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ABSTRACT 

Kernel Perceptron is very simple and efficient online 

classification algorithm. However, it requires increasingly large 

computational resources with data stream size and is not 

applicable on large-scale problems or on resource-limited 

computational devices. In this paper we describe implementation 

of Kernel Perceptron on ATTiny2313 microcontroller, one of the 

most primitive computational devices with only 128B of data 

memory and 2kB of program memory. ATTyny2313 is a 

representative of devices that are popular in embedded systems 

and sensor networks due to their low cost and low power 

consumption. Implementation on microcontrollers is possible 

thanks to two properties of Kernel Perceptrons: (1) availability of 

budgeted Kernel Perceptron algorithms that bound the model size, 

and (2) relatively simple calculations required to perform online 

learning and provide predictions. Since ATTiny2313 is the fixed-

point controller that supports floating-point operations through 

software which introduces significant computational overhead, we 

considered implementation of basic Kernel Perceptron operations 

through fixed-point arithmetic. In this paper, we present a new 

approach to approximate one of the most used kernel functions, 

the RBF kernel, on fixed-point microcontrollers. We conducted 

simulations of the resulting budgeted Kernel Perceptron on 

several datasets and the results show that accurate Kernel 

Perceptrons can be trained using ATTiny2313. The success of our 

implementation opens the doors for implementing powerful online 

learning algorithms on the most resource-constrained 

computational devices. 

Categories and Subject Descriptors 

C.3 [Computer Systems Organization]: Special purpose and 

application-based systems – Real-time and embedded systems 

General Terms 

Algorithms, Performance, Experimentation. 

Keywords 

Kernel Perceptron, Budget, RBF kernel, Microcontroller. 

1. I#TRODUCTIO# 
Kernel Perceptron is a powerful class of machine learning 

algorithms which can solve many real-world classification 

problems. Initially proposed in [6], it was proven to be both 

accurate and very easy to implement. Kernel Perceptron learns a 

mapping f : X → R from a stream of training examples 

S = {(xi, yi), i = 1…�}, where xi ∈ X is an M-dimensional input 

vector, called the data point, and yi ∈ {−1, +1} is a binary 

variable, called the label. The resulting Kernel Perceptron can be 

represented as 
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where αi are weights associated with training examples, and K is 

the kernel function. The RBF kernel is probably the most popular 

choice for Kernel Perceptron because it is intuitive and often 

results in very accurate classifiers. It is defined as 
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where || · || is the Euclidean distance, and A is the positive number 

defining the width of the kernel.  

Training of the Kernel Perceptron is simple: starting from the zero 

function f(x) = 0 at time t = 0, data points are observed 

sequentially, and f(x) is updated as f(x) ← f(x) + αi · K(xi, x), 

where αi = yi, if point xi is misclassified (yi· f(xi) ≤ 0) and αi = 0 

otherwise. Examples for which αi = yi have to be stored and they 

are named the support vectors. Despite the simplicity of this 

training algorithm, Kernel Perceptrons often achieve impressive 

classification accuracies on highly non-linear problems. On the 

other hand, number of the support vectors grows linearly with the 

number of training examples on noisy classification problems. 

Therefore, these algorithms require O(�) memory and O(�2) time 

to learn in a single pass from � examples. Because number of 

examples � can be extremely high, Kernel Perceptrons can be 

infeasible on noisy real-world classification problems. This is the 

reason why budgeted versions of Kernel Perceptron have been 

proposed with the objective of retaining high accuracy while 

removing the unlimited memory requirement.  

Budget Kernel Perceptron [4] has been proposed to address the 

problem of the unbounded growth in resource consumption with 

training data size. The idea is to maintain a constant number of 

support vectors during the training by removing a single support 

vector every time the budget is exceeded upon addition of a new 
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support vector. Given a budget of T support vectors, Budget 

Kernel Perceptrons achieve constant space scaling O(T), linear 

time to train O(T�) and constant time to predict O(T). There are 

several ways one may choose to maintain the budget. The most 

popular approach in literature is removal of an existing support 

vector to accommodate the new one. For example Forgetron [5] 

removes the oldest support vector, Random [3] the randomly 

selected one, Budget [4] the one farthest from the margin, and 

Tightest [13] the one that impacts the accuracy the least. There are 

more advanced and computationally expensive approaches such 

as merging of two support vectors [12] and projecting a support 

vector to the remaining ones [9].  

Although Budget Kernel Perceptrons are very frugal, requiring 

constant memory and linear space to train, they are still not 

applicable to one of the simplest computational devices, 

microcontrollers. These devices have extremely small memory 

and computational power. In this paper we consider 

microcontroller ATTiny2313, which has only 128B of memory 

available to store the model, maximum processor speed of 8MHz 

and whose hardware does not support floating-point operations. 

We propose a modification of Budget Kernel Perceptron that uses 

only integers and makes it very suitable for use on resource-

limited microcontrollers. Our method approximates floating-point 

Budget Kernel Perceptron operations using fixed-point arithmetic 

that provides nearly the same accuracy, while allowing much 

faster execution time and requiring less memory. We use Random 

Removal as budget maintenance method [3, 11]. When the budget 

is full and new support vector is to be included to the support 

vector set, one existing support vector is randomly chosen for 

deletion. Although this update rule is extremely simple, the 

resulting Perceptron can achieve high accuracy when the allowed 

budget is sufficiently large. The pseudocode of Budget Kernel 

Perceptron is given as Algorithm 1. 

It should be noted that a significant body of research exists on the 

topic of efficient hardware implementation of various machine 

learning and signal processing algorithms. In Compressed Kernel 

Perceptron [11] the authors consider efficient memory utilization 

through data quantization, but assume floating-point processor. 

Several solutions have been proposed for implementation of 

kernel machines on fixed-point processors as well. In [1], authors 

propose special hardware suitable for budgeted Kernel 

Perceptron. Similarly, in [2] authors consider implementation of 

Support Vector Machines [10] on fixed-point hardware. The two 

proposed algorithms, however, assume that the classifiers are 

already trained. Additionally, use of the problem-specific 

hardware is limited to a single problem. We, on the other hand, 

implement our method on general-purpose hardware, which 

makes the implementation much easier and more cost-efficient. 

Moreover, we combine the two proposed approaches, 

quantization of data and the use of fixed-point hardware, to obtain 

an accurate classifier that can be used on the simplest existing 

computational devices. 

The paper is organized as follows. In Section 2 the proposed 

method is explained in detail. In Section 3 the results are 

presented and discussed. Finally, Section 4 concludes the paper. 

 

 

Algorithm 1 - Budget Kernel Perceptron 

Inputs : data sequence ((x1, y1), ..., (x� , y�)), budget T 

Output : support vector set SV = {SVi, i = 1 ... I} 

 

I ← 0; i ← 1 

SV = Ø 

for i = 1 : � 

{ 

 if  ( (yi ·                          ) ≤ 0) 

 { 

       if (I == T)   

  new = random(I) 

       else 

       { 

  I ← I + 1 

  new ← I 

       } 

       SVnew = (xi, yi) 

 } 

} 

 

2. METHODOLOGY 
In this paper we focus on implementation of Kernel Perceptron on 

the specific microcontroller. We first describe its properties and 

then explain the proposed algorithm. 

2.1 Microcontroller 
The microcontroller ATTiny2313 [14] has been chosen as the 

target platform because its specifications make it extremely 

challenging to implement a data mining algorithm. It has very 

limited speed (0-8 MHz, depending on voltage that ranges from 

1.8 to 5.5V), low power requirements (when in 1.8V and 1MHz 

mode, it requires only 300µA and 540µW power), and very 

limited memory (2kB of program memory that is used to store 

executable code and constants; 128B of data memory that is used 

to store model and program variables). Because of its limitations 

it is also very cheap, with the price of around 1$ [15]. It supports 

16-bit integers and supports fixed-point operations. Multiplication 

and division of integers is very fast, but at the expense of potential 

overflow problems with multiplication and round-off error with 

division. ATTiny2313 does not directly support floating-point 

numbers, but can cope with them using certain software solutions. 

Floating-point calculations can also be supported through C 

library, but only after incurring significant overhead in both 

memory and execution time. 

2.2 Attribute quantization 
In order to use the limited memory efficiently the data are first 

normalized and then quantized using B bits, as proposed in [11]. 

Using quantized data, instead of (1), the predictor is 

                           )))(),((()( ∑= i ii qqKsignf xxx α ,                   (3) 

where q(x) is the quantized data point x. Quantization of data 

introduces quantization error, which can have significant impact 

on the classification, especially for the data points that are located 

near the separating boundary. The quantization loss suffered by 

the prediction model due to quantization is discussed in much 

more detail in [11]. Objective of this paper is to approximate (3) 

using fixed-point arithmetic. 
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2.3 Fixed-point method for prediction 
Our algorithm should be implemented on microcontroller with 

extremely low memory. Although quantization can save valuable 

memory space, there are additional memory-related issues that 

must be considered. First, number of program variables must be 

minimal. Prudent use of variables allows more space to store the 

model and leads to increased accuracy. On the computational side, 

all unnecessary operations, such as excess multiplications and 

exponentials should be avoided. If this is not taken into 

consideration, the program can take a lot of memory and a lot of 

time to execute. Furthermore, due to inability of ATTiny2313 to 

deal with floating-point numbers in hardware, use of floating-

point library results in even larger program size.  

Instead of RBF kernel (2) our algorithm uses its modified version, 

as proposed in [2], 
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where several differences from RBF kernel in (2) can be noticed. 

First, instead of Euclidean distance, Manhattan distance is used. 

In [2], kernel function with Manhattan distance is used because 

multiplications can be completely omitted from their algorithm. 

For our application, we use the Manhattan distance to limit the 

range of distances between the quantized data, which will lead to 

improved performance of our algorithm. Furthermore, without the 

loss of generality, we represent the kernel width as 2A, where A is 

any number. 

Although the simplifications in equation (4) have been 

introduced, the algorithm cannot be implemented without the 

penalty in the speed of computation. This is because very simple 

devices are not designed to compute exponents or other 

operations involving floating-point arithmetic efficiently. This 

results in slow run-time and excessive memory usage. Therefore, 

an alternative way needs to be devised to perform kernel 

calculation. The idea of our method is to use only integers, which 

are handled easily by even the simplest devices, and still manage 

to use the RBF kernel for predicting the label of new point. 

The normalized data point x is quantized using B bits and its 

integer representation I(x) is 
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The value of I(x) is in the range [0, 2B − 1]. Since x is now 

approximated by q(x) = I(x) 2-B, we can define kernel function 

which takes quantized data 
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If we represent |I(x) − I(xi)| as di, and introduce for the simplicity 

of notation  
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we get 
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we can replace id
g  from (8) with nni dd

Cg
−

, where dnn is the 

distance between newly observed data point x and the nearest 

support vector and C is a positive integer. Then, to allow integer 

representation, we again replace it with integers 
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and approximate )(),( nniiq ddwK −≈xx . It is clear that if 

di = dnn then w = C, if di − dnn = 1 then w = round(C g), and if 

di − dnn is sufficiently large then w = 0. We can notice that if the  

i-th support vector is close to data point x its weight w and its 

influence on classification will be large. Our final classifier is 

approximated as 
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where yi is the label of i-th support vector, and w is its weight 

which depends on the distance di from data point x. The drawback 

of the proposed method is that the support vector set needs to be 

scanned every time a new data point x arrives in order to find the 

nearest support vector distance. In addition, there is a 

computational problem related to calculation of weights. These 

issues will be addressed in Section 2.4. 

2.3.1 Error of weight approximation 
By using rounding operation (9) we are inevitably introducing 

additional error, on top of the error made due to quantization of 

data point using B bits [11]. In order to understand the effect of 

the approximation error, let us define the relative error R as 
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where true_value is the actual value of the number, and 

approximation is value of the number after rounding. It can be 

shown [7] that the relative error R we are making by the rounding 

(9) depends on the parameter C as R~1/C. This shows that large C 

leads to small relative error. However, because the 

microcontroller supports only 16-bit integers, too large C will 

render our method useless on the chosen platform. 

2.4 Weight calculation 
To be able to use predictor (10) there is a need to calculate wi for 

every support vector. For given parameters (A, B, C) we can 

calculate the weight for every possible distance d = di − dnn as 

illustrated in Table 1. In the naïve approach, we can precalculate 

all the weights and save them as array in microcontroller memory. 

If the dataset is M-dimensional, then d is in range [0, M (2B − 1)], 

and storing each weight could become impossible. 

Table 1 Distances and corresponding weights 

Distance (d) 0 1 … d … 

Weight (w(d)) Cg0 Cg1 … Cgd … 

Therefore, we must find a way to represent entire array of weights 

with only a subset of weights in order to save memory. Two 



approaches are discussed next, both requiring very limited 

memory. 

2.4.1 Sequential method 
The most obvious way is to store weights w(0) and w(1), for 

distances 0 and 1, respectively. By storing these two weights we 

can calculate other weights in Table 1. Every other weight can be 

iteratively calculated, in integer calculus, as 
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The memory requirement of this approach is minimal, but there 

are certain problems. In order to calculate particular weight we 

need to calculate all the weights up to that one by repeatedly 

applying (12), which can take substantial time. In addition, the 

division of two integers results in rounding error that would 

propagate and increase for large d.  

2.4.2 Log method 
Different idea is to save only the weight of distance 0, which 

equals C, together with the weights at distances that are the power 

of 2, namely weights of distances 1, 2, 4, 8, 16 and so on. In this 

way the number of weights we need to save is logarithm of total 

number of distances, which is approximately log(M 2B). Using the 

saved weights we calculate weight for any distance using 

Algorithm 2.  

Algorithm 2 - Find Weight 

Inputs : array of weights W and corresponding distances D 

   distance d for which the weight is being calculated 

Output : weight w 

 

i ←  Index of the nearest smaller distance to d in array D 

w ← W[i] 

d ← d − D[i] 

while (d > 0) 

{ 

       i ← Index of the nearest smaller distance to d in array D 

      w ← w · W[i] / W[0] 

      d  ← d − D[i] 

} 

As can be seen in Algorithm 2, if we are looking for the weight of 

the distance d that is the power of 2, the weight will immediately 

be found in the array W. If not, we are looking for the distance in 

array D that is the closest smaller value than d, and start the 

calculation from there. We repeat the process until convergence. 

In this way, we will always try to make the smallest error while 

calculating the weight, and the algorithm runs using O(log(M 2B)) 

space and O(log(M 2B)) time, which is efficient and fast even for 

highly-dimensional data and large bit-lengths. 

 
Figure 1 Illustration of log method 

Log method is illustrated in Figure 1. Assume that we are looking 

for the weight of distance 25, and we saved weights at distances 0, 

1, 2, 4, 8, 16 and 32. It is clear that 25 can be represented as 

16 + 8 + 1. In the first step we will use w(16), then w(8), because 

8 is the closest to 25−16, and finally w(1). The sought-after 

weight will be found both very quickly and with minimal error. 

3. EXPERIME#TAL RESULTS 
We evaluated our algorithm on several benchmark datasets from 

UCI ML Repository whose properties are summarized in Table 2. 

The digit dataset Pendigits, which was originally multi-class, was 

converted to binary dataset in the following way: classes 

representing digits 1, 2, 4, 5, 7 (non-round digits) were converted 

to negative class, and those representing digits 3, 6, 8, 9, 0 (round 

digits) to the positive class. Banana and Checkerboard were 

originally binary class datasets. Checkerboard dataset is shown in 

Figure 8. 

Table 2 Dataset summaries 

Dataset 
Training set 

size 

Testing set 

size 

Number of 

attributes 

Banana 4800 500 2 

Checkerboard 3500 500 2 

Pendigits 2998 500 16 

In all reported results, A is the kernel width parameter, B is bit-

length, and C is positive integer, all defined in Section 2.3. 

In Figure 2 the absolute difference between the true weights and 

the calculated ones using sequential and log methods for weight 

calculation described in Sections 2.4.1 and 2.4.2 is shown. It can 

be seen that log method makes very small error with minimal 

memory overhead over the whole range of distances. We use the 

log method as our default for weight calculation. 
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Figure 2 Error of two weight calculation methods 

 

In the next set of experiments the quality of approximation was 

evaluated. First, the Random Kernel Perceptron was trained using 

equation (6) that requires floating-point calculations. Then, our 

fixed-point method was executed, and the predictions of the two 

algorithms were compared. The approximation accuracy is 

defined as 
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where I is the indicator function that is equal to 1 when the 

predictions are the same and 0 otherwise, yi is the classifier 

prediction, and � is the size of the test set.  

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter C

A
p
p
ro
x
im
a
ti
o
n
 a
c
c
u
ra
c
y

Banana dataset
A = 0
B = 5 bits
budget = 70 bytes

 

Figure 3 Approximation accuracy as the function of C 

Figure 3 shows that the approximation accuracy is relatively large 

even for small values of C and that it quickly increases with C, as 

expected from discussion in Section 2.3.1. Since ATTiny2313 

microcontroller supports 16-bit integers, the maximum value of a 

number is 65535. However, as can be seen from Algorithm 2, in 

order to calculate weights multiplications are required, and at no 

point the product should exceed this maximum value. Therefore, 

the best choice for C is the square root of 65535, which is 255. In 

the following experiments C was set to 255. 

In Figure 4 the approximation accuracy is given for 3 datasets. 

Total budget was fixed to only 70 bytes. Each dataset was 

shuffled before each experiment and the reported results are 

averages after 10 experiments. The value of parameter A was 

changed in order to estimate its impact on the performance. High 

negative values of A correspond to the algorithm that acts like 

nearest neighbour. High positive values of parameter A 

correspond to the majority vote algorithm. It can be seen that over 

large range of A values the approximation accuracy was around 

99%, and that is was lower at the extreme values of A. This 

behavior is due to the numerical limitations of double-precision 

format used when calculating equation (6). The exponentials of 

large negative numbers are too close to 0 and are rounded to 0, 

which results in much smaller accuracy. On the other hand, it can 

be seen that for large values of A corresponding to the algorithm 

that acts like majority vote the approximation accuracy starts to 

decrease. This was expected, because in this case all the weights, 

as calculated by our method, are practically the same since the 

weights decrease extremely slowly and very small differences 

between actual weights are lost when they are calculated using the 

log method. However, it should be noted that in this problem 

setting kernel width depends on A as 2A, and the values where 

prediction accuracy starts to fall are practically never used. 

Experiments were conducted for different values of parameter B 

as well. However, the results for other bit-lengths were very 

similar, and are thus not shown. 
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Figure 4 Approximation accuracy (B = 5 bits) 

The next set of experiments was conducted to evaluate prediction 

accuracy of the proposed Random Kernel Perceptron 

implementation. The values of parameters A and B were changed 

in order to estimate their influence on the accuracy of methods. 

The results are the averages over 10 experiments and are reported 

in Figures 5, 6 and 7. 
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Figure 5 Accuracy of two methods 

It can be seen that both floating- and fixed-point implementations 

achieve essentially the same accuracy, as was expected since the 

approximation has been proven to be very good. In some cases for 

very small values of A the accuracy of floating-point method 

drops sharply, as in Figure 6. This happens because of the 

numerical problems, where the predictions are so close to 0 that 

when calculated in double-precision they are rounded to 0. Our 

method does not have this problem. It is also worth noticing that 

for large A the accuracy drops sharply for both algorithms, which 

supports the claim that large kernel widths are usually not useful. 

It is exactly for these large values of A that the approximation 

accuracy drops as well. Therefore, as can be seen in Figures 5, 6 

and 7, these values are not of practical relevance. Only results for 

bit-length of 5 bits were shown, since for the other bit-lengths the 

results were nearly the same. 
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Figure 6 Accuracy of two methods 
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Figure 7 Accuracy of two methods 
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Figure 8 Checkerboard dataset 

3.1 Hardware implementation 
The algorithm was tested on microcontroller ATTiny2313. The 

program was written in C programming language using free IDE 

AVR Studio 4 available for download from Atmel’s website. 

Different methods were used in order to assess the complexity of 

implementation on microcontroller. The details are given in 

Tables 3, 4 and 5. Program and Data represent the required 

program and data memory in bytes. Time, in milliseconds, is given 

after 100 observed examples, and kernel width parameter A is set 

to −6. Accuracy is calculated after all data points were observed. 

Numbers in the brackets represent the total size of memory block 

of the microcontroller. The microcontroller speed is set to 4 MHz. 

Number of support vectors was chosen so that the entire data 

memory of microcontroller is utilized in the case of fixed-point 

method. This number of support vectors was then imposed on 

both methods. Therefore, as the bit-length is increased, the 

number of support vector decreased.  

For Tables 3 and 4 the target microcontroller was ATTiny2313. 

For Table 5 microcontroller with twice bigger memory was used 

because of the high dimensionality of Pendigits dataset. 

ATTiny48 was chosen which has 4kB of program memory and 

256B of data memory.  

It is clear that proposed fixed-point algorithm takes much less 

memory and is faster than the floating-point algorithm. Both time 

and space costs of fixed-point algorithm are nearly 3 times 

smaller. In fact, in order to run simulations using floating-point 

numbers, microcontroller ATTiny84 with four times larger 

memory was used since the memory requirement was too big for 

both ATTiny2313 and a more powerful ATTiny48, colored red in 

the tables. The accuracy of these two methods is practically the 

same, and the difference in computational cost is therefore even 

more striking. In addition, it can be concluded that accuracy 

depends greatly on the number of support vectors. The higher 

number of support vectors usually means higher accuracy. 

However, in our experiments, higher number of support vectors is 

achieved at the expense of smaller bit-lengths, so the results in the 

tables can be misleading. In some experiments larger support 

vector set does not necessarily lead to better performance because 

the quantization error is too big and this affects predictions 

considerably. It should be noted that the support vector set 

size/bit-length trade-off is not the topic of this work and will be 

addressed in our future study. 

4. CO#CLUSIO# 
In this paper we proposed approximation of Kernel Perceptron 

that is well-suitable for implementation on resource-limited 

devices. The new algorithm uses only integers, without any need 

for floating-point numbers, which makes it perfect for simple 

devices such as microcontrollers. 

The presented results show that the approach considered in this 

paper can be successfully implemented. The described algorithm 

approximates the kernel function defined in (6) with high 

accuracy, and yields good results on several different datasets. 

The results are, as expected, not perfect, which is the consequence 

of the highly limited computation capabilities of ATTiny2313 that 

required several approximations in calculation of the prediction. 

While the quantization and approximation error limit the 

performance, the degradation is relatively moderate considering 

very limited computational resources. The simulations on ATTiny 

microcontrollers proved that the algorithm is very frugal and fast, 

while being able to match the performance of its unconstrained 

counterpart. 

Although the kernel function defined in (6) is used, which is a 

slightly modified RBF kernel, the fixed-point method can also be 

used to approximate the original RBF kernel (2). The proposed 

idea could probably be extended to some other kernel functions 



Table 3 Microcontroller implementation costs 

Banana 2 bits 4 bits 6 bits 8 bits 

ATTiny2313 Fixed Float Fixed Float Fixed Float Fixed Float 

Program [B] (2048B) 1744 6036 1720 6012 1720 6012 1748 6040 

Data [B] (128B) 128 379 128 379 128 379 128 381 

Time [ms] 1192 6604 1985 7505 1883 7610 1739 7496 

Accuracy [%] 67.32 65.12 81.08 81.00 79.36 79.60 78.00 77.80 

# of SVs 112 62 43 32 

 

Table 4 Microcontroller implementation costs 

Checkerboard 2 bits 4 bits 6 bits 8 bits 

ATTiny2313 Fixed Float Fixed Float Fixed Float Fixed Float 

Program [B] (2048B) 1744 6036 1720 6012 1720 6012 1748 6040 

Data [B] (128B) 128 379 128 379 128 379 128 381 

Time [ms] 1568 7626 2226 6725 2410 7366 2232 7703 

Accuracy [%] 52.20 51.20 72.60 72.64 78.20 78.60 74.04 73.80 

# of SVs 112 62 43 32 

 

Table 5 Microcontroller implementation costs 

Pendigits 2 bits 4 bits 6 bits 8 bits 

ATTiny48 Fixed Float Fixed Float Fixed Float Fixed Float 

Program [B] (4096B) 1836 6078 1810 6058 1812 6056 1816 5912 

Data [B] (256B) 256 513 256 511 256 507 256 503 

Time [ms] 3280 14186 3572 15352 4881 17102 5063 17373 

Accuracy [%] 93.80 94.20 92.76 93.92 86.44 86.32 80.72 81.68 

# of SVs 46 23 15 11 

 

that require operations with floating-point numbers, such as 

polynomial kernel. This would be of great practical importance 

for problems that do not work well with the RBF kernel. This 

issue will be pursued in our future work. 

The proposed algorithm could be improved by some more 

advanced budget maintenance method, such as the one described 

in [8]. By using support vector merging, the performance of 

predictor would certainly improve, but it is to be seen if the 

limited device can support such an approach. Also, in this paper 

we assumed that parameters A and B, kernel width and bit-length, 

respectively, are given. Although this is reasonable if we want to 

use this method for applications where the classification problem 

is well understood, it would be interesting to implement on a 

resource-limited device an algorithm that can automatically find 

the optimal parameter values.  
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