Uncertainty-Aware Vehicle Orientation Estimation for Joint Detection-Prediction Models

Henggang Cui, Fang-Chieh Chou, Jake Charland, Carlos Vallespi-Gonzalez, Nemanja Djuric

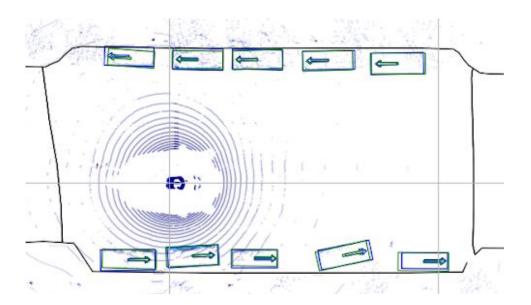
Uber Advanced Technologies Group

UBER

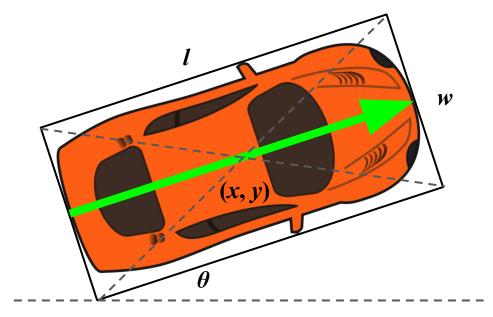
ATG

Vehicle orientation estimation for autonomous driving

- Important property for downstream modules of an autonomous system, particularly for motion prediction of stationary or reversing actors where current methods struggle
- Assume the model produces detection bounding boxes from LiDAR points, as (x, y, l, w, θ)
- Our work proposes a novel uncertainty-aware method to learn θ



LiDAR points are the input, and detections output of our model

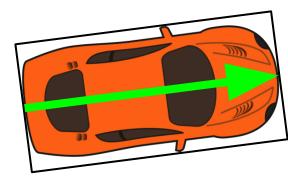


Traditional orientation estimation method

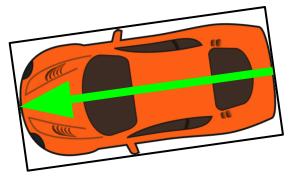
• Have the model output $sin(\theta)$, $cos(\theta)$ and train them with

$$\mathcal{L}_{full} = \ell_1 \left(\sin(\hat{\theta}) - \sin(\theta) \right) + \ell_1 \left(\cos(\hat{\theta}) - \cos(\theta) \right)$$

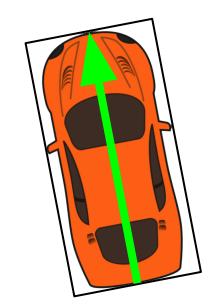
- However, a 180°-flipped orientation gets a higher loss than a 90°-error of the orientation
- This is empirically shown to hurt overall detection performance



Ground-truth

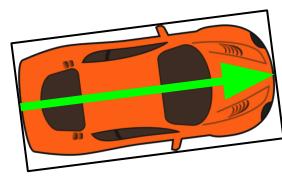


180°-flipped orientation OK detection but high loss

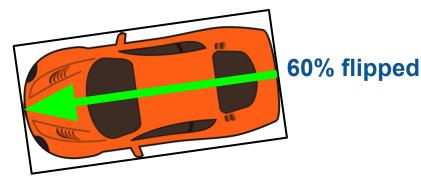


90°-error orientation Terrible detection but lower loss

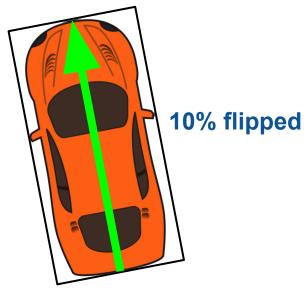
- In addition to $\sin(\theta)$, $\cos(\theta)$, the model also outputs a flipped probability p_f , trained with $\mathcal{L}_{final} = \mathcal{L}_{half} + \min(\mathcal{L}_{full}, \mathcal{L}_{flipped}) + \operatorname{CrossEntropy}(\hat{p}_f, \mathbb{1}_{\mathcal{L}_{full} > \mathcal{L}_{flipped}})$ where $\mathcal{L}_{half} = \ell_1(\sin(2\hat{\theta}) - \sin(2\theta)) + \ell_1(\cos(2\hat{\theta}) - \cos(2\theta))$; $\sin(2\hat{\theta}) = 2\sin(\hat{\theta})\cos(\hat{\theta})$; $\cos(2\hat{\theta}) = \cos^2(\hat{\theta}) - \sin^2(\hat{\theta})$ $\mathcal{L}_{full} = \ell_1(\sin(\hat{\theta}) - \sin(\theta)) + \ell_1(\cos(\hat{\theta}) - \cos(\theta))$ $\mathcal{L}_{flipped} = \ell_1(-\sin(\hat{\theta}) - \sin(\theta)) + \ell_1(-\cos(\hat{\theta}) - \cos(\theta))$
 - A 180°-flipped orientation only gets penalized by the cross-entropy loss term



Ground-truth

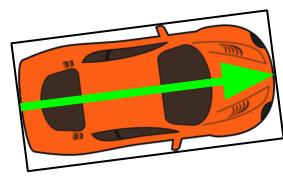


180°-flipped orientation Penalized by cross-entropy loss

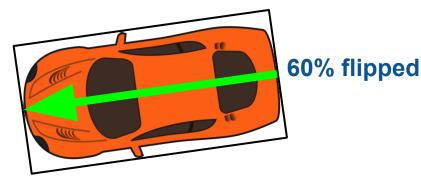


90°-error orientation High orientation loss

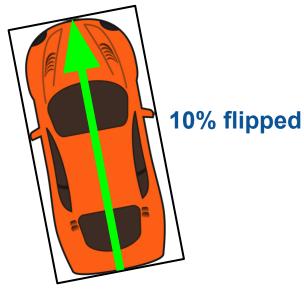
- In addition to $\sin(\theta)$, $\cos(\theta)$, the model also outputs a flipped probability p_f , trained with $\mathcal{L}_{final} = \mathcal{L}_{half} + \min(\mathcal{L}_{full}, \mathcal{L}_{flipped}) + \operatorname{CrossEntropy}(\hat{p}_f, \mathbb{1}_{\mathcal{L}_{full} > \mathcal{L}_{flipped}})$ where $\mathcal{L}_{half} = \ell_1(\sin(2\hat{\theta}) - \sin(2\theta)) + \ell_1(\cos(2\hat{\theta}) - \cos(2\theta))$; $\sin(2\hat{\theta}) = 2\sin(\hat{\theta})\cos(\hat{\theta})$; $\cos(2\hat{\theta}) = \cos^2(\hat{\theta}) - \sin^2(\hat{\theta})$ $\mathcal{L}_{full} = \ell_1(\sin(\hat{\theta}) - \sin(\theta)) + \ell_1(\cos(\hat{\theta}) - \cos(\theta))$ $\mathcal{L}_{flipped} = \ell_1(-\sin(\hat{\theta}) - \sin(\theta)) + \ell_1(-\cos(\hat{\theta}) - \cos(\theta))$
 - A 180°-flipped orientation only gets penalized by the cross-entropy loss term



Ground-truth

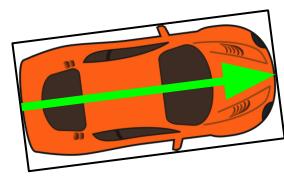


180°-flipped orientation Penalized by cross-entropy loss

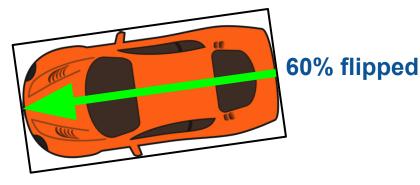


90°-error orientation High orientation loss

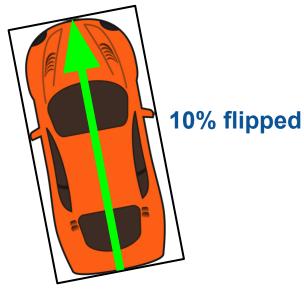
- In addition to $\sin(\theta)$, $\cos(\theta)$, the model also outputs a flipped probability p_f , trained with $\mathcal{L}_{final} = \mathcal{L}_{half} + \min(\mathcal{L}_{full}, \mathcal{L}_{flipped}) + \boxed{\operatorname{CrossEntropy}(\hat{p}_f, \mathbb{1}_{\mathcal{L}_{full} > \mathcal{L}_{flipped}})}$ where $\mathcal{L}_{half} = \ell_1 (\sin(2\hat{\theta}) - \sin(2\theta)) + \ell_1 (\cos(2\hat{\theta}) - \cos(2\theta))$; $\sin(2\hat{\theta}) = 2\sin(\hat{\theta})\cos(\hat{\theta})$; $\cos(2\hat{\theta}) = \cos^2(\hat{\theta}) - \sin^2(\hat{\theta})$ $\mathcal{L}_{full} = \ell_1 (\sin(\hat{\theta}) - \sin(\theta)) + \ell_1 (\cos(\hat{\theta}) - \cos(\theta))$ $\mathcal{L}_{flipped} = \ell_1 (-\sin(\hat{\theta}) - \sin(\theta)) + \ell_1 (-\cos(\hat{\theta}) - \cos(\theta))$
 - A 180°-flipped orientation only gets penalized by the cross-entropy loss term



Ground-truth

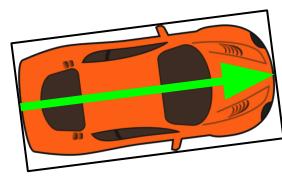


180°-flipped orientation Penalized by cross-entropy loss

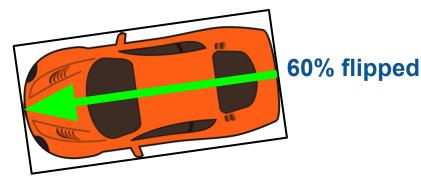


90°-error orientation High orientation loss

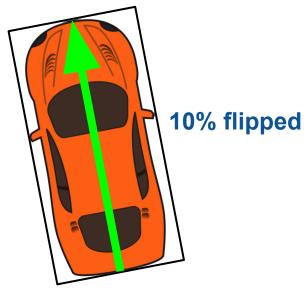
- In addition to $\sin(\theta)$, $\cos(\theta)$, the model also outputs a flipped probability p_f , trained with $\mathcal{L}_{final} = \mathcal{L}_{half} + \min(\mathcal{L}_{full}, \mathcal{L}_{flipped}) + \operatorname{CrossEntropy}(\hat{p}_f, \mathbb{1}_{\mathcal{L}_{full} > \mathcal{L}_{flipped}})$ where $\mathcal{L}_{half} = \ell_1(\sin(2\hat{\theta}) - \sin(2\theta)) + \ell_1(\cos(2\hat{\theta}) - \cos(2\theta))$; $\sin(2\hat{\theta}) = 2\sin(\hat{\theta})\cos(\hat{\theta})$; $\cos(2\hat{\theta}) = \cos^2(\hat{\theta}) - \sin^2(\hat{\theta})$ $\mathcal{L}_{full} = \ell_1(\sin(\hat{\theta}) - \sin(\theta)) + \ell_1(\cos(\hat{\theta}) - \cos(\theta))$ $\mathcal{L}_{flipped} = \ell_1(-\sin(\hat{\theta}) - \sin(\theta)) + \ell_1(-\cos(\hat{\theta}) - \cos(\theta))$
 - A 180°-flipped orientation only gets penalized by the cross-entropy loss term



Ground-truth



180°-flipped orientation Penalized by cross-entropy loss



90°-error orientation High orientation loss

Highlights of evaluation results on nuScenes

Method	Average $\mathbf{Precision}_{0.7}$ \uparrow	Average Orientation Similarity _{0.7} \uparrow
Naive baseline	57.1 ± 0.5	55.1 ± 0.5
MultiBin baseline	58.0 ± 0.5	55.5 ± 0.3
Flip-aware	60.7 ± 0.2	$\textbf{57.9} \pm \textbf{0.4}$

- Applied our and baseline methods on a state-of-the-art joint detection prediction model
- Average precision (AP) for detection and average orientation similarity (AOS) for orientation
- Flip-aware achieved significant improvements over the baseline methods
- Please read our paper for more details