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Detection and orientation estimation for autonomous driving

● Important property for downstream modules of an autonomous system

● Inputs are LiDAR point clouds; outputs are detection boxes, parameterized as (x, y, l, w, θ)
● State-of-the-art approach is to use a deep neural network (e.g., SSD, YOLO, CenterPoint, etc.)

● The network outputs the box parameters for every prior and trains on ground-truth labels
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Input LiDAR point clouds and output detection boxes
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Detection boxes parameterization



Detection and orientation estimation for autonomous driving

● The (x, y, l, w) parameters are usually trained with L1 loss ℒ = L1(gt, pred)
● However, we cannot train the orientation θ directly with L1 loss because the space is circular

‐ E.g., L1(179°, -179°) is large even though the actual angle difference is only 2°
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Traditional orientation estimation methods

● In Luo et al., their model outputs (sin(θ), cos(θ)) and trains them with 

● Decode orientation θ = arctan(sin(θ), cos(θ))
● However, a 180°-flipped orientation gets a higher loss than a 90°-error of the orientation
● This is empirically shown to hurt detection AP

Ground-truth 180°-flipped orientation
OK detection but high loss

90°-error orientation
Terrible detection but lower loss



Traditional orientation estimation methods

● To mitigate this issue, some works do not penalize the flipped orientations at all in the loss
● Yang et al. predict the orientations as (sin(2θ), cos(2θ)) and train them with

● Decode orientation θ = arctan(sin(2θ), cos(2θ)) / 2
‐ Decoded orientations are in (-90, 90] “half-range”

● A flipped orientation will have zero loss

‐ The resulting model is not able to distinguish the front and back of a vehicle
‐ Not desired for autonomous driving
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Flip-aware orientation estimation

● We propose a flip-aware orientation estimation method

○ It will not over-penalize the model when it predicts a flipped orientation

○ But it will still encourage the model to predict the correct orientation

● The model outputs (sin(θ), cos(θ), pf)
○ pf is the estimated probability that θ + 180° is closer to ground-truth than θ
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Flip-aware orientation estimation

● (sin(θ), cos(θ), pf) are trained with

‐ ℒhalf is half-range loss but computed from (sin(θ), cos(θ))

‐ ℒfull is full-range loss

‐ ℒflipped is full-range loss of the flipped orientation

‐ Cross-entropy loss to train pf , where the GT is decided by which of ℒfull or ℒflipped is smaller

;
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Flip-aware orientation estimation

● (sin(θ), cos(θ), pf) are trained with

● A 180°-flipped orientation only gets penalized by the cross-entropy loss term

‐ pf will be pushed to increase by the cross-entropy loss

‐ sin(θ) and cos(θ) will stay the same

Ground-truth 180°-flipped orientation
Penalized by cross-entropy loss

90°-error orientation
High regression loss

30% flipped
5% flipped

;
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Loss analysis
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● Darker color means smaller loss

● Ground-truth (sin(θ), cos(θ)) = (0, 1)
● A flipped orientation (0, -1) has zero loss

from the regression terms and only gets 

penalized by the cross-entropy loss
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Experimental setup
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● Implemented flipped-aware method in MultiXNet [1]

‐ A joint detection-prediction model for autonomous driving

● Baselines

‐ Full-range loss ℒfull

‐ Half-range loss ℒhalf

‐ MultiBin [3] with 2 bins and 4 bins

● Dataset

‐ nuScenes [2]: 1,000 scenes collected from public roads in Boston and Singapore

[1] Djuric et al. MultiXNet: Multiclass Multistage Multimodal Motion Prediction.

[2] Caesar et al. nuScenes: A Multimodal Dataset for Autonomous Driving.

[3] Mousavian et al. 3D Bounding Box Estimation Using Deep Learning and Geometry.



● Metrics:

‐ Average precision (AP) for detection performance

‐ Orientation error

‐ Average Orientation Similarity (AOS) for both detection and orientation performance

● ℒhalf has better detection AP but is not able to distinguish front and back of a car

● Flip-aware has similar AP as ℒhalf and has the best AOS among all methods
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Quantitative results



Analysis for the flipped probability pf output 
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● Most of the actors that are predicted to have high flipped probabilities are static actors with 0 speed

● The actors that are predicted to have higher flipped probabilities tend to have larger orientation errors

○ The flipped probability is a good measurement of the orientation uncertainty

Flipped prob vs. speed Flipped prob vs. orientation error



Ablation study
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● Flip-aware-no-half

‐ Without the half-range loss term ℒhalf 

● Flip-aware-no-flip

‐ Without the flipped probability output pf and use ℒfull +  ℒhalf as loss

● Both variations underperform the proposed flip-aware loss



Conclusions
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● We proposed a flip-aware orientation estimation method

○ Estimate box orientations with a probabilistic output that estimated orientation is flipped

○ Improves both the orientation estimation and detection accuracies
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