Uncertainty-Aware Vehicle Orientation
Estimation for Joint Detection-Prediction Models

Henggang Cui, Fang-Chieh Chou, Jake Charland, Carlos Vallespi-Gonzalez, Nemanja Djuric
Uber Advanced Technologies Group

{hcui2, fchou, jakec, cvallespi, ndjuricl}@uber.com

Abstract

Object detection is a critical component of a self-driving system, tasked with
inferring current states of the surrounding traffic actors. While there exist a number
of studies on the problem of inferring the position and shape of vehicle actors,
understanding actors’ orientation remains a challenge for existing state-of-the-art
detectors. Orientation is an important property for downstream modules of an
autonomous system, particularly relevant for motion prediction of stationary or
reversing actors where current methods struggle. We focus on this task and present
a method that extends the existing joint detection-prediction models, allowing
us to more accurately infer orientation of vehicles. In addition, the method is
able to quantify prediction uncertainty, outputting the probability that the inferred
orientation is flipped, which allows for improved motion prediction and safer
autonomous operations. Empirical results show the benefits of the method, reaching
state-of-the-art performance on the open-source nuScenes data set.

1 Introduction

In order to operate safely and efficiently in a real world, a self-driving vehicle (SDV) needs to be able
to infer the current state of its surroundings, as well as to predict how this state would change in the
near future. This task is addressed by object detection and motion prediction modules, two critical
components of an autonomous system [1} 2} [3]. Recently researchers proposed to combine these two
components into a unified, end-to-end model that achieved state-of-the-art performance [2} 4]], which
is the focus of our current work.

While achieving strong results, when it comes to vehicle detections most of the recent research has
been focused on predicting objects’ positions and bounding boxes. Nevertheless, object orientation
(defined as a direction of the front of the vehicle) is an important information that the autonomous
system requires to improve safety and efficiency, allowing better and more accurate future motion
prediction. This is particularly true for static, slow-moving, and reversing actors, where common
heuristic [S]] that computes orientation from the travel direction breaks down.

Thus, to allow for accurate orientation prediction, common approach is to encode the orientation
target ¢ € (—180°,180°] as a tuple {sin(¢), cos(¢)} due to its circular nature. Then, orientation
can be decoded using arctan (sin((;b)7 cos(¢)) , which is referred to as full-range representation. An
alternative is to use half-range representation 3] in applications where it is less important to distin-
guish the front and back of the bounding box. In these cases we can instead encode the orientation
target as {sin(2¢), cos(2¢)} and decode the orientation with arctan (sin(2¢), cos(2¢)) /2, which
gives the final output in the range (—90°, 90°]. Extending beyond the existing methods, we propose
a novel representation and a loss that combines these ideas, resulting in improved performance.

‘We summarize the contributions of our work below:
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e we study the trade-off between full-range representation and detection accuracy;
e we propose a method to represent full-range orientations without losing detection accuracy;
e the proposed method is able to estimate the probability that the orientation is flipped.

2 Related work

Estimating the full-range orientation is a challenging problem in LiDAR-based systems. This is
mostly due to the fact that the front and back of a vehicle may look similar by considering just the
LiDAR point cloud, especially when an actor is far away with few LiDAR points. To address this
issue, several deep learning-based methods for object detection have been proposed that represent
vehicle bounding boxes using half-range representation [4, 6]. Compared to models using the full-
range representation [[7], these methods lose the ability to distinguish the front and back of the vehicle,
yet they are shown to achieve better detection accuracies thanks to the simplification of the task.

Beyond predicting the orientation itself, understanding its uncertainty is another important task that
allows for safer autonomous operations. Authors of MultiBin [8] proposed an approach for handling
the ambiguity of the orientation estimation. They proposed to bin the orientation into N overlapping
bins and for each output two values, a confidence probability that the output angle lies within the bin
and the residual rotation correction from the central angle. By doing that, the model can produce
multiple orientation estimations for an actor, along with their probabilities. The method, however,
requires one to tune the number of bins as well as their placement, whereas our method does not
require extra hyper-parameters. Moreover, our work produces a full-range orientation along with its
uncertainty without the discretization step, thus simplifying the learning problem. The evaluation
results show that our proposed approach outperforms the state-of-the-art MultiBin method.

3 Methodology

While the proposed method is generic and can be applied to any model architecture, we implemented
and evaluated it on top of MultiXNet [4], a state-of-the-art joint object detection and motion prediction
model. The model takes as input the current and historical LiDAR point clouds along with a high-
definition map of SDV’s surroundings, which are rasterized onto a bird’s-eye view (BEV) grid. The
method then applies a multi-scale convolutional network on the resulting raster to detect objects’
bounding boxes and predict their future trajectories for a total of H time steps. The bounding
boxes are parameterized with center position, width and height dimensions, and orientation. For the

orientation the model predicts the yaw component for all time steps, denoted as {ét ML

The original MultiXNet model uses the half-range orientation representation: {sin(26,), cos(26,)},
and the half-range loss given as

H
Lhaif = Zfl (sin(2ét) — sin(26,)) + & (cos(Qét) — cos(26;)), (1)

t=1
where /1 denotes the smooth-L1 loss and {sin(26;), cos(26;)}L; come from the ground-truth labels.

3.1 Combining half-range and full-range losses

To represent the orientations in the full 360° range, the orientation target can be encoded in a
straightforward way as {sin(6;), cos(f;)}L, and trained with the full-range loss, given as
H
Lpuy = Z /q (sin(&t) - sin(&t)) + 4 (cos(@t) - cos(@t)). 2)
t=1
However, our evaluation results show that the full-range representation leads to lower model perfor-
mance, both in detection and prediction metrics. To address this problem, we propose to add to (2) an
additional half-range loss term from (I) to train the model, where the half-range representation can
be computed from the full-range representation using the following trigonometric identities,
sin(26,) = 2sin(f;)cos(0;), cos(20;) = cos?(;) — sin®(y). 3)
Evaluation results show that combining the losses significantly improves model performance.



3.2 Flipping-aware orientation prediction

Even with the combined loss, the model may still incur a high loss from the full-range loss component
when predicting a flipped bounding box. To further mitigate this problem, we propose a novel

flipping-aware loss. In particular, in addition to orientation outputs {sin(6; ), cos(6;)}_, the model
is also trained to predict a probability that its orientation predictions are flipped by 180°, denoted by
Dy. To achieve this we define a flipped full-range loss as follows,

H
L tlipped = Zﬁl( — sin(ét) — sin(@t)) + 81( — cos(ét) — cos(&t)). ()

t=1

Then, for each actor we compare the values of L, and L fiippeq and use py = i un>Litippea @S
the ground-truth classification label to train the flipped classification output p ¢, where 1.,,4 is an
indicator function equaling 1 if a condition cond is true and O otherwise.

Lastly, we define the final loss as

[’final = Achalf + min(ﬁfu”, Eflipped) + CrossEntropy(ﬁf, ]lﬁfu”>ﬁfh.pped). (5)

Note that the loss penalizes only the minimum of £,y and L f;ippeq. Thus, if the model predicts
a flipped orientation for the bounding box, it will not be penalized by the orientation loss but by
the flipped classification loss instead, unless it predicts a high flipped probability. As a result, when
the model predicts a flipped orientation it will be encouraged to keep pushing the orientation closer
to the flipped ground-truth orientation, while moving the flipped probability closer to 1. Since the
model only needs to predict one extra orientation flipped probability value for each actor, our method
has a negligible impact on the model inference speed. Lastly, following the training completion we
implement a post-processing step to flip the orientations whose probabilities are greater than 0.5, and
update their flipped probabilities as py < 1 — py.

4 Evaluation

4.1 Experimental setup

We evaluated our method on the nuScenes [9]] data set, which contains 1,000 scenes with 390,000
LiDAR frames. Our MultiXNet implementation uses the following hyper-parameters (see [4] for the
exact definitions): L = 100m, W = 100m, V' = 8m, Ay = 0.125m, Ay = 0.125m, Ay = 0.2m
for the BEV input size and resolution, 7' = 10 at 20Hz for the historical LiDAR inputs, H = 30 at
10Hz for future state predictions (in other words, using 1s of history to predict 3s into future).

We used the standard KITTI [[10] object detection and prediction metrics, including Average Orienta-
tion Similarity (AOS), Average Precision (AP), orientation errors, and trajectory ¢, error, evaluated
on vehicle actors. Following [4]] we use an IoU threshold of 0.7 when computing the AP; note
that as AP is IoU-based a flipped bounding box will still be counted as a true positive. The AOS
metric weights the precision by the average cosine distance (normalized to a [0, 1] range) of the
orientations at each recall point. As a result, the AP metric is by definition an upper bound of AOS,
and a completely flipped bounding box will have no positive contribution towards AOS. We also
measure the orientation error of the bounding boxes at Os and the future trajectory ¢, error at 3s of
the true positive detections, with the operating point set at 0.8 recall. For the orientation error we
measure both full-range (FOE) and half-range orientation error (HOE), and also slice FOE by moving
and non-moving actors. The FOE and HOE metrics are defined as follows,

FOE = |(6y — 6y) mod 360°|, HOE = |(fy — f,) mod 180°|. (6)

We compared our Flip-aware method against the Half-repr method used by [3) 4} 6], the
Full-repr method used by [7]], and the MultiBin method [8]. We denote MultiBin with n bins as
MultiBin-n, with the bins centered at {0°, 180°} for n = 2 and {—90°,0°,90°,180°} for n = 4.
To fairly evaluate FOE for Half-repr, we used the direction of the predicted trajectory to convert
the corresponding orientation to the full range.



Table 1: Comparison of the competing methods

Orientation error [deg] |

Half-range Full-range

Method AOSo.7 T APy 7 T All All Moving £>@3s [m] |
Half-repr 40707 608+1.0 1.72£0.04 599£14 47+05 0.99=+0.02
Full-repr 551+£05 57.1+£05 232+001 82+02 24402 1.01+£0.02
MultiBin-2 55.0+03 573£0.6 254+£001 94£07 30+01 1.01=£0.01
MultiBin-4 5554+03 580=£05 214+£007 98*£05 26+03 1.01=£0.01
Flip-aware 57.9+04 60.7+0.2 1.71+0.04 96+08 22=£01 0.99+0.01
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Figure 1: Analysis of the orientation uncertainty outputs of the proposed Flip-aware method

4.2 Quantitative results

Comparison of different methods on the nuScenes data is given in Table[T} We trained all models
three times and report the means and standard deviations of the metrics, marking the best-performing
methods in bold. We can see that Half-repr had the best AP and {5 performance, however it
was not able to represent full-range orientations as seen by large orientation errors. Even when
using the trajectory prediction to infer the orientations FOE was still very high, especially when
it comes to the static actors, and it also exhibited very low AOS. Full-repr had the lowest FOE,
but it had the worst AP and ¢, performance, trailing Half-repr by a large margin (showing almost
5% drop in AP). This could be explained by the fact that the network is incurring high losses for
predicting a flipped bounding box, which causes the model to not spend enough learning capacity in
accurately estimating the half-range orientations. The MultiBin-n models had similar performance
compared to Full-repr. We hypothesize that MultiBin is not able to achieve better performance
for our application as it was designed for 3D orientation estimation from camera images, while we
estimate the orientations from BEV voxels. Our proposed Flip-aware method achieved significant
improvement in AP and HOE compared to the other full-range representations, and it achieved the
best AOS, AP, HOE, moving FOE, and /5 metrics among all the methods.

Figure [1| presents the analysis of uncertainty outputs of the proposed Flip-aware method. We
binned all actors by their predicted flipped probabilities, and for each bin we report the average FOE
and actor counts. Results in Figure [T|(a) show that when the model predicts an actor to have a low
flipped probability, its FOE is also expected to be significantly lower than for those actors that have
higher probabilities. We can conclude that the predicted flipped probability is strongly correlated
with the expected error, and is a reliable measure of our uncertainty in the actor’s orientation. From
Figure[I[b), we can see that the model outputs low uncertainty for most of the actors, mirroring the
distribution of the actor speeds in the data set.

5 Conclusion

In this paper we considered the problem of object detection and motion prediction in the context of
self-driving technology. Unlike earlier work, we focused on the subtask of orientation prediction for
vehicle actors. This is critical for a full understanding of the actors’ state and their motion prediction,
especially for slow-moving and stopped vehicles. In addition to improved orientation prediction,
the proposed approach also quantifies the prediction uncertainty by inferring the flipped probability,
which is very useful for downstream modules in a self-driving system. Experiments on the real-world,
open-source nuScenes data set indicate the benefits of the proposed method.
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