
popular because of their ease of implementation and ability to
interpret and analyze the resulting model. Autoregressive inte-
grated moving average (ARIMA) models, which encompass RW,
random-trend models; auto-regressive models; and exponential
weighted moving averages are linear time series models that have
been quite popular thanks to their ability to exploit temporal
dependence in prediction errors (4, 5). Linear models that exploit
both spatial and temporal information that have been used in traf-
fic forecasting include Kalman filters (6) and spatial–temporal
ARIMA (7 ).

Two extensions of the linear models have been quite useful in
traffic forecasting. By observing that a single set of parameters
might not be suitable over varying traffic conditions, time-varying
linear regression models have been employed with considerable
success (8–10). As an alternative to a continuous change in model
parameters, regime-switching models have been implemented (10)
to model different traffic states separately, such as congested and
free-flow regimes.

In addition to linear models, nonlinear ones have also been exten-
sively studied in traffic-forecasting research. Neural networks (11, 12)
and, more recently, support vector machines (13) have been used
with some success; this success indicates that the nonlinearities
in spatial–temporal traffic behavior can be exploited. The non-
parametric approach based on the nearest neighbor algorithm, which
is a generalization of the baseline historical method, has also been
popular because of its ease of implementation and reasonable fore-
casting accuracy. For an extensive and quite good overview of traffic
forecasting methods see Vlahogianni et al. (14).

This paper explores a recently proposed conditional random field
(CRF) framework (15) that is extremely successful in modeling
dependencies among random variables (such as spatial–temporal
correlations) in forecasting problems. This novel method can be
easily implemented and is quite flexible, and the goal of this research
was to evaluate the method’s applicability in traffic forecasting.
Originally, CRFs were proposed for classification of sequential data
(15), as an attractive alternative to hidden Markov models (16).
Unlike those models, CRFs make no independence assumptions
between input variables, and this avoidance of assumptions results
in a more flexible modeling framework. Meanwhile, CRFs were
applied in a number of fields, including computer vision (17 ) and
computational biology (18). Recently, CRFs have been extended to
solve regression problems. Continuous CRFs (CCRFs) were first
described in Qin et al. (19) in the context of the problem of global
document ranking. Following the Qin et al. work, an extension of
CCRF that is applicable to spatial–temporal data was proposed by
Radosavljevic et al. (20).

Because it can easily deal with real-valued, spatial–temporal data,
CCRF naturally emerges as an extremely suitable model for travel
forecasting. CCRF can combine various, possibly very different,
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This paper explores the application of the recently proposed continuous
conditional random fields (CCRF) to travel forecasting. CCRF is a flexi-
ble, probabilistic framework that can seamlessly incorporate multiple
traffic predictors and exploit spatial and temporal correlations inherently
present in traffic data. In addition to improving prediction accuracy, the
probabilistic approach provides information about prediction uncer-
tainty. Moreover, information about the relative importance of particu-
lar predictor and spatial–temporal correlations can be easily extracted
from the model. CCRF is fault-tolerant and can provide predictions even
when some observations are missing. Several CCRF models were applied
to the problem of travel speed prediction in a range from 10 to 60 min
ahead and evaluated on loop detector data from a 5.71-mi section of 
I-35W in Minneapolis, Minnesota. Several CCRF models, with increas-
ing levels of complexity, are proposed to assess performance of the method
better. When these CCRF models were compared with the linear regres-
sion model, they reduced the mean absolute error by around 4%. The
results imply that modeling spatial and temporal neighborhoods in traf-
fic data and combining various baseline predictors under the CCRF
framework can be beneficial.

Reliable short-term travel forecasting is a crucial requirement in
advanced traveler information systems. Accurate predictive modeling
of traffic behavior leads to better vehicle guidance systems and trip
planning, which can save both time and money for an ever-increasing
number of travelers on freeways worldwide. A large variety of fore-
casting algorithms for traffic flow, speed, and travel time, which
base their forecast on current traffic conditions and historical data,
have been proposed and evaluated.

Baseline approaches that are typically used for benchmarking of
more-advanced forecasting algorithms are the random-walk (RW)
and historical models. The RW model predicts that future traffic con-
ditions are identical to current ones. For extremely short-term fore-
casting (up to 10 min), the RW model is extremely accurate and hard
to beat by more sophisticated models. The historical model predicts
the future traffic state as the average of historical traffic under the
same conditions (location, day of week, and time of day). The histor-
ical model is quite competitive in longer-term forecasting (a few
hours ahead). Linear regression (1, 2) and its variants (3) have been
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input data available in traffic forecast applications, such as sensor
readings, historical data, information about weather conditions,
incidents, and others, and can also model spatial–temporal correla-
tions that inherently exist in traffic data. The employment of CCRF
enables researchers to work in the probabilistic setting and to use the
resulting model to calculate many statistical quantities, including the
expected value of the output variables, their mode, and prediction
uncertainty. One extremely important feature of CCRF is robustness
to sensor failures, which are very common in traffic monitoring.
While such failures pose a serious problem for many forecasting algo-
rithms, CCRF can continue to provide predictions without any reme-
dial action. The only effect of sensor failures on CCRF is increased
forecasting uncertainty.

GENERAL CCRF MODEL

This section outlines a general CCRF model, which was introduced
in Radosavljevic et al. (20). The next section illustrates how CCRFs
can be implemented for a specific traffic forecasting problem.
CCRFs provide a probabilistic framework for seamless incorpora-
tion of various aspects of a complex data dependence structure into
a single model. Let us denote x as a vector of observations and 
y = (y1, y2, . . . , yN) as an N-dimensional vector of real-valued out-
put (or dependent) variables. A CCRF corresponds to the undirected
graphical model illustrated in Figure 1, in which vertices represent-
ing the output variables y do not create cliques (defined as the sub-
sets of fully connected vertices) larger than two. In this case, the
conditional distribution P(y⎟ x) for a CCRF can be represented in a
convenient form as

where

A(�, yi, x) = association potential with weights �,
I(�, yi, yj, x) = interaction potential with weights �,

i ∼ j = that yi and yj are connected by an edge (neigh-
bors), and

Z(x, �, �) = normalization function defined as
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A large value of association potential A in a CCRF indicates that an
output variable is closely related to the observations, while a large
value of interaction potential I indicates stronger interaction between
output variables. The design decisions in developing a CCRF model
(Equation 1) include defining of the graph structure and deciding on
the functional form of the association and interaction potentials. The
next section illustrates how to develop a CCRF model for travel
speed forecasting. As this paper will show, a graph similar to that in
Figure 1 can be used as a basis for the spatial–temporal CCRF model
for travel speed forecasting.

Given the CCRF model (Equation 1) and training set D = {(xt, yt), 
t = 1, 2, . . . , T}, the task is to find weights � and � such 
that conditional log likelihood of the training data L(�, �) is 
maximized:

To avoid overfitting, regularization terms 1�2�2 and 1�2�2 are usually
added to the log likelihood L(�, �) in Equation 3. The optimization
problem (Equation 3) is typically solved by using the gradient
ascent. Once the CCRF model is trained, one can evaluate the con-
ditional probability for a new observation xnew. Quite often, users are
interested only in the most likely value of ynew given xnew:

In general, both learning (Equation 3) and inference (Equation 4) can
be extremely difficult to solve. However, if one pays attention during
design of the CCRF model, both learning and inference can be accom-
plished in a computationally efficient manner. The remainder of this
section gives some general guidelines for designing computationally
tractable CCRF models.

The first step toward tractable CCRF is that both association and
interaction potentials are linear functions in the model weights 
� and �:

where

fmi and gl = feature functions, with weights αmi and βl, respec-
tively;

M = number of prediction models (baseline predictors); and
L = number of interaction definitions included in the

model (temporal, spatial, or any other).

A large number of feature functions can be introduced because their
actual relevance will be automatically determined during training.
More relevant features will be given bigger weights, whereas the
irrelevant ones will get smaller weights and their influence on the
CCRF model will be smaller.

The second requirement that leads to a tractable and easy-to-
interpret CCRF model is that the feature functions are quadratic
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(dashed line is association potential;
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functions of output variables y. It can be shown that in this case the
conditional distribution P(y⎟ x) corresponds to the multivariate
Gaussian distribution (20). With this in mind, this paper considers a
class of feature functions for association potential defined as

where θmi are the predictor functions and δmi are the indicator
functions having values 0 or 1. Predictor function θmi can be any
baseline predictor of output variable yi. Therefore, definition
(Equation 6) allows the use of M different predictors for each out-
put variable. On the basis of Equation 6, predictions θmi that are
the most accurate will result in the highest values of the feature
function. The indicator functions are optional choices and can be
used to improve the expressiveness of the resulting CCRF model.
The next section will predict how the predictor and indicator func-
tions can be selected in the case of travel speed forecasting. Fea-
ture functions for the interaction potential that will be considered
are of the form

where wl(yi, yj) is a nonnegative weight function representing a mea-
sure of correlation between the ith and jth outputs under the lth
neighborhood definition. For instance, in traffic forecasting, wl(yi, yj)
could measure temporal or spatial proximity of the ith and jth out-
puts. If two outputs are neighbors, their difference will have an influ-
ence on the value of the interaction potential. In general, interaction
potential (Equation 5) can depend on observations x. Therefore,
Equation 7 can be extended by adding dependence on x. However,
the current case study did not use the observation variables x in the
interaction potential and for simplicity of presentation omitted them
from Equation 7.

After Equations 5 through 7 are combined with Equation 1, the
resulting CCRF model can be expressed as

As shown in Radosavljevic et al. (20), thus defined conditional
distribution P(y⎟ x) now corresponds to multivariate Gaussian 
distribution:

with mean µ(x) and covariance matrix �(x) that will be defined
in the following. Both the mean and covariance matrix are not
constant, and they depend on x. The remainder of this section, for
the simplicity of notation, will not explicitly write this depen-
dency on x. N-dimensional vector b is defined with the following
elements:
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and N × N matrices Q1 and Q2 with the elements

One can observe that Q1 is a diagonal matrix and Q2 is a sparse
matrix that reflects the dependency structure between output vari-
ables. Now, as shown in Radosavljevic et al. (20), the inverse of the
covariance matrix can be calculated as

and the mean of conditional distribution as

Now one can revisit questions of training of the CCRF model and
of using the trained model in forecasting. Weights � and � must
remain positive during training, and this requirement constrains the
optimization problem. If that were not the case, feature functions
would lose the property that their values are bigger when the predic-
tion models are more accurate (in the case of weights �) or when the
outputs are more temporally or spatially related (in the case of
weights �). Therefore, in a manner similar to that in Qin et al. (19)
and Radosavljevic et al. (20), the log likelihood will be maximized
with respect to the logarithms of � and �. The resulting optimiza-
tion problem is now unconstrained, and the gradient ascent can
simply be used for the model to learn the weights as

where η is the learning rate.
For the forecasting, given the observation x, the most likely 

prediction for vector y equals the mean of the conditional 
distribution:

The 95% confidence intervals are estimated from mean ŷand covari-
ance matrix � and with consideration of the following formula that
stems from the Gaussian framework:

where diag(�) denotes the main diagonal of �. This equation means
that, with a probability of 95%, the random variable y will fall in a
range defined by ( ŷ ± 1.96 � diag(�)).
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A special case of Equation 15 exists. As Equations 10 and 11 show,
vector b and matrix Q1 do not depend on the interaction potential.
Therefore, if the interaction potential is not used (output variables are
assumed to be conditionally independent), the prediction for yi sim-
ply entails a weighted average of the prediction functions and can be
expressed as

Finally, a discussion of the computational costs of model training
and inference will be helpful. If the size of the training set is T and
training stops after K iterations, it takes O(T � K � N3) time to train
the model because, during gradient ascent, the inverse of a block-
diagonal covariance matrix � must be found. However, this is the
worst-case performance because matrix � is usually extremely sparse
and training time can be decreased by several orders of magnitude.
Training can be done offline. However, during inference, which is
done online, the product of covariance matrix � and vector b, which
takes O(N2) time, simply needs to be found. If again sparsity of
matrix � is again exploited, time cost can drop as low as O(N).

CCRF MODELS FOR TRAVEL
SPEED FORECASTING

CCRF and Travel Speed Forecasting

CCRF is a general framework that allows significant modeling flex-
ibility. The following case study is aimed at illustrating the poten-
tial of CCRF in traffic forecasting. The specific problem being
studied is travel speed forecasting. In the considered scenario, the
objective is to predict, at any given time t, the travel speed across 
S adjacent sensor stations of the freeway over H forecasting hori-
zons. For time t, the input variables xt are defined as a set of traffic
observations available at time t, including current and historical
observations and their derivatives. Output variables yt (travel
speeds) form a vector of size N = S � H. For the convenience of nota-
tion, the remainder of this section will represent yt as a matrix of size
S × H with elements {ys, t+h, s = 1, 2, . . . , S; h = 1, 2, . . . , H}, where
ys, t+h is travel speed on station s at time t + h, S is the number of
stations, and H is the number of time horizons.

CCRF Model Variants

This section proposes several CCRF models with increasing levels of
complexity. This increasing complexity will help readers understand
the flexibility and strength of the CCRF framework.

Case 1. Basic Model

The basic model uses only two baseline predictors while indicator
functions and interaction potential are omitted. For simplicity of
presentation, only the simplest predictors, RW and historical predic-
tors, are used. A more complex predictor, such as linear regression,
ARIMA, or neural networks, could be used instead without any impact
on computational cost of training CCRF and without its being used for
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forecasting. The RW predictor simply uses the current speed on the sta-
tion to predict future speed for every horizon, and the historical-median
predictor (HM) uses the median historical speed hs,t+h for the given sta-
tion s and time t + h. Here, median is used instead of mean because
median is more robust to outliers and achieves better accuracies. More
formally, two feature functions f1 and f2 are introduced as

where RWs,t+h(xt) = ys,t and HMs,t+h(xt) = hs,t+h are predicted travel
speeds for station s and time t + h given by the current time and
historical median speed, respectively. For this model, the resulting
conditional distribution is

where α1sh and α2sh are weights that measure goodness of the RW
and HM predictors on station s at time horizon h, respectively. It is
expected that in the trained CCRF, the accurate baseline predictors
would have large values of the associated weights � and large influ-
ence on the forecasting of speed. Less-accurate predictors would have
low weight and marginal influence on forecasting. The total number
of weights in this model is 2S � H. If the number of training iterations
is constant, the time needed to train this model is only O(T � H � S)
because the covariance matrix � is diagonal and its inversion takes
linear time. Forecasting of all H � S speeds is extremely fast and takes
O(H � S) time.

Case 2. Simple Model

For the simple model, two new baseline predictors are introduced
while indicator functions and interaction potential are still omitted.
The two new feature functions, f3 and f4, are

These functions account for the current speed on spatial neighbors
of station s at time t. Because the future state of traffic on the current
station inevitably depends on the state of traffic on neighboring sta-
tions, this model is expected to capture the dynamics of traffic more
faithfully and, in effect, achieve higher accuracy. The conditional
distribution for this model is quite similar to that for the previous
case, the only difference being that new weights, α3sh and α4sh, are
introduced to measure goodness of the two new predictors. The total
number of weights in this model is 4 � H � S.

Case 3. Regime-Switching Model

Traffic behaves significantly differently during free flow than dur-
ing the congested state. Therefore, extension to the simple model is
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to build separate models for the two regimes (free-flow regime and
congested state). To achieve this extension, the use of the indicator
functions for the traffic regime is proposed. The model indicates the
free-flow regime if the current speed is greater than 30 mph and the
peak hour regime otherwise. The threshold of 30 mph was taken
after preliminary studies showed that it can be an appropriate choice.
Now, the conditional distribution can be written as

where αmjsh weights measure goodness of the mth predictors on sta-
tion s at forecasting horizon h when the traffic is in the jth regime.
The indicator functions are defined as δ1(z) = 1, if z ≤ 30 mph and
δ1(z) = 0 otherwise, and δ2(z) = 1, if z > 30 mph and δ2(z) = 0, other-
wise. In this way, the use of these functions allows assignment of
different weights for free-flow and congested regimes. CCRF allows
the use of more-sophisticated detectors of congested regimes to
define the indicator functions, but this idea was not pursued further
here. The total number of weights in the regime-switching model
is 8 � S � H.

Case 4. Correlations Model

To model the interaction potential as defined in Equation 7, agree-
ment is needed on the dependence relations between output vari-
ables. In the forecasting of travel speed, it is useful to give two
definitions of “neighborhood between outputs,” temporal and
spatial. In Figure 2, temporal neighbors are connected with a thin
solid line while spatial neighbors are connected with a thick solid
line. Formally put, output variables ys1, h1 and ys2, h2 are said to be spa-
tial neighbors if h1 = h2 and⎟ s1 − s2⎟ = 1. Conversely, outputs ys1, h1

and ys2, h2 are said to be temporal neighbors if s1 = s2 and⎟ h1 − h2⎟ = 1.
Two weight functions wl from Equation 7 are defined as
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In this work, weight function wl is defined as a binary indicator func-
tion, although, in general, it can be any nonnegative, real-valued
function. Finally, the conditional distribution could be written as

where β1sh weight measures the strength of temporal interaction on
the sth station between the hth and the hth + 1 forecasting horizons,
and β2sh weight measures the strength of spatial interaction between
sth and sth + 1 stations, at the hth forecasting horizon. If the spatial
or temporal interaction is strong, the corresponding weight will be
assigned a higher value. The total number of weights in the final
model is 10 � S � H − H − S, where 8 � S � H are used to model asso-
ciation potential, while (S − 1) � H of spatial weights and S � (H − 1)
of temporal weights are used to model interaction potential.

The correlations model is the most complex one considered in this
paper, which has demonstrated how the model can be easily extended,
however deemed appropriate, by using different feature and indicator
functions. Possible avenues for extensions are (a) to define weight
functions wl as real-valued functions that would, for instance, depend
on the length of the road sections or on the size of the time step or
(b) to include additional baseline predictors (neural networks, linear
regression, ARIMA). Alternative neighborhood definitions, in addi-
tion to the two defined in this paper, can also be included. Extensions
are introduced seamlessly without sacrificing training time, and the
actual significance of every new feature function will automatically
be determined during training.

EXPERIMENTAL RESULTS

The proposed CCRF models were tested on the loop data from a
5.71-mi section of I-35W through Minneapolis, Minnesota. The data
were collected from April 1 to July 1, 2003, between 2 and 7 p.m.
This data set was selected because it contained a congested regime
that occurred almost regularly during afternoon hours. When week-
ends, holidays, and days with a large fraction of missing or cor-
rupted data were removed, 43 days remained in the data set, which
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consisted of travel speeds from 11 (S = 11) consecutive loop sen-
sors, aggregated over 5-min intervals. The traffic flowed from Sta-
tion 1 to Station 11. Figure 3 shows travel speeds on this road segment
between 2 and 7 p.m. on April 7, 2003. Travel speeds were derived
from the 30-s loop sensor data that measured volume (the number of
cars that passed the sensor during a 30-s interval) and occupancy (the
time that the sensor was occupied during a 30-s interval). For
every station, a method similar to that in Coifman (21) was used to
estimate the average vehicle length as

where median was calculated during the free-flow traffic conditions
and the constant free-flow speed of 60 mph was assumed. Also
assumed was that the average vehicle length does not change dur-
ing different periods of the day. Then, the travel speed for the given
sensor was calculated as

The task was to predict, in 5-min increments, the speed on S = 11 sta-
tions over six forecasting horizons (H = 6), namely, 10, 20, 30, 40, 50,
and 60 min ahead. The size of the data set T was 43 × 49 (forty-nine
5-min periods covering between 2 and 7 p.m. during 43 days) = 2,107.
Three cross-validation experiments were conducted and mean
absolute error (MAE) was reported. The data set was divided into
three subsets that contained data from 15, 15, and 13 days. Then, the
CCRF models were trained on two of the subsets and tested on the
remaining one. This procedure was repeated three times such that
each subset was used once for testing. The reported accuracy is the
average over the three repetitions.

speed length
volume

occupancy
= × ( )25

length mph median
occupancy

volume
= × ⎛

⎝⎜
⎞
⎠⎟

60 24( ))
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Table 1 summarizes the MAE of various models over six time
horizons as well as the overall MAE. For comparison with the four
proposed CCRF models, report accuracies of the following were
also reported:

• Linear regression (LR) models. For LR, two data-generating
processes were assumed: ys,t+h = α1ys,t + α2hs,t+h + �s,t+h (with two base-
lines equivalent to CCRF Model 1) and ys,t+h = α1ys,t + α2hs,t+h + α3ys−1,t

+ α4ys+1,t + �s,t+h (with four baselines, equivalent to CCRF Model 2).
For each LR model, 6 × 11 LR predictors were modeled, one for
each station and for each forecasting horizon. The ordinary least
squares algorithm was used to learn weights αi.

• Baseline predictors. Four baseline predictors were used: (a) RW
that uses current speed at the station, (b) historical speed at the
station, (c) current speed at the station upstream of the sensor, and
(d) current speed at the station downstream of the station. The first
two baseline predictors are used in CCRF Model 1, while all four
are used in the remaining CCRF models reported in Table 1.

As Table 1 shows, the RW predictor is better than the historical pre-
dictor over all six forecasting horizons, and the difference between
them gradually decreases with the horizon length. RW based on the
neighboring stations was slightly worse than the RW baseline pre-
dictor. Both LR models are significantly more accurate than either
of the baseline predictors, indicating the benefits of combining cur-
rent and historical speeds in forecasting. As expected, the CCRF
Model 1 had similar accuracy to LR Model 1. However, the accu-
racy of CCRF Model 2, which uses current speeds of the neighbor-
ing stations, is higher than the accuracy of related LR Model 2.
The use of regime indicator functions in CCRF Model 3 was help-
ful and led to an additional accuracy improvement. Finally, CCRF
Model 4, which exploits spatial and temporal correlations, is the
most accurate forecasting model. The improvement over CCRF
Model 3 is relatively small.
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FIGURE 3 Typical day with sizeable congestion period (April 7, 2003).



Table 2 reports the values of � weights for Sensor Station 5, for
CCRF Model 4. These weights are extremely informative because
their absolute values indicate confidence of CCRF model in a given
baseline predictor, and their relative values indicate the baseline pre-
dictors that the CCRF model trusts most. As Table 2 shows, RW
(current) weights gradually decrease with the prediction horizon,
indicating increased forecasting uncertainty. The weights of the his-
torical predictor are smaller than those for the RW, but they remain
relatively steady. This weight difference means that CCRF puts
larger trust in the current speed than in the historical speed, especially
on shorter forecasting horizons. Interesting differences also exist
between the free-flow and the congested CCRF weights. In the con-
gested (peak hour) regime in Table 2, current speed from the down-
stream station is given greater weight than is that from the upstream
sensor. The reason for this greater weight is probably because the
downstream station carries useful information about the ending of the
congested regime. The relative importance of historical speed is much
larger during the free-flow regime. Also recorded were the values of
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� weights modeling temporal and spatial correlation in predicted
speeds. Values of temporal interaction weights β1sh are around 0.01,
which is somewhat lower than reported αjm5h weights. This differ-
ence implies that temporal interactions between outputs are nearly
as important as predictions of baseline predictors. In contrast,
spatial interaction weights β2sh were < 0.001, indicating that spatial
dependency between traffic speeds is relatively weak. This state-
ment can be explained by examination of Figure 3, in which large
differences between travel speeds at neighboring sensors can be
observed quite often.

Figures 4 and 5 correspond to CCRF Model 4. One of the advan-
tages of CCRF is that, because the conditional probability is Gauss-
ian, one can easily extract confidence intervals for the predictions.
Figure 4 shows predictions with 95% confidence intervals for 10-min
forecasting horizon for June 25, 2003, at Sensor Station 5. The CCRF
model has a much-lower forecasting uncertainty during the free-flow
regime than predictions made during the peak hour. This positive
result indicates that CCRF is quite successful in estimating the

TABLE 1 Prediction MAE Errors of Various Predictors Aggregated Across Time Horizons

Horizon (min)

+10 +20 +30 +40 +50 +60 Total

Linear Regression Models

LR Model 1 (two baselines) 6.096 7.634 8.755 9.821 10.605 11.136 9.008

LR Model 2 (four baselines) 5.961 7.547 8.724 9.807 10.625 11.154 8.969

Baseline Predictors Incorporated into CCRF Models

Random walk 6.130 7.667 8.789 10.033 11.072 11.947 9.273

Historical median 13.090 13.183 13.153 12.994 12.737 12.419 12.931

Current speed of upstream sensor 7.568 8.746 9.789 10.980 11.995 12.849 10.321

Current speed of downstream sensor 7.311 8.627 9.543 10.582 11.505 12.277 9.974

CCRF Models, in Increasing Level of Complexity

CCRF Model 1 (two baselines) 6.198 7.703 8.752 9.778 10.597 11.239 9.004

CCRF Model 2 (four baselines) 5.929 7.325 8.333 9.384 10.290 11.061 8.720

CCRF Model 3 (regime switching) 5.922 7.327 8.329 9.363 10.214 10.891 8.675

CCRF Model 4 (with correlations) 5.920 7.308 8.314 9.352 10.213 10.905 8.669

TABLE 2 Weights (�) for Four Baseline Methods Across Six Values of Time Horizon 
for Station 5

Horizon (min)

α Weight +10 +20 +30 +40 +50 +60

j = 1 (rush hour)

Current (α115h) 0.02309 0.01553 0.01270 0.00995 0.00863 0.00746

History (α215h) 0.00243 0.00264 0.00289 0.00295 0.00299 0.00302

Current − (α315h) 0.00815 0.00741 0.00672 0.00566 0.00507 0.00477

Current + (α415h) 0.01865 0.01360 0.01162 0.00993 0.00912 0.00783

j = 2 (free flow)

Current (α125h) 0.02244 0.01052 0.00698 0.00537 0.00459 0.00408

History (α225h) 0.00682 0.00597 0.00542 0.00514 0.00494 0.00492

Current − (α325h) 0.01657 0.00853 0.00596 0.00470 0.00404 0.00362

Current + (α425h) 0.01420 0.01153 0.00877 0.00689 0.00585 0.00546



forecasting uncertainty. The error bars show that the 95% confi-
dence interval was missed only a few times, most notably during
the regime-change periods. This result is expected because the
indicator functions in Radosavljevic et al. (20) are reactive in the
sense that they are activated only when the regime change is
already observed. This could be resolved by development and use
of predictive indicator functions that would attempt to predict a
free-flow–congested regime. As the forecasting horizon increases,
the reported uncertainty by CCRF also increases (although this is
not illustrated).
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As noted early in the paper, another powerful feature of CCRF
models is that they can make predictions even when some baseline
predictors stop functioning (in other words, when some sensors mal-
function and stop feeding information into the model). Figure 5
shows predictions for a 10-min forecasting horizon for June 25,
2003, at Sensor Station 5, where the second and the third baseline
predictors (feature functions f2 and f3) stopped working from 2:10 to
2:40 p.m. Even when this malfunction occurs, the model outputs the
speed predictions and reports the increased forecasting uncertainty,
reflecting the partial loss of information.
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CONCLUSION

This paper evaluated the recently proposed CCRF on the problem
of travel speed forecasting. This extremely powerful probabilistic
model can easily incorporate multiple baseline traffic predictors,
model traffic regimes, and exploit temporal and spatial correlations
within a single model. The resulting model is relatively simple and
computationally efficient if the tractability requirements are fol-
lowed. Several interesting and powerful properties of the CCRF
model have been demonstrated. First, as input to the model, as many
baseline predictors as desired can be included; the model will auto-
matically detect the usefulness and reliability of each predictor and
reflect this knowledge by assigning appropriate weights. Similarly,
there is wide flexibility in modeling the spatial and temporal correla-
tion between the output variables. In addition, the CCRF model can
easily provide forecasting uncertainty estimates. Finally, the CCRF
model is extremely robust to sensor failures, which is a common
problem for traffic monitoring systems.

The four models used to illustrate application of the CCRF to traf-
fic speed forecasting are probably not sufficient for predictions dur-
ing special events (snowstorms, sports events, incidents). The reason
for this possible insufficiency is that the baseline predictors used for
feature functions are simple (current speeds and historical speeds)
and the same holds for the indicator function (a simple detector of a
free-flow or congested regime). Preliminary results indicate that,
by using more sophisticated baseline predictors and indicator func-
tions, the accuracy of the CCRF during nonrecurrent events could be
improved. A topic of future research is to study enhancing CCRF
models to improve accuracy during congested regimes, transitions
between free-flow and congested regimes, and special events. It is
evident that the proposed method can be applied to other traffic
forecasting problems that go beyond speed prediction.
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