
Random Kernel Perceptron on

ATTiny2313 Microcontroller

Nemanja Djuric
Department of Computer and

Information Sciences, Temple University
Philadelphia, PA 19122, USA

nemanja.djuric@temple.edu

Slobodan Vucetic
Department of Computer and

Information Sciences, Temple University
Philadelphia, PA 19122, USA

vucetic@ist.temple.edu

ABSTRACT

Kernel Perceptron is very simple and efficient online

classification algorithm. However, it requires increasingly large

computational resources with data stream size and is not

applicable on large-scale problems or on resource-limited

computational devices. In this paper we describe implementation

of Kernel Perceptron on ATTiny2313 microcontroller, one of the

most primitive computational devices with only 128B of data

memory and 2kB of program memory. ATTyny2313 is a

representative of devices that are popular in embedded systems

and sensor networks due to their low cost and low power

consumption. Implementation on microcontrollers is possible

thanks to two properties of Kernel Perceptrons: (1) availability of

budgeted Kernel Perceptron algorithms that bound the model size,

and (2) relatively simple calculations required to perform online

learning and provide predictions. Since ATTiny2313 is the fixed-

point controller that supports floating-point operations through

software which introduces significant computational overhead, we

considered implementation of basic Kernel Perceptron operations

through fixed-point arithmetic. In this paper, we present a new

approach to approximate one of the most used kernel functions,

the RBF kernel, on fixed-point microcontrollers. We conducted

simulations of the resulting budgeted Kernel Perceptron on

several datasets and the results show that accurate Kernel

Perceptrons can be trained using ATTiny2313. The success of our

implementation opens the doors for implementing powerful online

learning algorithms on the most resource-constrained

computational devices.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special purpose and

application-based systems – Real-time and embedded systems

General Terms

Algorithms, Performance, Experimentation.

Keywords

Kernel Perceptron, Budget, RBF kernel, Microcontroller.

1. I#TRODUCTIO#
Kernel Perceptron is a powerful class of machine learning

algorithms which can solve many real-world classification

problems. Initially proposed in [6], it was proven to be both

accurate and very easy to implement. Kernel Perceptron learns a

mapping f : X → R from a stream of training examples

S = {(xi, yi), i = 1…�}, where xi ∈ X is an M-dimensional input

vector, called the data point, and yi ∈ {−1, +1} is a binary

variable, called the label. The resulting Kernel Perceptron can be

represented as

)),(()(

1

∑
=

=

�

i

ii Ksignf xxx α , (1)

where αi are weights associated with training examples, and K is

the kernel function. The RBF kernel is probably the most popular

choice for Kernel Perceptron because it is intuitive and often

results in very accurate classifiers. It is defined as

)
||||

exp(),(
2

A
K i

i

xx
xx

−
−= , (2)

where || · || is the Euclidean distance, and A is the positive number

defining the width of the kernel.

Training of the Kernel Perceptron is simple: starting from the zero

function f(x) = 0 at time t = 0, data points are observed

sequentially, and f(x) is updated as f(x) ← f(x) + αi · K(xi, x),

where αi = yi, if point xi is misclassified (yi· f(xi) ≤ 0) and αi = 0

otherwise. Examples for which αi = yi have to be stored and they

are named the support vectors. Despite the simplicity of this

training algorithm, Kernel Perceptrons often achieve impressive

classification accuracies on highly non-linear problems. On the

other hand, number of the support vectors grows linearly with the

number of training examples on noisy classification problems.

Therefore, these algorithms require O(�) memory and O(�2) time

to learn in a single pass from � examples. Because number of

examples � can be extremely high, Kernel Perceptrons can be

infeasible on noisy real-world classification problems. This is the

reason why budgeted versions of Kernel Perceptron have been

proposed with the objective of retaining high accuracy while

removing the unlimited memory requirement.

Budget Kernel Perceptron [4] has been proposed to address the

problem of the unbounded growth in resource consumption with

training data size. The idea is to maintain a constant number of

support vectors during the training by removing a single support

vector every time the budget is exceeded upon addition of a new

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SensorKDD’10, July 25th, 2010, Washington, DC, USA.

Copyright 2010 ACM 978-1-4503-0224-1…$10.00.

support vector. Given a budget of T support vectors, Budget

Kernel Perceptrons achieve constant space scaling O(T), linear

time to train O(T�) and constant time to predict O(T). There are

several ways one may choose to maintain the budget. The most

popular approach in literature is removal of an existing support

vector to accommodate the new one. For example Forgetron [5]

removes the oldest support vector, Random [3] the randomly

selected one, Budget [4] the one farthest from the margin, and

Tightest [13] the one that impacts the accuracy the least. There are

more advanced and computationally expensive approaches such

as merging of two support vectors [12] and projecting a support

vector to the remaining ones [9].

Although Budget Kernel Perceptrons are very frugal, requiring

constant memory and linear space to train, they are still not

applicable to one of the simplest computational devices,

microcontrollers. These devices have extremely small memory

and computational power. In this paper we consider

microcontroller ATTiny2313, which has only 128B of memory

available to store the model, maximum processor speed of 8MHz

and whose hardware does not support floating-point operations.

We propose a modification of Budget Kernel Perceptron that uses

only integers and makes it very suitable for use on resource-

limited microcontrollers. Our method approximates floating-point

Budget Kernel Perceptron operations using fixed-point arithmetic

that provides nearly the same accuracy, while allowing much

faster execution time and requiring less memory. We use Random

Removal as budget maintenance method [3, 11]. When the budget

is full and new support vector is to be included to the support

vector set, one existing support vector is randomly chosen for

deletion. Although this update rule is extremely simple, the

resulting Perceptron can achieve high accuracy when the allowed

budget is sufficiently large. The pseudocode of Budget Kernel

Perceptron is given as Algorithm 1.

It should be noted that a significant body of research exists on the

topic of efficient hardware implementation of various machine

learning and signal processing algorithms. In Compressed Kernel

Perceptron [11] the authors consider efficient memory utilization

through data quantization, but assume floating-point processor.

Several solutions have been proposed for implementation of

kernel machines on fixed-point processors as well. In [1], authors

propose special hardware suitable for budgeted Kernel

Perceptron. Similarly, in [2] authors consider implementation of

Support Vector Machines [10] on fixed-point hardware. The two

proposed algorithms, however, assume that the classifiers are

already trained. Additionally, use of the problem-specific

hardware is limited to a single problem. We, on the other hand,

implement our method on general-purpose hardware, which

makes the implementation much easier and more cost-efficient.

Moreover, we combine the two proposed approaches,

quantization of data and the use of fixed-point hardware, to obtain

an accurate classifier that can be used on the simplest existing

computational devices.

The paper is organized as follows. In Section 2 the proposed

method is explained in detail. In Section 3 the results are

presented and discussed. Finally, Section 4 concludes the paper.

Algorithm 1 - Budget Kernel Perceptron

Inputs : data sequence ((x1, y1), ..., (x� , y�)), budget T

Output : support vector set SV = {SVi, i = 1 ... I}

I ← 0; i ← 1

SV = Ø

for i = 1 : �

{

 if ((yi ·) ≤ 0)

 {

 if (I == T)

 new = random(I)

 else

 {

 I ← I + 1

 new ← I

 }

 SVnew = (xi, yi)

 }

}

2. METHODOLOGY
In this paper we focus on implementation of Kernel Perceptron on

the specific microcontroller. We first describe its properties and

then explain the proposed algorithm.

2.1 Microcontroller
The microcontroller ATTiny2313 [14] has been chosen as the

target platform because its specifications make it extremely

challenging to implement a data mining algorithm. It has very

limited speed (0-8 MHz, depending on voltage that ranges from

1.8 to 5.5V), low power requirements (when in 1.8V and 1MHz

mode, it requires only 300µA and 540µW power), and very

limited memory (2kB of program memory that is used to store

executable code and constants; 128B of data memory that is used

to store model and program variables). Because of its limitations

it is also very cheap, with the price of around 1$ [15]. It supports

16-bit integers and supports fixed-point operations. Multiplication

and division of integers is very fast, but at the expense of potential

overflow problems with multiplication and round-off error with

division. ATTiny2313 does not directly support floating-point

numbers, but can cope with them using certain software solutions.

Floating-point calculations can also be supported through C

library, but only after incurring significant overhead in both

memory and execution time.

2.2 Attribute quantization
In order to use the limited memory efficiently the data are first

normalized and then quantized using B bits, as proposed in [11].

Using quantized data, instead of (1), the predictor is

)))(),((()(∑= i ii qqKsignf xxx α , (3)

where q(x) is the quantized data point x. Quantization of data

introduces quantization error, which can have significant impact

on the classification, especially for the data points that are located

near the separating boundary. The quantization loss suffered by

the prediction model due to quantization is discussed in much

more detail in [11]. Objective of this paper is to approximate (3)

using fixed-point arithmetic.

),(
1

ji

I

j
j Ky xx⋅∑

=

2.3 Fixed-point method for prediction
Our algorithm should be implemented on microcontroller with

extremely low memory. Although quantization can save valuable

memory space, there are additional memory-related issues that

must be considered. First, number of program variables must be

minimal. Prudent use of variables allows more space to store the

model and leads to increased accuracy. On the computational side,

all unnecessary operations, such as excess multiplications and

exponentials should be avoided. If this is not taken into

consideration, the program can take a lot of memory and a lot of

time to execute. Furthermore, due to inability of ATTiny2313 to

deal with floating-point numbers in hardware, use of floating-

point library results in even larger program size.

Instead of RBF kernel (2) our algorithm uses its modified version,

as proposed in [2],

A

i

i eK 2

||

),(

xx

xx

−
−

= , (4)

where several differences from RBF kernel in (2) can be noticed.

First, instead of Euclidean distance, Manhattan distance is used.

In [2], kernel function with Manhattan distance is used because

multiplications can be completely omitted from their algorithm.

For our application, we use the Manhattan distance to limit the

range of distances between the quantized data, which will lead to

improved performance of our algorithm. Furthermore, without the

loss of generality, we represent the kernel width as 2A, where A is

any number.

Although the simplifications in equation (4) have been

introduced, the algorithm cannot be implemented without the

penalty in the speed of computation. This is because very simple

devices are not designed to compute exponents or other

operations involving floating-point arithmetic efficiently. This

results in slow run-time and excessive memory usage. Therefore,

an alternative way needs to be devised to perform kernel

calculation. The idea of our method is to use only integers, which

are handled easily by even the simplest devices, and still manage

to use the RBF kernel for predicting the label of new point.

The normalized data point x is quantized using B bits and its

integer representation I(x) is

)2()(B
roundI ⋅= xx . (5)

The value of I(x) is in the range [0, 2B − 1]. Since x is now

approximated by q(x) = I(x) 2-B, we can define kernel function

which takes quantized data

BA

iII

iiq eqqKK
+

−
−∆

== 2

|)()(|

))(),((),(

xx

xxxx . (6)

If we represent |I(x) − I(xi)| as di, and introduce for the simplicity

of notation

BA

eg
+

−

= 2

1

, (7)

we get

 id
iq gK =),(xx . (8)

We need to calculate)),((
1

iq

T

i
i Kysign xx⋅∑

=

, where T is the budget.

Since)),(()),((
11

iq

T

i
iiq

T

i
i cKysignKysign xxxx ∑=∑

==

 for any c > 0,

we can replace id
g from (8) with nni dd

Cg
−

, where dnn is the

distance between newly observed data point x and the nearest

support vector and C is a positive integer. Then, to allow integer

representation, we again replace it with integers

)()(nni
nni

dd
gCroundddw

−
⋅=−

∆

, (9)

and approximate)(),(nniiq ddwK −≈xx . It is clear that if

di = dnn then w = C, if di − dnn = 1 then w = round(C g), and if

di − dnn is sufficiently large then w = 0. We can notice that if the

i-th support vector is close to data point x its weight w and its

influence on classification will be large. Our final classifier is

approximated as

)(()()

1
nni

T

i
i ddwysignf −⋅∑=

=

x , (10)

where yi is the label of i-th support vector, and w is its weight

which depends on the distance di from data point x. The drawback

of the proposed method is that the support vector set needs to be

scanned every time a new data point x arrives in order to find the

nearest support vector distance. In addition, there is a

computational problem related to calculation of weights. These

issues will be addressed in Section 2.4.

2.3.1 Error of weight approximation
By using rounding operation (9) we are inevitably introducing

additional error, on top of the error made due to quantization of

data point using B bits [11]. In order to understand the effect of

the approximation error, let us define the relative error R as

valuetrue

ionapproximatvaluetrue
R

_

|_| −
= , (11)

where true_value is the actual value of the number, and

approximation is value of the number after rounding. It can be

shown [7] that the relative error R we are making by the rounding

(9) depends on the parameter C as R~1/C. This shows that large C

leads to small relative error. However, because the

microcontroller supports only 16-bit integers, too large C will

render our method useless on the chosen platform.

2.4 Weight calculation
To be able to use predictor (10) there is a need to calculate wi for

every support vector. For given parameters (A, B, C) we can

calculate the weight for every possible distance d = di − dnn as

illustrated in Table 1. In the naïve approach, we can precalculate

all the weights and save them as array in microcontroller memory.

If the dataset is M-dimensional, then d is in range [0, M (2B − 1)],

and storing each weight could become impossible.

Table 1 Distances and corresponding weights

Distance (d) 0 1 … d …

Weight (w(d)) Cg0 Cg1 … Cgd …

Therefore, we must find a way to represent entire array of weights

with only a subset of weights in order to save memory. Two

approaches are discussed next, both requiring very limited

memory.

2.4.1 Sequential method
The most obvious way is to store weights w(0) and w(1), for

distances 0 and 1, respectively. By storing these two weights we

can calculate other weights in Table 1. Every other weight can be

iteratively calculated, in integer calculus, as

 .
)2(

2)1(
)(

−

−
=

dw

dw
dw (12)

The memory requirement of this approach is minimal, but there

are certain problems. In order to calculate particular weight we

need to calculate all the weights up to that one by repeatedly

applying (12), which can take substantial time. In addition, the

division of two integers results in rounding error that would

propagate and increase for large d.

2.4.2 Log method
Different idea is to save only the weight of distance 0, which

equals C, together with the weights at distances that are the power

of 2, namely weights of distances 1, 2, 4, 8, 16 and so on. In this

way the number of weights we need to save is logarithm of total

number of distances, which is approximately log(M 2B). Using the

saved weights we calculate weight for any distance using

Algorithm 2.

Algorithm 2 - Find Weight

Inputs : array of weights W and corresponding distances D

 distance d for which the weight is being calculated

Output : weight w

i ← Index of the nearest smaller distance to d in array D

w ← W[i]

d ← d − D[i]

while (d > 0)

{

 i ← Index of the nearest smaller distance to d in array D

 w ← w · W[i] / W[0]

 d ← d − D[i]

}

As can be seen in Algorithm 2, if we are looking for the weight of

the distance d that is the power of 2, the weight will immediately

be found in the array W. If not, we are looking for the distance in

array D that is the closest smaller value than d, and start the

calculation from there. We repeat the process until convergence.

In this way, we will always try to make the smallest error while

calculating the weight, and the algorithm runs using O(log(M 2B))

space and O(log(M 2B)) time, which is efficient and fast even for

highly-dimensional data and large bit-lengths.

Figure 1 Illustration of log method

Log method is illustrated in Figure 1. Assume that we are looking

for the weight of distance 25, and we saved weights at distances 0,

1, 2, 4, 8, 16 and 32. It is clear that 25 can be represented as

16 + 8 + 1. In the first step we will use w(16), then w(8), because

8 is the closest to 25−16, and finally w(1). The sought-after

weight will be found both very quickly and with minimal error.

3. EXPERIME#TAL RESULTS
We evaluated our algorithm on several benchmark datasets from

UCI ML Repository whose properties are summarized in Table 2.

The digit dataset Pendigits, which was originally multi-class, was

converted to binary dataset in the following way: classes

representing digits 1, 2, 4, 5, 7 (non-round digits) were converted

to negative class, and those representing digits 3, 6, 8, 9, 0 (round

digits) to the positive class. Banana and Checkerboard were

originally binary class datasets. Checkerboard dataset is shown in

Figure 8.

Table 2 Dataset summaries

Dataset
Training set

size

Testing set

size

Number of

attributes

Banana 4800 500 2

Checkerboard 3500 500 2

Pendigits 2998 500 16

In all reported results, A is the kernel width parameter, B is bit-

length, and C is positive integer, all defined in Section 2.3.

In Figure 2 the absolute difference between the true weights and

the calculated ones using sequential and log methods for weight

calculation described in Sections 2.4.1 and 2.4.2 is shown. It can

be seen that log method makes very small error with minimal

memory overhead over the whole range of distances. We use the

log method as our default for weight calculation.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

Distance

E
rr
o
r
o
f
a
p
p
ro
x
im
a
ti
o
n

Sequential method

Log method

Banana dataset
A = -1
B = 5 bits
C = 100

Figure 2 Error of two weight calculation methods

In the next set of experiments the quality of approximation was

evaluated. First, the Random Kernel Perceptron was trained using

equation (6) that requires floating-point calculations. Then, our

fixed-point method was executed, and the predictions of the two

algorithms were compared. The approximation accuracy is

defined as

�

yyI

accuracy

�

i

floating
i

fixed
i∑

=
=1

),(

, (13)

where I is the indicator function that is equal to 1 when the

predictions are the same and 0 otherwise, yi is the classifier

prediction, and � is the size of the test set.

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter C

A
p
p
ro
x
im
a
ti
o
n
 a
c
c
u
ra
c
y

Banana dataset
A = 0
B = 5 bits
budget = 70 bytes

Figure 3 Approximation accuracy as the function of C

Figure 3 shows that the approximation accuracy is relatively large

even for small values of C and that it quickly increases with C, as

expected from discussion in Section 2.3.1. Since ATTiny2313

microcontroller supports 16-bit integers, the maximum value of a

number is 65535. However, as can be seen from Algorithm 2, in

order to calculate weights multiplications are required, and at no

point the product should exceed this maximum value. Therefore,

the best choice for C is the square root of 65535, which is 255. In

the following experiments C was set to 255.

In Figure 4 the approximation accuracy is given for 3 datasets.

Total budget was fixed to only 70 bytes. Each dataset was

shuffled before each experiment and the reported results are

averages after 10 experiments. The value of parameter A was

changed in order to estimate its impact on the performance. High

negative values of A correspond to the algorithm that acts like

nearest neighbour. High positive values of parameter A

correspond to the majority vote algorithm. It can be seen that over

large range of A values the approximation accuracy was around

99%, and that is was lower at the extreme values of A. This

behavior is due to the numerical limitations of double-precision

format used when calculating equation (6). The exponentials of

large negative numbers are too close to 0 and are rounded to 0,

which results in much smaller accuracy. On the other hand, it can

be seen that for large values of A corresponding to the algorithm

that acts like majority vote the approximation accuracy starts to

decrease. This was expected, because in this case all the weights,

as calculated by our method, are practically the same since the

weights decrease extremely slowly and very small differences

between actual weights are lost when they are calculated using the

log method. However, it should be noted that in this problem

setting kernel width depends on A as 2A, and the values where

prediction accuracy starts to fall are practically never used.

Experiments were conducted for different values of parameter B

as well. However, the results for other bit-lengths were very

similar, and are thus not shown.

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kernel width parameter A

A
p
p
ro
x
im
a
ti
o
n
 a
c
c
u
ra
c
y

Banana

Pendigits

Checkerboard

Figure 4 Approximation accuracy (B = 5 bits)

The next set of experiments was conducted to evaluate prediction

accuracy of the proposed Random Kernel Perceptron

implementation. The values of parameters A and B were changed

in order to estimate their influence on the accuracy of methods.

The results are the averages over 10 experiments and are reported

in Figures 5, 6 and 7.

-10 -8 -6 -4 -2 0 2 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Kernel width parameter A

A
c
c
u
ra
c
y

Floating-point method

Fixed-point method

Banana dataset
B = 5 bits
budget = 70 bytes

Figure 5 Accuracy of two methods

It can be seen that both floating- and fixed-point implementations

achieve essentially the same accuracy, as was expected since the

approximation has been proven to be very good. In some cases for

very small values of A the accuracy of floating-point method

drops sharply, as in Figure 6. This happens because of the

numerical problems, where the predictions are so close to 0 that

when calculated in double-precision they are rounded to 0. Our

method does not have this problem. It is also worth noticing that

for large A the accuracy drops sharply for both algorithms, which

supports the claim that large kernel widths are usually not useful.

It is exactly for these large values of A that the approximation

accuracy drops as well. Therefore, as can be seen in Figures 5, 6

and 7, these values are not of practical relevance. Only results for

bit-length of 5 bits were shown, since for the other bit-lengths the

results were nearly the same.

-10 -8 -6 -4 -2 0 2 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kernel width parameter A

A
c
c
u
ra
c
y

Floating-point method

Fixed-point method

Pendigits dataset
B = 5 bits
budget = 507 bytes

Figure 6 Accuracy of two methods

-10 -8 -6 -4 -2 0 2 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Kernel width parameter A

A
c
c
u
ra
c
y

Floating-point method

Fixed-point method

Checkerboard dataset
B = 5 bits
budget = 70 bytes

Figure 7 Accuracy of two methods

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 8 Checkerboard dataset

3.1 Hardware implementation
The algorithm was tested on microcontroller ATTiny2313. The

program was written in C programming language using free IDE

AVR Studio 4 available for download from Atmel’s website.

Different methods were used in order to assess the complexity of

implementation on microcontroller. The details are given in

Tables 3, 4 and 5. Program and Data represent the required

program and data memory in bytes. Time, in milliseconds, is given

after 100 observed examples, and kernel width parameter A is set

to −6. Accuracy is calculated after all data points were observed.

Numbers in the brackets represent the total size of memory block

of the microcontroller. The microcontroller speed is set to 4 MHz.

Number of support vectors was chosen so that the entire data

memory of microcontroller is utilized in the case of fixed-point

method. This number of support vectors was then imposed on

both methods. Therefore, as the bit-length is increased, the

number of support vector decreased.

For Tables 3 and 4 the target microcontroller was ATTiny2313.

For Table 5 microcontroller with twice bigger memory was used

because of the high dimensionality of Pendigits dataset.

ATTiny48 was chosen which has 4kB of program memory and

256B of data memory.

It is clear that proposed fixed-point algorithm takes much less

memory and is faster than the floating-point algorithm. Both time

and space costs of fixed-point algorithm are nearly 3 times

smaller. In fact, in order to run simulations using floating-point

numbers, microcontroller ATTiny84 with four times larger

memory was used since the memory requirement was too big for

both ATTiny2313 and a more powerful ATTiny48, colored red in

the tables. The accuracy of these two methods is practically the

same, and the difference in computational cost is therefore even

more striking. In addition, it can be concluded that accuracy

depends greatly on the number of support vectors. The higher

number of support vectors usually means higher accuracy.

However, in our experiments, higher number of support vectors is

achieved at the expense of smaller bit-lengths, so the results in the

tables can be misleading. In some experiments larger support

vector set does not necessarily lead to better performance because

the quantization error is too big and this affects predictions

considerably. It should be noted that the support vector set

size/bit-length trade-off is not the topic of this work and will be

addressed in our future study.

4. CO#CLUSIO#
In this paper we proposed approximation of Kernel Perceptron

that is well-suitable for implementation on resource-limited

devices. The new algorithm uses only integers, without any need

for floating-point numbers, which makes it perfect for simple

devices such as microcontrollers.

The presented results show that the approach considered in this

paper can be successfully implemented. The described algorithm

approximates the kernel function defined in (6) with high

accuracy, and yields good results on several different datasets.

The results are, as expected, not perfect, which is the consequence

of the highly limited computation capabilities of ATTiny2313 that

required several approximations in calculation of the prediction.

While the quantization and approximation error limit the

performance, the degradation is relatively moderate considering

very limited computational resources. The simulations on ATTiny

microcontrollers proved that the algorithm is very frugal and fast,

while being able to match the performance of its unconstrained

counterpart.

Although the kernel function defined in (6) is used, which is a

slightly modified RBF kernel, the fixed-point method can also be

used to approximate the original RBF kernel (2). The proposed

idea could probably be extended to some other kernel functions

Table 3 Microcontroller implementation costs

Banana 2 bits 4 bits 6 bits 8 bits

ATTiny2313 Fixed Float Fixed Float Fixed Float Fixed Float

Program [B] (2048B) 1744 6036 1720 6012 1720 6012 1748 6040

Data [B] (128B) 128 379 128 379 128 379 128 381

Time [ms] 1192 6604 1985 7505 1883 7610 1739 7496

Accuracy [%] 67.32 65.12 81.08 81.00 79.36 79.60 78.00 77.80

of SVs 112 62 43 32

Table 4 Microcontroller implementation costs

Checkerboard 2 bits 4 bits 6 bits 8 bits

ATTiny2313 Fixed Float Fixed Float Fixed Float Fixed Float

Program [B] (2048B) 1744 6036 1720 6012 1720 6012 1748 6040

Data [B] (128B) 128 379 128 379 128 379 128 381

Time [ms] 1568 7626 2226 6725 2410 7366 2232 7703

Accuracy [%] 52.20 51.20 72.60 72.64 78.20 78.60 74.04 73.80

of SVs 112 62 43 32

Table 5 Microcontroller implementation costs

Pendigits 2 bits 4 bits 6 bits 8 bits

ATTiny48 Fixed Float Fixed Float Fixed Float Fixed Float

Program [B] (4096B) 1836 6078 1810 6058 1812 6056 1816 5912

Data [B] (256B) 256 513 256 511 256 507 256 503

Time [ms] 3280 14186 3572 15352 4881 17102 5063 17373

Accuracy [%] 93.80 94.20 92.76 93.92 86.44 86.32 80.72 81.68

of SVs 46 23 15 11

that require operations with floating-point numbers, such as

polynomial kernel. This would be of great practical importance

for problems that do not work well with the RBF kernel. This

issue will be pursued in our future work.

The proposed algorithm could be improved by some more

advanced budget maintenance method, such as the one described

in [8]. By using support vector merging, the performance of

predictor would certainly improve, but it is to be seen if the

limited device can support such an approach. Also, in this paper

we assumed that parameters A and B, kernel width and bit-length,

respectively, are given. Although this is reasonable if we want to

use this method for applications where the classification problem

is well understood, it would be interesting to implement on a

resource-limited device an algorithm that can automatically find

the optimal parameter values.

5. ACK#OWLEDGME#TS
This work is funded in part by NSF grant IIS-0546155.

6. REFERE#CES
[1] Anguita, D., Boni, A., Ridella, S., Digital Kernel Perceptron,

Electronics letters, 38: 10, pp. 445-446, 2002.

[2] Anguita, D., Pischiutta, S., Ridella, S., Sterpi, D., Feed–

Forward Support Vector Machine without multipliers, IEEE

Transactions on �eural �etworks, 17, pp. 1328-1331, 2006.

[3] Cesa-Bianchi, N., Gentile, C., Tracking the best hyperplane

with a simple budget Perceptron, Proc. of the �ineteenth

Annual Conference on Computational Learning Theory, pp.

483-498, 2006.

[4] Crammer, K., Kandola, J., Singer, Y., Online Classification

on a Budget, Advances in �eural Information Processing

Systems, 2003.

[5] Dekel, O., Shalev-Shwartz, S., Singer, Y., The Forgetron: A

kernel-based Perceptron on a fixed budget, Advances in

�eural Information Processing Systems, pp. 259-266, 2005.

[6] Freund, Y., Schapire, D., Large Margin Classification Using

the Perceptron Algorithm, Machine Learning, pp. 277-296,

1998.

[7] Hildebrand, F. B., Introduction to Numerical Analysis, 2nd

edition, Dover, 1987.

[8] Nguyen, D., Ho, T., An efficient method for simplifying

support vector machines, Proceedings of ICML, pp. 617–

624, 2005.

[9] Orabona, F., Keshet, J., Caputo, B., The Projectron: a

bounded kernel-based Perceptron, Proceedings of ICML,

2008.

[10] Vapnik, V., The nature of statistical learning theory,

Springer, 1995.

[11] Vucetic, S., Coric, V., Wang, Z., Compressed Kernel

Perceptrons, Data Compression Conference, pp. 153-162,

2009.

[12] Wang, Z., Crammer, K., Vucetic, S., Multi-Class Pegasos on

a Budget, Proceedings of ICML, 2010.

[13] Wang, Z., Vucetic, S., Tighter Perceptron with Improved

Dual Use of Cached Data for Model Representation and

Validation, Proceedings of IJC��, 2009.

[14] www.atmel.com/dyn/resources/prod_documents/doc2543.pdf

ATTiny2313 Datasheet

[15] www.digikey.com

