Uncertainty-Aware Vehicle Orientation Estimation for Joint Detection-Prediction Models

Henggang Cui, Fang-Chieh Chou, Jake Charland, Carlos Vallespi-Gonzalez, Nemanja Djuric

Uber Advanced Technologies Group

Detection and orientation estimation for autonomous driving

- Important property for downstream modules of an autonomous system
- Inputs are LiDAR point clouds; outputs are detection boxes, parameterized as (x, y, l, w, θ)
- State-of-the-art approach is to use a deep neural network (e.g., SSD, YOLO, CenterPoint, etc.)
- The network outputs the box parameters for every prior and trains on ground-truth labels

Input LiDAR point clouds and output detection boxes

Detection boxes parameterization

Detection and orientation estimation for autonomous driving

- The (x, y, l, w) parameters are usually trained with L1 loss $\mathcal{L} = L1(gt, pred)$
- However, we cannot train the orientation θ directly with L1 loss because the space is circular
 - E.g., L1(179°, -179°) is large even though the actual angle difference is only 2°

BER ATG

3

Traditional orientation estimation methods

• In Luo et al., their model outputs $(\sin(\theta), \cos(\theta))$ and trains them with

$$\mathcal{L}_{full} = \ell_1 \left(\sin(\hat{\theta}) - \sin(\theta) \right) + \ell_1 \left(\cos(\hat{\theta}) - \cos(\theta) \right)$$

- Decode orientation $\theta = \arctan(\sin(\theta), \cos(\theta))$
- However, a 180°-flipped orientation gets a higher loss than a 90°-error of the orientation
- This is empirically shown to hurt detection AP

Ground-truth

180°-flipped orientation OK detection but high loss

90°-error orientation Terrible detection but lower loss

Traditional orientation estimation methods

- To mitigate this issue, some works do not penalize the flipped orientations at all in the loss
- Yang et al. predict the orientations as $(\sin(2\theta), \cos(2\theta))$ and train them with

$$\mathcal{L}_{half} = \ell_1 \left(\sin(2\hat{\theta}) - \sin(2\theta) \right) + \ell_1 \left(\cos(2\hat{\theta}) - \cos(2\theta) \right)$$

- Decode orientation $\theta = \arctan(\sin(2\theta), \cos(2\theta)) / 2$
 - Decoded orientations are in (-90, 90] "half-range"
- A flipped orientation will have zero loss
 - The resulting model is not able to distinguish the front and back of a vehicle
 - Not desired for autonomous driving

Flip-aware orientation estimation

- We propose a *flip-aware orientation estimation* method
 - \circ $\,$ It will not over-penalize the model when it predicts a flipped orientation $\,$
 - But it will still encourage the model to predict the correct orientation
- The model outputs $(\sin(\theta), \cos(\theta), p_f)$
 - $\circ p_f$ is the estimated probability that $\theta + 180^\circ$ is closer to ground-truth than θ

BER ATG

Flip-aware orientation estimation

• $(\sin(\theta), \cos(\theta), p_f)$ are trained with

 $\mathcal{L}_{final} = \mathcal{L}_{half} + \min(\mathcal{L}_{full}, \mathcal{L}_{flipped}) + \operatorname{CrossEntropy}(\hat{p}_f, \mathbb{1}_{\mathcal{L}_{full} > \mathcal{L}_{flipped}})$

- \mathscr{L}_{half} is half-range loss but computed from $(\sin(\theta), \cos(\theta))$ $\mathcal{L}_{half} = \ell_1 (\sin(2\hat{\theta}) - \sin(2\theta)) + \ell_1 (\cos(2\hat{\theta}) - \cos(2\theta))$ $\sin(2\hat{\theta}) = 2\sin(\hat{\theta})\cos(\hat{\theta}); \cos(2\hat{\theta}) = \cos^2(\hat{\theta}) - \sin^2(\hat{\theta})$
- $\mathscr{L}_{\text{full}}$ is full-range loss $\mathcal{L}_{full} = \ell_1 \left(\sin(\hat{\theta}) \sin(\theta) \right) + \ell_1 \left(\cos(\hat{\theta}) \cos(\theta) \right)$
- $\mathcal{L}_{\text{flipped}}$ is full-range loss of the flipped orientation

$$\mathcal{L}_{flipped} = \ell_1 \big(-\sin(\hat{\theta}) - \sin(\theta) \big) + \ell_1 \big(-\cos(\hat{\theta}) - \cos(\theta) \big)$$

- Cross-entropy loss to train p_f , where the GT is decided by which of \mathcal{L}_{full} or $\mathcal{L}_{flipped}$ is smaller

Flip-aware orientation estimation

• $(\sin(\theta), \cos(\theta), p_f)$ are trained with

 $\mathcal{L}_{final} = \mathcal{L}_{half} + \min(\mathcal{L}_{full}, \mathcal{L}_{flipped}) + \operatorname{CrossEntropy}(\hat{p}_f, \mathbb{1}_{\mathcal{L}_{full} > \mathcal{L}_{flipped}})$

- A 180°-flipped orientation only gets penalized by the cross-entropy loss term
 - p_f will be pushed to increase by the cross-entropy loss
 - $sin(\theta)$ and $cos(\theta)$ will stay the same

Loss analysis

1.0

1.0

- Darker color means smaller loss
- Ground-truth $(\sin(\theta), \cos(\theta)) = (0, 1)$ •
- A flipped orientation (0, -1) has zero loss from the regression terms and only gets penalized by the cross-entropy loss

Experimental setup

- Implemented flipped-aware method in MultiXNet [1]
 - A joint detection-prediction model for autonomous driving
- Baselines
 - Full-range loss \mathcal{L}_{full}
 - Half-range loss \mathcal{L}_{half}
 - MultiBin [3] with 2 bins and 4 bins
- Dataset
 - nuScenes [2]: 1,000 scenes collected from public roads in Boston and Singapore

BER ATG

[1] Djuric et al. MultiXNet: Multiclass Multistage Multimodal Motion Prediction.[2] Caesar et al. nuScenes: A Multimodal Dataset for Autonomous Driving.[3] Mousavian et al. 3D Bounding Box Estimation Using Deep Learning and Geometry.

Quantitative results

Method	$AP_{0.7}$ \uparrow	Orientation error [deg] \downarrow	$AOS_{0.7}$ \uparrow
$\mathcal{L}_{ ext{full}}$	$57.1~\pm~0.5$	$\textbf{8.2}~\pm~\textbf{0.2}$	$55.1~\pm~0.5$
$\mathcal{L}_{ ext{half}}$	$60.8~\pm~1.0$	59.9 ± 1.4	$40.7~\pm~0.7$
MultiBin-2	$57.3\ \pm\ 0.6$	9.4 ± 0.7	55.0 ± 0.3
MultiBin-4	58.0 ± 0.5	$9.8~\pm~0.5$	55.5 ± 0.3
Flip-aware	$60.7~\pm~0.2$	$9.6~\pm~0.8$	$\textbf{57.9}~\pm~\textbf{0.4}$

- Metrics:
 - Average precision (AP) for detection performance
 - Orientation error
 - Average Orientation Similarity (AOS) for both detection and orientation performance
- \mathcal{L}_{half} has better detection AP but is not able to distinguish front and back of a car
- Flip-aware has similar AP as \mathcal{L}_{half} and has the best AOS among all methods

Analysis for the flipped probability p_f output

- Most of the actors that are predicted to have high flipped probabilities are static actors with 0 speed
- The actors that are predicted to have higher flipped probabilities tend to have larger orientation errors
 - The flipped probability is a good measurement of the orientation uncertainty

UBER ATG

Ablation study

Method	$AP_{0.7}$ \uparrow	Orientation error [deg] \downarrow	$AOS_{0.7}$ \uparrow
Flip-aware	60.7	9.6	57.9
*-no-half	59.6	10.1	55.2
*-no-flip	58.9	7.8	56.8

- Flip-aware-no-half
 - Without the half-range loss term \mathcal{L}_{half}
- Flip-aware-no-flip
 - Without the flipped probability output p_f and use \mathcal{L}_{full} + \mathcal{L}_{half} as loss
- Both variations underperform the proposed flip-aware loss

UBER ATG

Conclusions

- We proposed a *flip-aware orientation estimation* method
 - Estimate box orientations with a probabilistic output that estimated orientation is flipped
 - \circ $\,$ Improves both the orientation estimation and detection accuracies

