Ellipse Loss for Scene-Compliant Motion Prediction

Henggang Cui*, Hoda Shajari*, Sai Yalamanchi, Nemanja Djuric

Trajectory prediction for autonomous driving

- Predict the trajectories of the other traffic actors in the scene
 - Critical task for autonomous driving
 - State-of-the-art is to use a deep neural network
 - Takes history observations and map as the input
 - Outputs the future trajectory predictions as sequences of waypoints (x, y, θ)
 - Trained with distance-based loss (e.g., $L2(x_{pred}, x_{gt}) + L2(y_{pred}, y_{gt})$)

Scene-compliant trajectory prediction

- The trajectories should be compliant to road geometries (i.e., *scene-compliant*)
 - E.g., a vehicle is unlikely to go outside the road surface
 - Traditional losses that are based on distance between prediction and ground-truth don't explicitly penalize off-road predictions
- We propose *ellipse loss* that explicitly penalizes off-road predictions

Non-scene-compliant predictions that go off-road aren't penalized enough by traditional losses

Ellipse loss

- Give a waypoint prediction (x, y, θ) and a non-drivable area mask D
- "Rasterize" waypoint into an occupancy grid G in a differentiable manner
- Compute the ellipse loss as *G* * D

Differentiable rasterization

- Rasterize a waypoint (x, y, θ) to an occupancy grid G
- Compute the value of each cell G_{ij} as the density of a 2D Gaussian N(0, Σ) evaluated at d_{ij}(x, y)
 - where $d_{ij}(x, y)$ is the distance vector from cell (i, j) to the waypoint (x, y, θ) $\mathcal{G}_{i,j}(x, y, l, w, \theta) = \mathcal{N}(\mathbf{d}_{i,j}(x, y); \mathbf{0}, \mathbf{\Sigma}(l, w, \theta))$
- Σ depends on the size and orientation θ of the actor bounding box
 - Rotates the Gaussian ellipse to the box orientation

 $\boldsymbol{\Sigma}(l, w, \boldsymbol{\theta}) = \mathbf{R}(\boldsymbol{\theta})^{\top} \operatorname{diag}(\boldsymbol{\sigma}_{l}, \boldsymbol{\sigma}_{w}) \mathbf{R}(\boldsymbol{\theta})$

• This allows us to compute the gradients of G w.r.t. (x, y, θ)

UBER ATG

5

Compute ellipse loss

- Compute the loss as G * D
 - The loss will the Gaussian probability mass away from the non-drivable area by shifting and rotating the waypoint

Toy example

- Update the waypoint parameter (x, y, θ) using ellipse loss for 1000 iterations
- Waypoint leaves non-drivable area with both translation and rotation

UBER ATG

Truncate G at box boundary

- Truncate G at a Mahalanobis distance that exactly covers the bounding box
- Values outside the range will not contribute to the loss
- So that ellipse loss only penalizes off-road predictions

Toy example of ellipse loss with the truncation

- Waypoint leaves non-drivable area with both translation and rotation
- It stops as soon as it leaves the drivable area instead of keeping moving away

UBER ATG

Implementation details and baselines

- Implemented ellipse loss in MultiXNet [1]
 - Jointly predict the trajectories of all actors in the scene
 - Predict 3 second future trajectories using 1 second history
 - Added ellipse loss as an additional loss term in addition to the standard distance-based prediction loss
- Baselines
 - Vanilla MultiXNet with only the vanilla prediction loss
 - Off-road upweighting baseline [2]
 - Upweights the vanilla prediction loss by 5.0 for off-road predictions

[1] Djuric et al. MultiXNet: Multiclass Multistage Multimodal Motion Prediction.

RFR ATG [2] Niedoba et al. Improving Movement Prediction of Traffic Actors using Off-road Loss and Bias Mitigation

Quantitative results

	ℓ_2 [m] \downarrow		CtrORFP [%] ↓		BoxORFP [%] ↓	
Method	Avg	@3s	Avg	@3s	Avg	@3s
MultiXNet [6]	$\textbf{0.465}~\pm~\textbf{0.001}$	$\textbf{0.836} \pm \textbf{0.002}$	$0.061\ \pm\ 0.007$	0.094 ± 0.018	0.624 ± 0.009	0.850 ± 0.029
Off-Road [25]	$\textbf{0.465}~\pm~\textbf{0.002}$	$\textbf{0.837}~\pm~\textbf{0.005}$	0.058 ± 0.001	0.086 ± 0.006	0.616 ± 0.015	0.853 ± 0.020
Ellipse-Loss	0.472 ± 0.004	0.846 ± 0.008	$\textbf{0.031} \pm \textbf{0.003}$	$\textbf{0.043} \pm \textbf{0.006}$	$\textbf{0.445}~\pm~\textbf{0.007}$	$\textbf{0.485}~\pm~\textbf{0.004}$

- Off-road (ORFP) metrics
 - (# of off-road predictions) / (# of all predictions)
 - CtrORFP: a waypoint is off-road if its center is off-road
 - BoxRFP: a waypoint is off-road if any of its four corners is off-road
- Ellipse loss reduces off-road predictions by about 50%

UBER ATG

Qualitative results

UBER ATG

Baseline

Ellipse loss

• Predicted trajectories are more scene-compliant with ellipse loss

12

Ablation studies

UBER ATG

Ellipse loss without truncation

• Predictions go to the center of the road, causing high L2 error

Ellipse loss with truncation

• Ellipse loss does not penalize predictions in drivable area

Conclusions

- Ellipse loss for scene-compliant motion trajectory prediction
- Reduces off-road predictions by 50%

