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Abstract

Kernelized sorting is a method for aligning objects
across two domains by considering within-domain sim-
ilarity, without a need to specify a cross-domain sim-
ilarity measure. In this paper we present the Convex
Kernelized Sorting method where, unlike in the previ-
ous approaches, the cross-domain object matching is
formulated as a convex optimization problem, leading
to simpler optimization and global optimum solution.
Our method outputs soft alignments between objects,
which can be used to rank the best matches for each ob-
ject, or to visualize the object matching and verify the
correct choice of the kernel. It also allows for comput-
ing hard one-to-one alignments by solving the resulting
Linear Assignment Problem. Experiments on a number
of cross-domain matching tasks show the strength of the
proposed method, which consistently achieves higher
accuracy than the existing methods.

Introduction
Object matching has been recognized as an important prob-
lem in many areas of machine learning. The problem can
be described as follows: given two sets of objects, match
the objects from the first set to the objects in the sec-
ond set so that they are ”similar”. Applications and re-
search areas as diverse as graph matching in computer vi-
sion (Luo and Hancock 2001), document alignment in nat-
ural language processing (Jagarlamudi, Juarez, and Daumé
III 2010), and multiple sequence alignment in bioinformat-
ics (Bacon and Anderson 1986), all rely on the assumption
that there is an underlying correspondence between two sets
of objects (possibly originating from two quite different do-
mains) which can be learned. Object matching is also closely
related to transfer learning (Wang and Yang 2011), as the
cross-domain alignments can be used to transfer knowledge
to new domains. This common thread can be extended to
many other areas, and a number of recently published works
on the topic indicates the importance of the matching prob-
lem.

Assuming that the objects from two sets are directly com-
parable, the task amounts to finding matches so that certain
cross-domain measure of similarity is maximized. However,
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if the objects originate from different domains and are rep-
resented in different feature spaces, specifying a similarity
measure can be very challenging. For instance, if we have a
set of documents in French and a set of documents in Chi-
nese language, it is not readily obvious how to find similar
documents without a bilingual dictionary. Several ideas have
been proposed to solve this unsupervised problem. Some ap-
proaches follow a simple rationale: match two objects that
have comparable local neighborhoods, each in their own do-
main. A direct realization of this idea is Manifold Align-
ment (MA) (Wang and Mahadevan 2009), where the in-
formation about local relationships is translated into cross-
domain measure of similarity. Following different line of
reasoning, (Haghighi et al. 2008) and (Tripathi et al. 2011)
describe a method that aligns objects by maximizing the cor-
relation between two sets using Canonical Correlation Anal-
ysis (Hotelling 1936). In order to find one-to-one alignments
they propose an EM-style algorithm, which iteratively finds
new canonical variables and best alignments in a new com-
mon feature space until convergence.

Following the idea from MA, Kernelized Sorting (KS)
(Quadrianto et al. 2010) tries to match objects with similar
neighborhoods. However, unlike MA that uses only infor-
mation about local context, KS method computes two kernel
matrices, one for each object set. Then, using the kernel ma-
trices, an alignment of objects across domains is found so
that the dependency between matched pairs is maximized,
measured in terms of Hilbert-Schmidt Independence Crite-
rion (HSIC). Although conceptually very powerful, the tech-
nique is highly unstable as the object matching problem is
defined as maximization (not minimization) over a convex
function, subject to linear constraints. This renders KS al-
gorithm very vulnerable to local optima and poor initial-
ization. In (Jagarlamudi, Juarez, and Daumé III 2010), au-
thors propose several modifications to the original algorithm
to obtain a more stable method, but the local optima issue
persists nevertheless. Note that some authors propose maxi-
mization of independence criteria other than HSIC (Yamada
and Sugiyama 2011), but as the optimization problem is es-
sentially unmodified, the methods are still plagued with the
same instability problems. To solve this issue, we propose
a convex formulation of the object matching problem, re-
sulting in a robust algorithm guaranteed to find the optimal
solution.
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Kernelized Sorting
Let X = {x1, x2, ..., xm} and Y = {y1, y2, ..., ym} be two
sets of equal size m of objects from two possibly different
domains X and Y , respectively. Further, let k : X ×X → R
and l : Y × Y → R be two kernels associated with domains
X and Y . Given kernel matrices K and L capturing the re-
lationships between objects within X and Y sets, namely
Kij = k(xi, xj) and Lij = l(yi, yj), the task is to find a
one-to-one correspondence between objects in X and ob-
jects in Y . The cross-domain correspondence is encoded in
m ×m permutation matrix π ∈ Πm, where πij = 1 if ob-
jects xj and yi are matched, πij = 0 otherwise, and Πm is
the set of all m × m permutation matrices. In the remain-
der of the paper, we will use notation π to denote both the
permutation matrix and the corresponding object alignment,
where the usage should be clear from the context.

In (Quadrianto et al. 2010), authors propose a method to
find alignment π by maximizing the dependency betweenK
and L as measured by Hilbert-Schmidt Independence Cri-
terion. Given two random variables x and y drawn from
some joint probability distribution Pxy , HSIC (Smola et al.
2007) measures the dependence between variables x and y
by computing the Hilbert-Schmidt norm ∆2 of the cross-
covariance operator between Reproducing Kernel Hilbert
Spaces (RKHS) on X and Y , and the norm equals 0 if and
only if variables x and y are independent. If we define the
projection matrix H = I − 1/m, which centers the data in
the feature space, to obtain centered versions of K and L
as K = HKH and L = HLH , respectively, the Hilbert-
Schmidt norm can be empirically estimated (Smola et al.
2007) as

∆2 = m−2 · trace(K · L). (1)
In order to find the best correspondence between objects

across two domains, we seek such permutation π∗ of rows
and columns of kernel matrix L (i.e., the alignment between
two sets of objects) that maximizes the dependency (1) of
two kernel matrices. Thus, we obtain the following opti-
mization problem,

π∗ = arg max
π∈Πm

trace(KπTLπ). (2)

The optimization problem is an instance of quadratic as-
signment problem, therefore NP-hard in general, and the
authors propose an iterative, approximate method for find-
ing the matrix π∗. Given permutation matrix πi at ith iter-
ation, the optimization problem (2) is converted into Lin-
ear Assignment Problem (LAP) and solved for optimal
πi+1 using one of the available LAP solvers (Kuhn 1955;
Jonker and Volgenant 1987). Note that the optimization
problem (2) involves maximization over convex function of
π. As a result, the optimization procedure is unstable and
highly sensitive to initial value of the permutation matrix π0

due to local optima issues.
Instead of HSIC, other independence criteria can also be

used. In (Yamada and Sugiyama 2011), authors propose two
variants of KS algorithm, using normalized cross-covariance
operator and least-squares mutual information as measures
of dependence between matricesK and L. However, as both

the optimization problem and the optimization procedure are
essentially the same as the ones used in KS method from
(Quadrianto et al. 2010), the algorithms are still susceptible
to local optima issues.

In order to mitigate the instability issue of KS methods,
authors of (Jagarlamudi, Juarez, and Daumé III 2010) de-
scribe two modifications to the original algorithm. Although
the authors were motivated by the problem of application
of KS to Natural Language Processing (NLP), it is straight-
forward to use their method in other areas as well. The first
improvement they propose is p-smooth, which involves us-
ing sub-polynomial kernel on the original kernel matrices.
Given a kernel matrix M , each element of a kernel matrix is
raised to the power of p (with 0 < p ≤ 1) to obtain a matrix
Mp. This is followed by normalization of rows to unit length
and calculation of a new kernel matrix as M ← Mp ·MT

p .
The second improvement is to use a set of seed alignments,
which will be favored during the optimization procedure. In
this way, the effect of low-confidence, thus possibly incor-
rect alignments can be reduced during the optimization pro-
cess. Although the modifications result in considerably more
robust algorithm (with the cost of introducing an additional
parameter p), the issue of local optima due to non-convex
optimization problem remains.

Convex Kernelized Sorting
In this section, we present a method that is, unlike Kernel-
ized Sorting described in the previous section, guaranteed to
find a global optimum solution. We begin by observing that,
given two m ×m matrices K and L, value of trace(K · L)
is maximized if rows and columns of K and L, respec-
tively, are permuted such that rows of K and corresponding
columns of L are identical up to a constant multiplier. Then,
we can define a convex optimization problem for finding the
optimal permutation matrix π∗ as a minimization of the dif-
ference between the left half and transpose of the right half
of matrix product under trace operator in (2), or more for-
mally

minimize
π∈Πm

||K · πT − (L · π)T||2F , (3)

where || · ||F is Frobenius (or Hilbert-Schmidt) matrix norm.
The product K · πT permutes columns of K, while (L · π)T

permutes rows of L, effectively aligning objects in the same
way as when both rows and columns of only one of the ker-
nel matrices are permuted. The optimization problems de-
fined in equations (2) and (3) are equivalent, as shown by
the following lemma.

Lemma 1. The problems (2) and (3) are equivalent.

Proof. Let A = K · πT and B = L · π, and let aij and bij
be values in ith row and j th column of A and B. Further, let
L1 = ||K · πT − (L · π)T||2F and L2 = trace(KπTLπ).
Then, it follows

L1 =
m∑
i=1

m∑
j=1

(aij − bji)2 =
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m∑
i=1

m∑
j=1

a2
ij +

m∑
i=1

m∑
j=1

b2ji − 2 ·
m∑
i=1

m∑
i=1

(aij · bji) =

m∑
i=1

m∑
j=1

a2
ij +

m∑
i=1

m∑
j=1

b2ji − 2 · L2.

The first two elements of the final sum do not depend on
π, as right multiplication with permutation matrix only per-
mutes columns while not changing the values of the original
elements of the matrix. Consequently, it follows

arg min
π∈Πm

L1 = arg max
π∈Πm

L2.

In order to obtain a convex optimization problem, we re-
lax the constraint that π is strictly a permutation matrix,
and define the following problem (by 1m we denote an m-
dimensional column vector of all ones)

minimize
π

||K · πT − (L · π)T||2F
subject to πij ≥ 0, for i, j ∈ {1, 2, ...,m},

π · 1m = 1m,

πT · 1m = 1m,

(4)

where the permutation matrix binary constraint πij ∈ {0, 1}
is replaced by the interval constraint πij ∈ [0, 1]. The con-
straints in (4) ensure that the matrix π is doubly-stochastic
(permutation matrix is a special case), meaning that it is a
matrix with positive elements with both rows and columns
summing up to 1. Thus, we are directly solving the problem
(2) by converting it into convex problem (4). The resulting
optimization problem is convex because the objective func-
tion is a composition of convex non-decreasing square func-
tion and convex norm function with affine argument, subject
to linear equality and inequality constraints.

The relaxation of the constraint which restricts π to be
strictly permutation matrix comes with several advantages.
Mainly, as shown above, the problem of finding cross-
domain object alignments can be stated as convex optimiza-
tion problem, lending itself to simpler optimization, effec-
tive computational methods, and globally optimal solution
(Boyd and Vandenberghe 2004). In this way we also avoid
sensitivity to initialization from which the method from
(Quadrianto et al. 2010) suffered. In addition, soft assign-
ments sum up to 1 and, consequently, assignment πij can
now be interpreted as a probability that objects xj and yi
match. Therefore, the output of the algorithm is more infor-
mative than hard alignments, giving us a degree by which
two objects should be aligned.

In order to numerically solve the problem (4), we compute
first and second derivatives, with respect to the elements of
matrix π, of the objective functionL = ||K ·πT−(L·π)T||2F .
The gradient can be calculated using

∂L
∂πij

= 2 ·
m∑
k=1

(
−Lki ·

m∑
l=1

(Kjl · πkl − πlj · Lkl) +

Kkj ·
m∑
l=1

(Kkl · πil − πlk · Lil)
)
,

(5)

while a Hessian matrix of the objective function L can be
calculated using

∂2L
∂πij∂πrn

= 2 ·
( m∑
k=1

(
I(i = r) ·Kkj ·Kkn+

I(j = n) · Lki · Lkr
)
− 2 ·Kjn · Lir

)
,

(6)

where i, j, r, n ∈ {1, 2, ...,m}, and I(arg) is a binary indi-
cator function equal to 1 if arg is true, and 0 otherwise.

Numerical optimization
The optimization problem (4) can be easily solved using
one of the high-level optimization packages such as CVX1, a
package for specifying and solving convex programs. How-
ever, since the number of variables scales as O(m2), this
and other similar solvers are not suitable if we want to align
larger sets of objects. To make the numerical optimization
more scalable, we present another convex variant of the opti-
mization problem (4). In order to reduce the number of con-
straints and retain only inequalities, we reformulate (4) into
the following dual problem

minimize
π

||K · πT − (L · π)T||2F +

C ·
m∑
k=1

(
(
m∑
l=1

πkl − 1)2 + (
m∑
l=1

πlk − 1)2

)
subject to πij ≥ 0, for i, j ∈ {1, 2, ...,m},

(7)
where we set regularization parameterC to some large value
(we set C = 10 in our experiments). Then, since we now
have only inequalities without any equality constraints, we
can use the trust-region-reflective algorithm (Coleman and
Li 1996) for solving convex problem (7) (algorithm imple-
mented in, e.g., fmincon solver available in Matlab). With
this modification, the gradient and the Hessian of the ob-
jective function are slightly different than (5) and (6). More
specifically, 2 · C · (

∑m
k=1(πjk + πki)− 2) is added to (5),

while Hessian is modified by adding 4 · C to diagonal el-
ements, and 2 · C to off-diagonal elements if (i = r) or
(j = n) in equation (6).

It is important to mention that, due to the nature of the
trust region method and convexity of the optimization prob-
lem, approximate, diagonal-only Hessian can be used, where
all off-diagonal elements are set to 0. Use of the exact Hes-
sian leads to fewer iterations until convergence of the trust-
region-reflective algorithm, while, on the other hand, the use
of approximate Hessian requires significantly less memory
and floating-point operations per iteration to reach globally
optimal solution.

Note that after solving the convex problem (7), matrix π
is not necessarily doubly-stochastic, although sums of rows
and sums of columns will be very close to 1. Therefore, as a
final step in our algorithm, we can project matrix π, the solu-
tion of problem (7), to the set of doubly-stochastic matrices.
Finding this closest projection is an old problem, and we can

1http://cvxr.com/cvx/
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use one of the proposed, approximate methods (Sinkhorn
and Knopp 1967; Parlett and Landis 1982). Alternatively,
we can define an additional convex optimization problem in
order to find the optimal, closest doubly-stochastic matrix
πDS as follows

minimize
πDS

||π − πDS ||2F

subject to πDSij ≥ 0, for i, j ∈ {1, 2, ...,m},
πDS · 1m = 1m,

(πDS)T · 1m = 1m,

(8)

which can be solved as a constrained linear least-squares
problem or constrained Euclidean norm, and an optimal so-
lution can be found by a number of solvers (e.g., SeDuMi2

or lsqlin solver available in Matlab).

Soft and hard assignments
Soft assignments contained in matrix π provide deeper un-
derstanding of the cross-domain alignment between two sets
of objects. As such, output of Convex Kernelized Sorting
(CKS) can be used to rank the objects by sorting them by
the probabilities that they should be aligned. For instance, if
we are matching documents in French with documents writ-
ten in Chinese language, for each French document we can
provide a user with top 5 matches together with the degree
showing how confident about each match are we.

Similarly to the existing methods, CKS can also give hard
alignments, defined as a one-to-one correspondence between
two sets of objects. In order to obtain the hard alignments,
we use the Hungarian algorithm (Kuhn 1955) to solve LAP
defined by the learned doubly-stochastic matrix π. The Hun-
garian algorithm is a polynomial-time algorithm for combi-
natorial optimization, efficiently solving the linear assign-
ment problem. More specifically, if we havemworkers each
requiring certain pay to work on one ofm jobs, the algorithm
finds the lowest-cost one-to-one assignment of workers to
jobs in O(m3) time.

Finally, quality of the obtained alignments greatly de-
pends on the choice of kernel functions k and l (Yamada
and Sugiyama 2011). Using CKS we can visualize the align-
ments and thus provide a user with additional evidence that
appropriate kernels were used. For instance, if Gaussian ker-
nel is used to generate kernel matrices K and L, choice of
kernel-width parameter will critically influence the align-
ment. One simple way to verify that appropriate value of the
parameter is chosen is to plot matrix π (e.g., using function
imagesc in Octave and Matlab) and visually check if there
are clear matches between objects. By visualization of the
results, a user can be more confident that appropriate kernel
functions and parameters are used.

Experiments
In this section, we empirically evaluate performance of our
CKS algorithm. We used the trust-region-reflective algo-
rithm to solve convex problem (7), and stopped the optimiza-
tion either after 10,000 iterations or when objective function

2http://sedumi.ie.lehigh.edu/

stopped decreasing by more than 10−6. In all our experi-
ments we used the diagonal approximation of the Hessian,
as experiments showed that this leads to substantial gains in
memory and time. Unlike the competing algorithms, CKS
does not depend on the initialization of π, and as an ini-
tial point for the trust-region-reflective algorithm we simply
set π = 1m · 1T

m/m. To find hard alignments, we used im-
plementation of the Hungarian algorithm available online3.
Lastly, we also note that the projection of nearly doubly-
stochastic matrix π to the set of doubly-stochastic matrices
was not necessary, since we found that this additional step
did not significantly affect the results.

We compared CKS performance to Kernelized Sorting al-
gorithm from (Quadrianto et al. 2010), and to p-smooth Ker-
nelized Sorting (KS-p) method from (Jagarlamudi, Juarez,
and Daumé III 2010). We also compared our algorithm to
Least-Squares Object Matching method4 (LSOM) (Yamada
and Sugiyama 2011), which maximizes least-squares mu-
tual information criterion instead of HSIC. Except for CKS,
which requires only a single run, all experiments were re-
peated 10 times with both random and PCA-based initializa-
tions of matrix π, and the average and the best accuracy are
reported. For each run of p-smooth KS method we tried all p
values from 0.1 to 1 in increments of 0.1, and used the best
performance as a result for that run. Manifold Alignment al-
gorithm (Wang and Mahadevan 2009) was also considered,
but this local-neighborhood method performed poorly in the
experiments, which can be explained by the high dimension-
ality of the matching tasks.

First, we show application of CKS to data visualization,
and then explore performance on the task of alignment of left
and right halves of images from a set of images. Here, we
used a set of 320 images from (Quadrianto et al. 2010). The
images were processed in the same manner as in (Quadrianto
et al. 2010). Namely, images were resized to 40 × 40 pix-
els, then converted from RGB to LAB color space and vec-
torized. For experiments in which we used the image set,
kernel matrices were generated using Gaussian RBF kernel
k(x, x′) = l(x, x′) = exp(−γ · ||x− x′||2), setting γ to in-
verse median of ||x−x′||2. Finally, application to document
alignment is presented, where we used linear kernel function
to compute the kernel matrices.

Data visualization
One of possible applications of CKS is data visualiza-
tion. Although we can use the existing algorithms for low-
dimensional projection of high-dimension data (e.g., Princi-
pal Component Analysis), they cannot be used if we want
to project data to arbitrary fixed structures (Quadrianto et
al. 2010). KS methods, on the other hand, can be used for
projection of data in such cases.

Figure 1 shows a low-dimensional projection of 320 im-
ages from the data set to a 2-dimensional ”AAAI 2102” let-
ter grid. The pattern in the layout is discernible, as similar
images are closer in the grid, and lighter images are located

3http://www.mathworks.com/matlabcentral/fileexchange/20652-
hungarian-algorithm-for-linear-assignment-problems-v2-3

4code from sugiyama-www.cs.titech.ac.jp/∼yamada
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near the middle of the grid while darker ones are closer to
the edges.

Figure 1: Alignment of 320 images to ”AAAI 2012” letter
grid

Image alignment
As done in (Quadrianto et al. 2010), we split the 320 im-
ages into left and right image halves. The task is to align a
set of left halves with the set of right halves, and measure
how many halves are correctly matched. We increased the
number of images from 5 to 320 in increments of 5, and
the performances of 4 algorithms for all image set sizes are
given in Figure 2. It can be seen that CKS consistently re-
covers more original images than the competing algorithms.
The problem with local optima of KS method is clearly il-
lustrated in Figure 2a. The results for two consecutive im-
age set sizes are very inconsistent, due to the sensitivity
of the method. The modifications introduced by KS-p re-
sult in more robust algorithm (Figure 2b), but the method
still achieves smaller number of correct matches than both
LSOM and CKS. LSOM method is for most image set sizes
quite competitive when considering the best achieved accu-
racy, although the average performance and the wide con-
fidence intervals indicate the instability of the method, see
Figure 2c. Figure 3 illustrates the outcome of matching of
all 320 images using CKS, which had 64.38% matching ac-
curacy after applying the Hungarian algorithm to compute
hard assignments.

One of the advantages of CKS is that it outputs soft as-
signments. This can be used to rank the alignments by a
probability of a match, and is illustrated in Figure 4a where
we calculated recall for top N ranks. If we sort the soft as-
signments, then 81.25% of correct image pairs are ranked
among the top 5, while for the top 13 matches the recall
jumps to nearly 90%. Furthermore, for each left image half,
Figure 4b shows the maximum learned probability among
right image halves versus the learned probability of the cor-
rect match (as a reference we plot y = x line). As can be
seen, the probability of the correct match is either the high-
est, or is very close to the highest probability.

Finally, in order to visually verify quality of the alignment
and evaluate appropriateness of kernel parameters, we can
also plot the learned matrix π (see Figure 4c, darker color
corresponds to higher probability of alignment). To make the
result more clear, we arranged two sets of image halves in
such a way so that the ith image in the left-halves set should
be matched to the ith image in the right-halves set. Conse-
quently, the perfect matrix π would be equal to the identity
matrix. As shown in Figure 4c, CKS recovered π very close
to the identity matrix. Too few or too many dark peaks in the

plot can be used as a visual clue that the choice of param-
eters might be wrong, thus providing an additional, visual
insight into the matching problem.

Multilingual document alignment
We evaluate CKS on the task of aligning multilingual doc-
uments. We used the Europarl Parallel Corpus5 (Koehn
2005), a collection of proceedings of the European Parlia-
ment available in 10 different European languages. The ob-
jective was to align a set of English documents with a set of
corresponding documents written in other languages. As a
preprocessing step, stopwords were removed and stemming
was performed using Snowball6. Then, the documents were
represented using TF-IDF features of a bag-of-words ker-
nel, followed by `2 normalization of feature vectors to unit
length. As the resulting kernel matrices were notably diago-
nally dominant, for KS method we zeroed-out the diagonal,
as suggested by authors in (Quadrianto et al. 2010). For the
remaining algorithms, no post-processing was done and the
original kernel matrices were used.

The results are presented in Table 1, where we report the
rounded average and the best achieved (given in parenthe-
ses) number of correctly aligned documents after 10 runs.
As a baseline reference, we calculated the performance of
a simple method which aligns the documents according to
their lengths. We can see that CKS algorithm recovered
more correct matches than all other competing methods on
all 9 NLP tasks. Even if we consider only the best perfor-
mances achieved by the competing algorithms, our method
still outperforms the competition. Considering that CKS al-
gorithm requires only a single run, this is an impressive
result. Furthermore, for most languages our method found
nearly all the correct matches, except on the tasks of align-
ment of documents written in Finnish and Swedish lan-
guages. Although the two Nordic languages proved to be
very challenging for all methods, CKS achieved around 5
times more correct alignments than the previously proposed
algorithms. Interestingly, on these two tasks the baseline
method is the second best, actually performing better than
the existing algorithms.

Conclusion
In this paper we presented a novel, convex formulation of
the object matching problem. Unlike previous approaches,
the CKS algorithm avoids the local optima issue and is guar-
anteed to find a globally optimal solution. The method out-
puts soft alignments between objects of two sets, which can
be used to rank the best matches for each object, or to ob-
tain one-to-one alignments by solving a Linear Assignment
Problem. The performance of our method was evaluated on
several matching tasks from image processing and natural
language processing, where we observed that CKS consis-
tently outperformed the existing approaches. All material
used in the paper is available upon request.

There are several avenues which can be pursued further.
The method can be easily extended to semi-supervised set-

5http://www.statmt.org/europarl/archives.html, version 1
6http://snowball.tartarus.org/
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(a) Comparison of CKS and KS (b) Comparison of CKS and KS-p (c) Comparison of CKS and LSOM

Figure 2: Number of correctly recovered images for different image set sizes (error bars represent confidence intervals of one
standard deviation, calculated after 10 runs)

Figure 3: Alignment results of CKS for matching of 320 left and right image halves (206 correct matches)

ting, by adding new constraints to the convex optimization
problem. For instance, if we suspect that two objects should
match, we can constrain the corresponding permutation ma-
trix element to a certain value. It would be interesting to see
how our method would work in this setting. Another issue is
the restriction that two sets which are being aligned need to
have the same number of elements. Although there are pro-
posed solutions (e.g., padding the smaller set with dummy
objects), it remains to be seen how would these ideas work
with CKS algorithm. In the future work we plan to address
both of these issues.
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