Convex Kernelized Sorting Nemanja Djuric, Mihajlo Grbovic, Slobodan Vucetic Temple University, Philadelphia

AAAI-2012 Toronto, July 24th, 2012

Introduction

Object matching

- Match objects from one set with objects from another set, so that matched pairs are 'similar'
- E.g., graph matching (computer vision), multiple sequence alignment (bioinformatics),...

Introduction

- Matching Chinese and English texts is a relatively simple task if we can directly compare them
 - E.g., if we have a bilingual Chinese-English dictionary, or if we use Google Translate

Previous work

- So, how to match objects from different domains without cross-domain similarity measure?
- Several proposed ideas:
 - Information about local relationships is translated into cross-domain similarity measure (*Wang et al. 2009 -*Manifold Alignment, *Quadrianto et al. 2010 -*Kernelized Sorting)
 - Project to common space and then directly compare objects (*Haghighi et al. 2008, Tripathi et al. 2011* Canonical Correlation Analysis)

Formalities

- Let $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_m\}$ be two sets of objects from two different domains X and Y
- Let k: X × X → R and l: Y × Y → R be two kernels associated with domains X and Y
- Given *m* × *m* matrices *K* and *L*, the task is to find 1-to-1 matching between *X* and *Y*
 - This correspondence is encoded in $m \times m$ permutation matrix π , where $\pi_{ij} = 1$ if x_j and y_i objects are matched, and $\pi_{ij} = 0$ otherwise

Kernelized Sorting

• Use Hilbert-Schmidt Independence Criterion (HSIC) to measure the dependency between two aligned sets

 $\Delta^2 = m^{-2} \cdot trace(K \cdot L)$

• Find an alignment π by solving

$$\pi^* = \arg\max_{\pi \in \Pi_m} trace \left(K \cdot \pi^{\mathrm{T}} \cdot L \cdot \pi \right)$$

- However, there is a slight problem
 - The optimization involves *maximization* over convex function of matrix π (local optima issue!)

Kernelized Sorting extensions

- Several methods to mitigate the instability issue of KS have been proposed
 - *Jagarlamudi et al. 2010* proposed *p*-smooth which smoothes out the kernel matrices, resulting in more robust method (**KS**-*p*)
 - *Yamada et al. 2011* proposed using Least-Squares Mutual Information instead of HSIC (**LSOM**)
 - Both ideas result in more accurate algorithms, but the instability issue still remains

Convex Kernelized Sorting

- We present a convex formulation of the Kernelized Sorting problem
- First, rewrite KS problem into equivalent

 $\pi^* = \arg \max_{\pi \in \Pi_m} trace \ (K \cdot \pi^{\mathrm{T}} \cdot L \cdot \pi) \implies \pi^* = \arg \min_{\pi \in \Pi_m} \| K \cdot \pi^{\mathrm{T}} - (L \cdot \pi)^{\mathrm{T}} \|_F^2$

- Next, we allow π to be a doubly-stochastic matrix
 - Constraint $\pi_{ij} \in \{0, 1\}$ becomes $\pi_{ij} \in [0, 1]$
 - Rows and columns sum up to 1

Convex Kernelized Sorting

Finally, CKS optimization problem becomes:

$$\begin{array}{l} \underset{\pi}{\text{minimize}} \parallel K \cdot \pi^{\mathrm{T}} - (L \cdot \pi)^{\mathrm{T}} \parallel_{F}^{2} \\ \text{s.t.} \qquad \pi_{ij} \geq 0, \text{ for } i, j \in \{1, 2, ..., m\} \\ \qquad \pi \cdot \mathbf{1}_{m} = \mathbf{1}_{m} \\ \qquad \pi^{\mathrm{T}} \cdot \mathbf{1}_{m} = \mathbf{1}_{m} \end{array}$$

- Unlike KS, problem is now convex in π, lending itself to effective computational methods and globallyoptimal solution
- Also, real-valued π_{ij} 's give us informative soft matches, instead of hard ones

Convex Kernelized Sorting

- But how to calculate hard, one-to-one matches?
- We need to solve Linear Assignment Problem (LAP) defined by a learned π
 - LAP if we have *m* workers each requiring certain pay to work on one of *m* jobs, find lowest-cost 1-to-1 assignment of workers to jobs
 - We use the Hungarian algorithm, effective, polynomial-time algorithm for solving LAP

Experiment 1: Data visualization

- We used data set of 320 images, used in most previous object matching papers
- Gaussian RBF kernel was used, $k(x, x') = l(x, x') = exp(-\gamma ||x x'||^2)$, setting γ to inverse median of $||x x'||^2$
- Results:

Random placement

After matching

Experiment 2: Image matching

• We split 320 images to left and right halves, and retrieve the original images by matching two sets

206 of 320 images correctly matched (64%)

Experiment 2: Image matching

- Comparison to existing methods
- Increase image set size from 5 to 320
- Average and best results after 10 runs reported

Experiment 3: NLP

- *Europarl Parallel Corpus* data set (with linear kernel)
- Task: Match English documents to documents in 9 European languages
- Average and highest number of correct matches after 10 runs reported

	Baseline: match objects using document length					
Language	Corpus size	Baseline	KS	KS-p	LSOM	CKS
Danish	387	39	261 (318)	258 (273)	159 (173)	379
Dutch	387	50	266 (371)	237 (317)	146 (375)	383
Finnish	308	54	19 (32)	22 (38)	10 (10)	114
French	356	64	319 (356)	320 (334)	354 (354)	356
German	356	50	282 (344)	258 (283)	338 (350)	356
Italian	387	49	341 (382)	349 (353)	378 (381)	385
Portuguese	356	46	308 (354)	326 (343)	342 (356)	356
Spanish	387	48	342 (365)	351 (364)	386 (387)	387
Swedish	337	76	20 (39)	20 (33)	5 (5)	97

• 1 • 1 • 1

Conclusion

- We presented a novel, convex formulation of the object matching problem
- Globally-optimal solution leads to much improved results
- Ongoing/future work
 - Explore a semi-supervised extension of the method
 - What to do when two sets have different number of objects?

Thank you!

• Questions?

Experiments

Visualization of a learned matrix π

