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Data preprocessing

We are predicting travel speeds up to 1h in future in 10-minute increments 

on 11 consecutive single-loop sensors of I-35W in Minneapolis, MN. The 

predictions were made for the time period from April 1st to July 1st, 2003, 

in daily interval from 14h to 19h.
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Conclusions

CCRF is an extremely powerful and flexible model. It allows us to easily:

• Incorporate multiple traffic predictors and different sources

• Exploit spatial and temporal interactions inherent in traffic data

• Model different traffic regimes (free-flow / congested regime,  

special events such as sports events or accidents, …)

• Obtain simultaneous predictions of large number variables

• Obtain confidence interval for every prediction, providing 

additional helpful information for travelers

• Extract information about how good certain predictor is, and 

how strong spatial-temporal correlations in the traffic data are

• Output predictions even when some data are missing (this robustness   

comes with the price of increased prediction uncertainty)

This novel method can also be applied to other traffic forecasting problems 

going beyond travel speed predictions.

Continuous CRF – Travel speed predictions model

CCRF is a flexible, probabilistic framework that can seamlessly

incorporate multiple traffic predictors and can exploit spatial and temporal

correlations inherently present in traffic data. In addition to improving the

prediction accuracy, the probabilistic approach also provides information

about prediction uncertainty. Moreover, information about how important

particular predictor and spatial-temporal correlations are can be easily

extracted from the model. CCRF are also fault tolerant and can provide

predictions even when some of the observations are missing. We applied

several CCRF models on the problem of travel speed prediction in a

range between 10 and 60 minutes ahead, and evaluated them on loop

detector data from a 5.71-mile section of the I-35W highway in

Minneapolis, MN. When compared to the linear regression models, the

Mean Absolute Error was reduced by around 4%.
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Abstract Borrowing strength (missing data issue)

The first step of design is defining  ASSOCIATION POTENTIAL:

• Encompasses all available predictors (Random Walk, Historical Mean, 

Neural Networks, …)

• Each predictor is assigned a weight (α)

• Weights tell us how much to believe to predictor, and are learned during 

training

• The higher the weight, more influence the predictor has on the final 

prediction

The second step of design is defining  INTERACTION POTENTIAL:

• Includes all defined correlations

• Each correlation (neighborhood definition) assigned a weight (β)

• Weights tell us how strong are the defined correlations in the actual data

• The higher is the weight, the more influence do neighbors exert on each 

other

CCRF is easily expanded by adding new predictors, new neighborhood 

relations, and including different regimes (free-flow/congested).

We included following simple predictors:

• Random Walk       – predicts that current speed will not change

• Historical median  – predicts that the speed will be a historical median 

for the section in question)

• Upstream state      – predicts that the speed will equal the speed at the  

neighboring upstream section

• Downstream state – predicts that the speed will equal the speed at 

the neighboring downstream section

We tested several increasingly complex CCRF models:

• Model 1: 2 simple predictors, no interactions

• Model 2: 4 simple predictors, no interactions

• Model 3: 4 simple predictors, no interactions, 2 regimes

• Model 4: 4 simple predictors, no interactions, 2 regimes,   

spatial and temporal correlations

Considered road section (source: OpenStreetMap)            Typical day with a sizeable rush-hour period

Mean Absolute Error of several methods
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Model variables:

x – all the possible information we have

y – outputs, travel speeds being predicted

The model is very robust and 

can output predictions even 

when some data are missing.

However, this results in 

increased prediction 

uncertainty:

Complete data  

available

Some data missing   

or corrupted 

The raw data provides us with information about sections’ traffic 

• volume – how many cars passed the sensor during a 30-second 

interval

• occupancy – how long the sensor was occupied during a 30-

seconds interval

The data have been aggregated to 5-min intervals, and the speeds were 

estimated using the following method:

1. We first estimated the average vehicle length by considering only 

free-flow data and assuming constant speed of 60mph, and further 

assumed that this length remains constant throughout the period

2. We then estimated travel speed using the following function
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CCRF is a log-linear model, and the conditional probability of output y

(travel speed) given existing traffic state x is:
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where the Association and Interaction potentials are defined as:

and Z(x, α, β) is a normalization function, and can be difficult to calculate:

Since potentials are linear combinations of quadratic functions of outputs 

y, the distribution corresponds to multivariate Gaussian distribution:

Training phase:    The task is to obtain the weights α and β. Training is 

performed by maximizing the log-likelihood using   

simple gradient ascent technique.

Prediction phase: Once we obtained weights and given the observations,

the predicted speeds and uncertainties are just the   

parameters of the multivariate Gaussian distribution:
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LR model 1 (two 

baselines)
6.096 7.634 8.755 9.821 10.605 11.136 9.008

LR model 2 (four 

baselines)
5.961 7.547 8.724 9.807 10.625 11.154 8.969
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Random walk 6.130 7.667 8.789 10.033 11.072 11.947 9.273

Historical median 13.090 13.183 13.153 12.994 12.737 12.419 12.931

Current speed of 

upstream sensor
7.568 8.746 9.789 10.980 11.995 12.849 10.321

Current speed of 

downstream sensor
7.311 8.627 9.543 10.582 11.505 12.277 9.974
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CCRF model 1

(two baselines)
6.198 7.703 8.752 9.778 10.597 11.239 9.004

CCRF model 2

(four baselines)
5.929 7.325 8.333 9.384 10.290 11.061 8.720

CCRF model 3

(regime-switching)
5.922 7.327 8.329 9.363 10.214 10.891 8.675

CCRF model 4

(with correlations)
5.920 7.308 8.314 9.352 10.213 10.905 8.669

Inherent problem in traffic forecast is missing data (for instance, due to 

sensor malfunction), and some techniques can not deal with this problem 

adequately. However, due to the flexibility of CCRF model, missing data 

problem is mitigated by automatically excluding the corrupted data from 

the model and using only the existing data to predict. However, since less 

data are used, we are less certain about the final predictions.
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