

Distributed Confidence-Weighted Classification on MapReduce

Nemanja Djuric¹, <u>Mihajlo Grbovic²</u>, Slobodan Vucetic¹ ¹ Temple University, Philadelphia, USA ² Yahoo! Labs, Sunnyvale, USA

IEEE Big Data, Santa Clara, October 7th, 2013

Outline of the talk

1. Introduction

- Motivation behind the proposed approach
- Machine Learning using MapReduce
- 2. Related work
 - Confidence-Weighted (CW) classification
 - AROW training of CW classifiers
- 3. Proposed approach
 - Distributed training of CW classifiers (AROW-MR)
- 4. Experiments and conclusion
 - Validate the proposed method on synthetic data
 - Evaluate on real-world, industrial-size Ad Latency task

Introduction

- Big Data is pervasive; data sets with millions of examples and features are now a rule rather than an exception
 - Crowdsourcing, remote sensing, social networks, etc.
- Globally-recognized, strategic importance of Big Data
 - Focus of all major internet companies
 - "Big Data Research and Development Initiative" by US govt.
- Many challenges to machine learning and data mining researchers due to its large-scale nature

Introduction

- Explosive growth in data size, complexity, and rates resulted in data of unprecedented scales
 - Standard classification tools are not capable of addressing these large-scale tasks
 - Even linear time and space complexity of efficient SVM solvers is not tractable for modern data sets
- We propose a linear SVM solver for large-scale training of recently proposed Confidence-Weighted (CW) classifiers
 - Distributed, sub-linear training using MapReduce framework
 - Significant improvement over state-of-the-art linear classifiers
 - Evaluated on real-world, large-scale Ad Latency task

Hadoop and MapReduce

- Combines distributed filesystem with MapReduce framework
- Hadoop Distributed Filesystem (HDFS)
 - Distributes data files among servers automatically
 - Default replication factor of 3
- MapReduce
 - Easier to send code to data than vice versa with big data
 - Each job is a sequence of map and reduce operations
 - Mappers load data, perform basic transformations
 - Reducers process mapper output records with a single key
 - Complex operations typically happen in mappers

Hadoop and MapReduce

Hadoop and MapReduce

Java-based

- Compatible with any language using JVM
- Can "stream" data into shell commands for other languages

Parallelism

- Typically 1 mapper per input file (can split further)
- Number of reducers must be specified (summary operation)
- Significant overhead with launching jobs
 - Highly iterative algorithms suffer greatly

- Four ways of using MapReduce for machine learning
- Option 1: Learn 1 model on 1 reducer (1 job)
 - Reading the data in multiple mappers
 - Learning a model on a single reducer in an online learning manner without storing the points that are being streamed
 - Learning a model takes as long as learning on a single machine
 - The only benefit is in data storage

Option 2: Learn 1 model in batch mode on *M* mappers

- Mappers compute gradients and the reducer sums them
- One MapReduce job is analogous to one batch GD update
- Requires running several MapReduce jobs
- Disadvantage: this is ineffective
 - 1. Each iteration has large overheads (e.g., job scheduling, data transfer, data parsing)
 - 2. At least a dozen iterations (i.e., MapReduce jobs) often need to be conducted to ensure convergence

Option 3: learn 1 model in mini-batches on M mappers (1 job)

- □ AllReduce abstraction
- A spanning tree for communicating between mappers
- Local gradients are summed up the tree, and then broadcast down to all mappers
- Disadvantage: this is not robust
- 1. If one mapper fails job is stuck
- 2. All mappers need to run at the same time (sometimes not possible – think 1,000 mappers on a busy queue) – if not possible the job is stuck

- Option 4: learn M models in M mappers and combine models on 1 reducer (1 job)
 - Learning of *M* models one on each mapper
 - Combine *M* models into 1 model on the reducer
 - Advantage: mappers are independent of each other (they don't need to communicate or run concurrently)
 - Disadvantage: not many algorithms out there

Confidence-Weighted classification

- Proposed by Dredze et al., ICML 2009
- Confidence-Weighted (CW) binary classifier, in addition to the margin, outputs confidence in the prediction
 - Assumes a multivariate Gaussian over separating hyperplanes
 - Given a trained CW model, this induces a Gaussian distribution over the prediction margin for a new point (x, y)

$$\hat{y} \sim \mathcal{N}(y(\boldsymbol{\mu}^{\mathrm{T}}\mathbf{x}), \mathbf{x}^{\mathrm{T}}\Sigma\mathbf{x})$$

Following the assumption of Gaussianity, we can compute the prediction confidence as follows

$$\mathbb{P}(\operatorname{sign}(\boldsymbol{\mu}^{\mathrm{T}}\mathbf{x}) = y) = \frac{1}{2} \left(1 + \operatorname{erf}(\frac{y(\boldsymbol{\mu}^{\mathrm{T}}\mathbf{x})}{\sqrt{2\mathbf{x}^{\mathrm{T}}\Sigma\mathbf{x}}}) \right)$$

CW training

- The CW classifier is trained in an online manner
 - New parameter estimates should be close to those from the previous iteration
 - Maximize prediction confidence for current training example
- The authors solve the following optimization problem

 $\begin{aligned} (\boldsymbol{\mu}_{t+1}, \boldsymbol{\Sigma}_{t+1}) &= \operatorname*{arg\,min}_{\boldsymbol{\mu}, \boldsymbol{\Sigma}} D_{KL} \big(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \| \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) \big) \\ \text{subject to} \quad \mathbb{P} \big(y_t(\boldsymbol{\mu}^{\mathrm{T}} \mathbf{x}_t \geq 0) \big) \geq \eta \end{aligned}$

CW classifier is susceptible to noise: performs too aggressive updates due to the constraint

AROW training

- Adaptive Regularization of Weight Vectors (AROW) proposed by Crammer et al., NIPS 2009
- Online training algorithm is derived having in mind the following constraint
 - Margin for a new training point should be maximized, while uncertainty minimized

Solve the following optimization problem at each iteration

$$(\boldsymbol{\mu}_{t+1}, \boldsymbol{\Sigma}_{t+1}) = \underset{\boldsymbol{\mu}, \boldsymbol{\Sigma}}{\arg\min} D_{KL} \left(\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \| \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t) \right) + \lambda_1 \left(\max(0, 1 - y_t \boldsymbol{\mu}^{\mathrm{T}} \mathbf{x}_t) \right)^2 + \lambda_2 (\mathbf{x}_t^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{x}_t)$$

AROW training

After finding derivatives of the objective function with respect to mean and covariance matrix, we obtain the following update rule whenever misclassification occurs

$$\mu_{t+1} = \mu_t + \alpha_t y_t \boldsymbol{\Sigma}_t \mathbf{x}_t,$$

$$\boldsymbol{\Sigma}_{t+1} = \boldsymbol{\Sigma}_t - \beta_t \boldsymbol{\Sigma}_t \mathbf{x}_t \mathbf{x}_t^{\mathrm{T}} \boldsymbol{\Sigma}_t$$

where $\alpha_t = \beta_t \max(0, 1 - y_t \boldsymbol{\mu}^{\mathrm{T}} \mathbf{x}_t)$
 $\beta_t = (\mathbf{x}_t^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{x}_t + r)^{-1}$
 $r = 1/(2\lambda_1), \text{ for } \lambda_1 = \lambda_2$

The training proceeds in rounds until convergence

AROW training on MapReduce

- We utilize MapReduce framework to significantly speed up the training of CW classifiers
 - Map phase Train a number of independent CW classifiers on each mapper, send the learned parameters to reducer
 - Reduce phase Aggregate local, mapper-specific classifiers into a single CW classifier on a reducer

AROW training on MapReduce

- Train a CW classifier on each of *M* mappers to obtain local, mapper-specific parameters μ_m and Σ_m , m = 1, ..., M
- Minimize the following objective function on the reducer

$$\mathcal{L} = \mathbb{E}_{\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})} [D_{KL}^{S} (\mathcal{N}(\boldsymbol{\mu}_{*}, \boldsymbol{\Sigma}_{*}) \| \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}))]$$

or its empirical estimate

$$\mathcal{L} = \sum_{m=1}^{M} \mathbb{P} \big(\mathcal{N}(\boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m}) \big) \ D_{KL}^{S} \big(\mathcal{N}(\boldsymbol{\mu}_{*}, \boldsymbol{\Sigma}_{*}) \| \mathcal{N}(\boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m}) \big)$$

We can obtain closed-form updates for mean vector and covariance matrix of the multivariate Gaussian

AROW training on MapReduce

Finding derivative of the loss function with respect to the mean and covariance matrix, we obtain updates

$$\boldsymbol{\mu}_{*} = \left(\sum_{m=1}^{M} \left(\mathbb{P}(\mathcal{N}(\boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m})) \left(\boldsymbol{\Sigma}_{*}^{-1} + \boldsymbol{\Sigma}_{m}^{-1}\right)\right)\right)^{-1} \left(\sum_{m=1}^{M} \left(\mathbb{P}(\mathcal{N}(\boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m})) \left(\boldsymbol{\Sigma}_{*}^{-1} + \boldsymbol{\Sigma}_{m}^{-1}\right)\right) \boldsymbol{\mu}_{m}\right)$$
$$\boldsymbol{\Sigma}_{*} \left(\sum_{m=1}^{M} \mathbb{P}(\mathcal{N}(\boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m})) \boldsymbol{\Sigma}_{m}^{-1}\right) \boldsymbol{\Sigma}_{*} = \sum_{m=1}^{M} \mathbb{P}(\mathcal{N}(\boldsymbol{\mu}_{m}, \boldsymbol{\Sigma}_{m})) \left(\boldsymbol{\Sigma}_{m} + (\boldsymbol{\mu}_{*} - \boldsymbol{\mu}_{m})(\boldsymbol{\mu}_{*} - \boldsymbol{\mu}_{m})^{\mathrm{T}}\right)$$

The 2nd equation is an algebraic Riccati equation of the form XAX=B, solved as

$$\mathbf{X} = \mathbf{U}^{-0.5} \mathbf{B}^{0.5} (\mathbf{U}^{\mathrm{T}})^{-0.5}$$
, with $\mathbf{A} = \mathbf{U}^{\mathrm{T}} \mathbf{U}$

Experiments – Synthetic data

waveform data set (50,000 training, 5,000 test examples)

- Increased no. of mappers from 1 to 100, repeated 10 times
- We report results of AROW, the proposed AROW-MR, and AROW-single (local mapper model used by AROW-MR)
- Distributed AROW-MR obtains significantly improved training time and test accuracy

Experiments – Ad Latency

- Real-world, industrial-size Ad Latency data set
 - 1.3 billion data examples, 21 measured features
- Online advertising domain
 - Improve online experience through timely delivery of relevant ads to the users
 - Can we detect if the ad will be late before it is served?
- Features:
 - user features (browser type, device type, ISP, location, connection speed, etc.)
 - **ad features** (ad type, ad size, ad dimensions, etc.),
 - vendor features (where is the ad served from, hardware used, etc.)

Experiments – Ad Latency

- We compared AROW-MR to non-distributed AROW, as well as to the state-of-the-art Vowpall Wabbit (VW)
 - Increased no. of mappers to evaluate effects of parallelization

# mappers	# reducers	Avg. map time	Reduce time	AUC
1	0	408h	n/a	0.8442
100	1	30.5h	1 min	0.8552
500	1	34 min	4 min	0.8577
1,000	1	17.5 min	7 min	0.8662
10,000	1	2 min	1h	0.8621

Table 1. Increasing number of mappers

Table 2. Performance of VW

# mappers	# reducers	Avg. map time	Reduce time	AUC
1	0	7h	n/a	0.8506
100	0	1h	n/a	0.8508
500	0	8 min	n/a	0.8501
1,000	0	6 min	n/a	0.8498

- AROW-MR decreased training time from 17 days to 25 minutes, with further accuracy gains!
- Outperformed linear VW classifier with comparable training times

Conclusion

- Inadequacy of standard machine learning tools in large-scale setting is apparent
 - Novel methods are necessary in order to address a plethora of Big Data problems
- We proposed AROW-MR, a large-scale, efficient linear SVM solver based on the state-of-the-art CW classifiers
- AROW-MR validated on synthetic, as well as real-world, industrial-size Ad Latency data sets
 - Outperformed state-of-the-art, large-scale linear classifiers

Thank you!

Questions?

