Random Kernel Perceptron on ATTiny2313 Microcontroller

Nemanja Djuric, Slobodan Vucetic

Department of Computer and Information Sciences Temple University

SensorKDD, July 25th, 2010, Washington DC

Kernel Perceptron

Predictor

$$f(\mathbf{x}) = sign(\sum_{i=1}^{N} \alpha_i K(\mathbf{x}, \mathbf{x}_i))$$

- Costs
 - O(N) space
 - \Box O(N) update time
 - O(N²) total training time

Inputs : data sequence $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N))$ **Output** : trained Kernel Perceptron $f(\mathbf{x})$

 $f(\mathbf{x}) = 0 \text{ at time } t = 0$ while (training set not empty)

 $if(y_i \cdot f(\mathbf{x}_i) > 0)$ $\alpha_i = 0$

else

í

}

$$\alpha_i = y_i$$

$$f(\mathbf{x}) \leftarrow f(\mathbf{x}) + \alpha_i \cdot K(\mathbf{x}_i, \mathbf{x})$$

Random Budget Kernel Perceptron

Ι

}

Idea

- assign support vector budget T
- when budget is exceeded, remove a random SV
- resulting predictor

$$f(\mathbf{x}) = sign(\sum_{i=1}^{T} \alpha_i K(\mathbf{x}, \mathbf{x}_i))$$

- Costs
 - O(1) space
 - O(1) update time
 - O(N) training time

Inputs : data sequence $((\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N))$, budget T **Output** : support vector set $SV = \{SV_i, i = 1 \dots I\}$

$$I \leftarrow 0; i \leftarrow 1$$

$$SV = \emptyset$$

for $i = 1 : N$
{
if $((y_i \cdot \sum_{j=1}^{I} y_j \cdot K(\mathbf{x}_i, \mathbf{x}_j)) \leq 0)$
if $(I == T)$

$$new = random(I)$$

else
{
 $I \leftarrow I + 1$
 $new \leftarrow I$
}
 $SV_{new} = (x_i, y_i)$
}

Motivation

- Random Kernel Perceptron
 - online algorithm
 - Iow cost
 - easy to implement
 - can solve nonlinear problems
 - accurate
- It still **CANNOT** be implemented on the simplest computers
 - it uses floating-point operations
 - model size easily exceeds available memory
- Goal: Implement Kernel Perceptron on microcontrollers
- Applications
 - sensor networks
 - Iow-cost online data mining
 - resource-constrained environments

Microcontroller

- ATTiny2313
 - one of the most primitive processors
 - very cheap (< \$1)</p>
- Characteristics
 - 128 bytes to store:
 - Kernel Perceptron
 - working variables
 - 2 Kbytes to store program
 - a 4 MHz processor speed
 - fixed-point arithmetic (integers)

Some details

- Use Gaussian kernel: $K(\mathbf{x}, \mathbf{x}_i) = \exp(\frac{\|\mathbf{x} \mathbf{x}_i\|^2}{2^A})$
- Resource-saving strategies
 - Quantization of attributes using b bits
 - trade-off between #SV and #bits
 - quantization loss
 - Approximation of kernel function using only integers and integer calculations
 - we devised an iterative procedure that uses look-up table
 - approximation loss

Results

- Fixed-point vs. floating-point method
- Approximation accuracy (kernel width = 2^A)

Results

Accuracy on benchmark datasets

Results

- Implementation on microcontroller
- Double-precision Kernel Perceptron: 89.2% accuracy
- Much less memory, faster execution time

Banana dataset	4 bits		6 bits	
Method	Fixed	Float	Fixed	Float
Data [B] (max 128B)	128	379	128	379
Program [B] (max 2048B)	1720	6012	1720	6012
Time [ms]	1985	7505	1883	7610
Accuracy [%]	81.00	81.08	79.36	79.60
# of SVs	62		43	

Data memory	After quantization		Before (Double-precision)	
	Model	Working variables	Model	Working variables
Memory size	70B	58B	>1KB	> 500B

Conclusions

- Implemented Kernel Perceptron on ATTiny2313 microcontroller
- Fixed-point calculations of prediction
 - key for implementation
 - Iow data and program memory
 - speeds up calculations
 - only slightly decreases accuracy
- Our results
 - useful in establishing lower bounds on necessary computational resources for online learning
 - open doors for novel application of data mining, such as data mining from sensor data

Thank you!

- More details in the paper
- Questions? E-mail to <u>nemanja.djuric@temple.edu</u>