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Trajectory prediction in autonomous driving

e Goal: predicting future trajectory (x,y positions) of traffic actors around the ego vehicle.
e Inputs:
o Reliable detection and tracking (current and past states of actors).
o Scene context: HD map with lane graph, traffic light.
e Previous work (RasterNet) rasterizes the scene context and fuses the state input in one
convolutional network for accurate vehicle trajectory predictions.
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Key Contributions

e Extended RasterNet for VRU (vulnerable road users, i.e. pedestrians and

bicyclists in this work) trajectory prediction.

e |Improved network architecture for backbone layers and raster-state fusion, for
faster inference and more accurate predictions.

e Performed detailed ablation study on different rasterization settings to identify the
optimal setting, and to provide insights into which parts of the system contribute

the most to the accuracy.
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Trajectory prediction for VRUs

e \We rasterize the target actor and surrounding scene context into an RGB image.
e By default, target actor is placed at bottom-center.
e Raster is rotated such that the target actor’s orientation points to north.
e Traffic light information:
- Colored circles represents the traffic light color of the lane.
- Green crosswalks means the vehicles have the right of way.
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Improved backbone networks (FastMobileNet, FMNet)

e Modified MobileNet-V2 (MNv2) architecture with faster inference.
¢ Moved the depthwise convolution to operate on less channels .

¢ Removed BatchNorm for faster inference.
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Improved state-raster spatial fusion

e | earned projection of state inputs to the 2D CNN feature map.

FC fusion layer.
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Network architecture improvement results

e [atency is measured at batch-size=32 on a GTX 1080Ti.

e FMNet has much improved latency due to less number of tensor operations and
memory access operations (MAC).

e Spatial fusion further improves latency and average displacement error (ADE).

Architecture ADE [m] Latency [ms] FLOPS Num. parameters MAC Num. ops
AlexNet 1.36 15.8 2.63G 70.3M 364 MB 131
ResNet18 1.29 36.2 6.26G 11.7M 163 MB 641
| MNv2-0.5 127 | 21.3 | 308M 598K 1146 MB 1542 |
MnasNet-0.5 1.28 18.3 323M 844K 113 MB 1490
| FMNet 1.28 | 12.1 | 340M 565K 155 MB 336 [
FMNet with spatial fusion 1.24 10.4 285M 558K 47 MB 370
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Network architecture improvement results

e [atency is measured at batch-size=32 on a GTX 1080Ti.

e FMNet has much improved latency due to less number of tensor operations and
memory access operations (MAC).

e Spatial fusion further improves latency and average displacement error (ADE).

Architecture ADE [m] Latency [ms] FLOPS Num. parameters MAC Num. ops
AlexNet 1.36 15.8 2.63G 70.3M 364 MB 131
ResNet18 1.29 36.2 6.26G 11.7M 163 MB 641
MNv2-0.5 127 213 308M 598K 146 MB 1542

MnasNet-0.5 1.28 18.3 323M 844K 113 MB 1490

FMNet 11.28 12.1 | 340M 565K 55 MB 336

FMNet with spatial fusion 1.24 10.4 285M SS8K 47 MB 370
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Rasterization setting ablation

Resolution=0.1m Resolution=0.2m Resolution=0.3m
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Rasterization setting ablation

No raster rotation No lane heading No traffic light Learned rasterization
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Rasterization setting ablation

Bicyclists Pedestrians
Approach Resolution Average @1s @5s Average @1s @S5s
UKF - 2.89 0.80 6.60 0.67 022 122
Social-LSTM — 3.79 1.85 661 38 0.29 0.95
RasterNet 0.1m 1.07 043 2.73 w 0.17 0.90
RasterNet 0.2m 1.07 044 2.72 0.52 0.18 0.93
RasterNet 0.3m 1.09 045 2.80 0.53 0.18 0.95
RasterNet w/o rotation 0.2m 1.29 0.49  3.30 0.58 0.20 1.02
RasterNet w/o traffic lights 0.2m 1.11 0.44 2.86 0.55 0.20 0.96
RasterNet w/o lane headings 0.2m 1.07 043 2.72 0.52 0.18 093
RasterNet with learned colors 0.2m 1.05 042 2.70 0.53 0.18 0.93
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Rasterization setting ablation

Bicyclists Pedestrians
Approach Resolution Average @1s @5s Average @1s (@S5s
UKF — 2.89 0.80 6.60 0.67 022 122
Social-LSTM — 3.79 1.85 6.61 0.53 0.29 095
RasterNet 0.1m 1.07 043 2.73 0.51 0.17 0.90
RasterNet 0.2m 1.07 044 2.72 0.52 0.18 093
RasterNet 0.3m 1.09 045 2.80 0.53 0.18 0.95
RasterNet w/o rotation 0.2m 1.29 0.49  3.30 0.58 0.20 1.02
RasterNet w/o traffic lights 0.2m 1.11 0.44 286 0.55 0.20 0.96
RasterNet w/o lane headings 0.2m 1.07 043 2.72 0.52 0.18 093
RasterNet with learned colors 0.2m m 042 2.70 0.53 0.18 0.93
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Qualitative examples

e Model prediction reacts the traffic light state changes.
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Conclusions
e Successfully applied prior vehicle trajectory prediction method (RasterNet) to VRUs.

e Proposed architecture improvements, both in model backbone and raster-state input fusion,
lead to better inference latency and prediction.

e Detailed rasterization ablation analysis reveals the factors that are important to accurate VRU
trajectory prediction.

e Following completion of offline tests the system was successfully tested onboard SDVs.
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