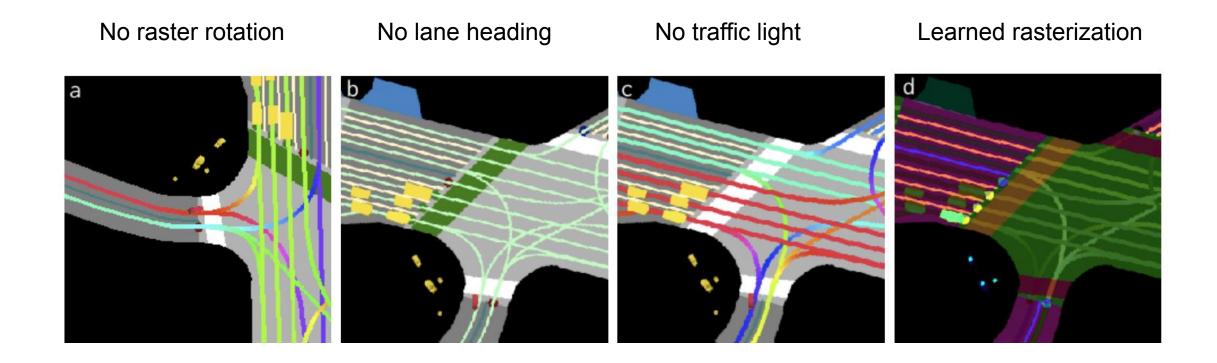
Architecture	ADE [m]	Latency [ms]	FLOPS	Num. parameters	MAC	Num. ops
AlexNet	1.36	15.8	2.63G	70.3M	364 MB	131
ResNet18	1.29	36.2	6.26G	11.7M	163 MB	641
MNv2-0.5	1.27	21.3	308M	598K	146 MB	1542
MnasNet-0.5	1.28	18.3	323M	844K	113 MB	1490
FMNet	1.28	12.1	340M	565K	55 MB	336
FMNet with spatial fusion	1.24	10.4	285M	558K	47 MB	370

Network architecture improvement results

- Latency is measured at batch-size=32 on a GTX 1080Ti.
- FMNet has much improved latency due to less number of tensor operations and memory access operations (MAC).
- Spatial fusion further improves latency and average displacement error (ADE).

Architecture	ADE [m]	Latency [ms]	FLOPS	Num. parameters	MAC	Num. ops
AlexNet	1.36	15.8	2.63G	70.3M	364 MB	131
ResNet18	1.29	36.2	6.26G	11.7M	163 MB	641
MNv2-0.5	1.27	21.3	308M	598K	146 MB	1542
MnasNet-0.5	1.28	18.3	323M	844K	113 MB	1490
FMNet	1.28	12.1	340M	565K	55 MB	336
FMNet with spatial fusion	1.24	10.4	285M	558K	47 MB	370



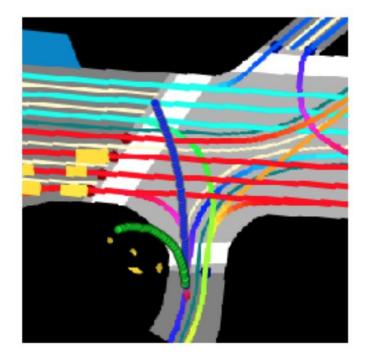


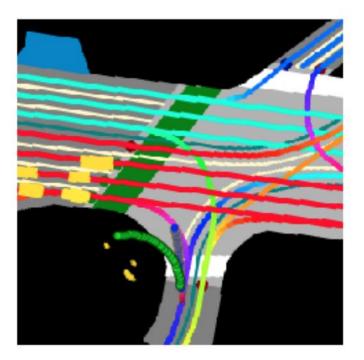
		Bicyclists			Ped	Pedestrians		
Approach	Resolution	Average	@1s	@5s	Average	@1s	@5s	
UKF	—	2.89	0.80	6.60	0.67	0.22	1.22	
Social-LSTM	_	3.79	1.85	6.61	0.53	0.29	0.95	
RasterNet	0.1 <i>m</i>	1.07	0.43	2.73	0.51	0.17	0.90	
RasterNet	0.2m	1.07	0.44	2.72	0.52	0.18	0.93	
RasterNet	0.3 <i>m</i>	1.09	0.45	2.80	0.53	0.18	0.95	
RasterNet w/o rotation	0.2m	1.29	0.49	3.30	0.58	0.20	1.02	
RasterNet w/o traffic lights	0.2m	1.11	0.44	2.86	0.55	0.20	0.96	
RasterNet w/o lane headings	0.2m	1.07	0.43	2.72	0.52	0.18	0.93	
RasterNet with learned colors	0.2m	1.05	0.42	2.70	0.53	0.18	0.93	

		Bicyclists			Pedestrians		
Approach	Resolution	Average	@1s	@5s	Average	@1s	@5s
UKF	—	2.89	0.80	6.60	0.67	0.22	1.22
Social-LSTM	—	3.79	1.85	6.61	0.53	0.29	0.95
RasterNet	0.1 <i>m</i>	1.07	0.43	2.73	0.51	0.17	0.90
RasterNet	0.2m	1.07	0.44	2.72	0.52	0.18	0.93
RasterNet	0.3 <i>m</i>	1.09	0.45	2.80	0.53	0.18	0.95
RasterNet w/o rotation	0.2m	1.29	0.49	3.30	0.58	0.20	1.02
RasterNet w/o traffic lights	0.2m	1.11	0.44	2.86	0.55	0.20	0.96
RasterNet w/o lane headings	0.2m	1.07	0.43	2.72	0.52	0.18	0.93
RasterNet with learned colors	0.2m	1.05	0.42	2.70	0.53	0.18	0.93

Qualitative examples

• Model prediction reacts the traffic light state changes.





Conclusions

- Successfully applied prior vehicle trajectory prediction method (RasterNet) to VRUs.
- Proposed architecture improvements, both in model backbone and raster-state input fusion, lead to better inference latency and prediction.
- Detailed rasterization ablation analysis reveals the factors that are important to accurate VRU trajectory prediction.
- Following completion of offline tests the system was successfully tested onboard SDVs.