
Distributed Confidence-Weighted

Classification on MapReduce

Nemanja Djuric1, Mihajlo Grbovic2, Slobodan Vucetic1

1 Temple University, Philadelphia, USA

2 Yahoo! Labs, Sunnyvale, USA

IEEE Big Data, Santa Clara, October 7th, 2013

Outline of the talk

1. Introduction

 Motivation behind the proposed approach

 Machine Learning using MapReduce

2. Related work

 Confidence-Weighted (CW) classification

 AROW training of CW classifiers

3. Proposed approach

 Distributed training of CW classifiers (AROW-MR)

4. Experiments and conclusion

 Validate the proposed method on synthetic data

 Evaluate on real-world, industrial-size Ad Latency task

Introduction

 Big Data is pervasive; data sets with millions of examples

and features are now a rule rather than an exception

 Crowdsourcing, remote sensing, social networks, etc.

 Globally-recognized, strategic importance of Big Data

 Focus of all major internet companies

 “Big Data Research and Development Initiative” by US govt.

 Many challenges to machine learning and data mining
researchers due to its large-scale nature

Introduction

 Explosive growth in data size, complexity, and rates

resulted in data of unprecedented scales

 Standard classification tools are not capable of addressing

these large-scale tasks

 Even linear time and space complexity of efficient SVM solvers

is not tractable for modern data sets

 We propose a linear SVM solver for large-scale training of

recently proposed Confidence-Weighted (CW) classifiers

 Distributed, sub-linear training using MapReduce framework

 Significant improvement over state-of-the-art linear classifiers

 Evaluated on real-world, large-scale Ad Latency task

Hadoop and MapReduce

 Combines distributed filesystem with MapReduce framework

 Hadoop Distributed Filesystem (HDFS)

 Distributes data files among servers automatically

 Default replication factor of 3

 MapReduce

 Easier to send code to data than vice versa with big data

 Each job is a sequence of map and reduce operations

 Mappers load data, perform basic transformations

 Reducers process mapper output records with a single key

 Complex operations typically happen in mappers

Hadoop and MapReduce

Hadoop and MapReduce

 Java-based

 Compatible with any language using JVM

 Can “stream” data into shell commands for other languages

 Parallelism

 Typically 1 mapper per input file (can split further)

 Number of reducers must be specified (summary operation)

 Significant overhead with launching jobs

 Highly iterative algorithms suffer greatly

Machine Learning and MapReduce

 Four ways of using MapReduce for machine learning

 Option 1: Learn 1 model on 1 reducer (1 job)

 Reading the data in multiple mappers

 Learning a model on a single reducer in an online learning

manner without storing the points that are being streamed

 Learning a model takes as long as learning on a single

machine

 The only benefit is in data storage

Machine Learning and MapReduce

 Option 2: Learn 1 model in batch mode on M mappers

 Mappers compute gradients and the reducer sums them

 One MapReduce job is analogous to one batch GD update

 Requires running several MapReduce jobs

 Disadvantage: this is ineffective

1. Each iteration has large overheads (e.g., job scheduling, data

transfer, data parsing)

2. At least a dozen iterations (i.e., MapReduce jobs) often need to

be conducted to ensure convergence

Machine Learning and MapReduce

 Option 3: learn 1 model in mini-batches on M mappers (1 job)

 AllReduce abstraction

 A spanning tree for communicating between mappers

 Local gradients are summed up the tree, and then broadcast

down to all mappers

 Disadvantage: this is not robust

1. If one mapper fails job is stuck

2. All mappers need to run at the same time

(sometimes not possible – think 1,000 mappers

on a busy queue) – if not possible the job is stuck

A. Agarwal, O. Chapelle, M. Dudik, J. Langford, “A Reliable Effective Terascale Linear Learning System”

7 5

1

4

9

3

8

7

13

5 3 4

15

3737 37 37

3737

F igur e 1: A l lR educe

rithms and various design choices within our own algorithm.

In Sect ion 4 we discuss and cont rast our approach with the
many approaches people have proposed for parallel learning.

2. COMPUTATION AND COMMUNICATION
FRAMEWORK

Map-Reduce (Dean and Ghemawat , 2008) and its open

source implementat ion Hadoop3 havebecometheoverwhelm-
ingly favorite plat forms for dist ributed data processing in

general. However, the abst ract ion is rather ill-suited for
machine learning algorithms as several researchers in the

field have observed (Low et al., 2010; Zaharia et al., 2011),
because it does not easily allow iterat ive algorithms, such

as typical opt imizat ion algorithms used to solve the prob-
lem (1).

2.1 Hadoop-compatible AllReduce
AllReduce isa moresuitableabst ract ion for machine learn-

ing algorithms. AllReduce is an operat ion where every node
starts with a number and ends up with the sum of the num-
bers at all the nodes. A typical implementat ion is done by

imposing a t ree st ructure on the communicat ing nodes—
numbers can be summed up the t ree (this is the reduce

phase) and then broadcast down to all nodes—hence the
name AllReduce. See Figure 1 for a graphical illust rat ion.

When doing summing or averaging of a long vector, such as
the weight vector w in the opt imizat ion (1), the reduce and

broadcast operat ions can be pipelined over the vector ent ries
hence the latency of going up and down the t ree becomes

neglibible on a typical Hadoop cluster.
For problems of the form (1), AllReduce provides st raight -

forward parallelizat ion—we just accumulate local gradients
for a gradient based algorithm like gradient descent or L-

BFGS. In general, any stat ist ical query algorithm (Kearns,
1993) can be parallelized with AllReduce with only a handful

of addit ional lines of code. This approach also easily imple-
ments averaging parameters of online learning algorithms.

An implementat ion of AllReduce is available in the MPI
package. However, it is not easy to run MPI on top of ex-

ist ing Hadoop clusters (Ye et al., 2009). Moreover, MPI im-
plements lit t le fault tolerance, with the bulk of robustness
left to the programmer.

To address the reliability issues bet ter, we developed an
implementat ion of AllReducethat iscompat iblewith Hadoop.

Implementat ion of AllReduce using a single t ree is clearly

3ht t p: / / hadoop. apache. or g/

less desirable than MapReduce in terms of reliability, be-

cause if any individual node fails, the ent ire computat ion
fails. To deal with this, we use a simple t rick below which

makes AllReduce reliable enough to use in pract ice for com-
putat ions up to 10K node hours.

2.2 Proposed Algor ithm
Our main algorithm is a hybrid online+ batch approach.

Westart with each node making one online pass over its local

data according to adapt ive gradient updates (Duchi et al.,
2010b; McMahan and St reeter, 2010) modified for loss non-

linearity (Karampatziakis and Langford, 2011). AllReduce
is used to average these weights non-uniformly using the

local gradients. Concretely, node k maintains a local weight
vector w k and a diagonal mat rix G k based on the gradients

in the adapt ive gradient updates (see Algorithm 1). We
compute the following weighted average over all m nodes

w̄ =

mX

k = 1

G
k

! − 1
mX

k = 1

G
k
w

k

!

. (2)

This has the e↵ect of weighing each dimension according to
how “ confident ” each node is in it s weight (i.e., more weight

is assigned to a given parameter of a given node, if that
node has seen more examples with the corresponding fea-

ture). We note that this averaging can indeed be imple-
mented using AllReduce by two calls to the rout ine since

G k are only diagonal. This solut ion w̄ is used to init ialize
L-BFGS (Nocedal, 1980) with the standard Jacobi precondi-

t ioner. At each iterat ion, the local gradients are summed up
using AllReduce, while all the other operat ions can be done

locally at each node. The algorithm benefits from the fast
reduct ion of error init ially that an online algorithm provides,

and rapid convergence in a good neighborhood guaranteed
by Quasi-Newton algorithms.

Another st rategy we evaluate is that of repeated online
learning with averaging using the adapt ive updates. In this
set t ing, each node performs an online pass over its data and

then we average the weights according to Equat ion 2. We
average the scaling mat rices similarly

Ḡ =

mX

k = 1

G
k

! − 1
mX

k = 1

(G
k
)

2

!

.

and use this averaged state to start a new online pass over

the data. We will see in the next sect ion that this st rategy
can be very e↵ect ive at get t ing a moderately small test error

very fast , but might not be able to get a very small test error.
Note that our implementat ion is open source in Vowpal

Wabbit (Langford et al., 2007) and is summarized in algo-
rithm 2. It makes use of the stochast ic gradient descent

(Algorithm 1) for the init ial pass.

2.3 SpeculativeExecution
I t is common for large clusters of machines to be busy with

many jobs which use the cluster in an uneven way, commonly

result ing in one of a thousand nodes being very slow. To
avoid this, Hadoop can speculat ively execute a job on iden-

t ical data, using the first job to finish and killing the other
one. In our framework, it can be t ricky to handle duplicates

once a spanning t ree topology is created for AllReduce. For
this reason, we delay the init ializat ion of the spanning t ree

unt il each node completes a pass over the data, building the
spanning t ree on only the speculat ive execut ion survivors.

Machine Learning and MapReduce

 Option 4: learn M models in M mappers and combine models

on 1 reducer (1 job)

 Learning of M models – one on each mapper

 Combine M models into 1 model on the reducer

 Advantage: mappers are independent of each other (they don’t

need to communicate or run concurrently)

 Disadvantage: not many algorithms out there

Confidence-Weighted classification

 Proposed by Dredze et al., ICML 2009

 Confidence-Weighted (CW) binary classifier, in addition to

the margin, outputs confidence in the prediction

 Assumes a multivariate Gaussian over separating hyperplanes

 Given a trained CW model, this induces a Gaussian
distribution over the prediction margin for a new point (x, y)

 Following the assumption of Gaussianity, we can compute

the prediction confidence as follows

CW training

 The CW classifier is trained in an online manner

 New parameter estimates should be close to those from the
previous iteration

 Maximize prediction confidence for current training example

 The authors solve the following optimization problem

 CW classifier is susceptible to noise: performs too
aggressive updates due to the constraint

AROW training

 Adaptive Regularization of Weight Vectors (AROW)

proposed by Crammer et al., NIPS 2009

 Online training algorithm is derived having in mind the

following constraint

 Margin for a new training point should be maximized, while

uncertainty minimized

 Solve the following optimization problem at each iteration

AROW training

 After finding derivatives of the objective function with

respect to mean and covariance matrix, we obtain the

following update rule whenever misclassification occurs

where

 The training proceeds in rounds until convergence

AROW training on MapReduce

 We utilize MapReduce framework to significantly speed

up the training of CW classifiers

 Map phase – Train a number of independent CW classifiers

on each mapper, send the learned parameters to reducer

 Reduce phase – Aggregate local, mapper-specific classifiers

into a single CW classifier on a reducer

AROW training on MapReduce

 Train a CW classifier on each of M mappers to obtain

local, mapper-specific parameters µm and Σm, m = 1, …, M

 Minimize the following objective function on the reducer

or its empirical estimate

 We can obtain closed-form updates for mean vector

and covariance matrix of the multivariate Gaussian

AROW training on MapReduce

 Finding derivative of the loss function with respect to the
mean and covariance matrix, we obtain updates

 The 2nd equation is an algebraic Riccati equation of the
form XAX=B, solved as

, with

Experiments – Synthetic data

 waveform data set (50,000 training, 5,000 test examples)

 Increased no. of mappers from 1 to 100, repeated 10 times

 We report results of AROW, the proposed AROW-MR, and

AROW-single (local mapper model used by AROW-MR)

 Distributed AROW-MR obtains significantly improved

training time and test accuracy

Experiments – Ad Latency

 Real-world, industrial-size Ad Latency data set

 1.3 billion data examples, 21 measured features

 Online advertising domain

 Improve online experience through timely delivery of
relevant ads to the users

 Can we detect if the ad will be late before it is served?

 Features:

 user features (browser type, device type, ISP, location,
connection speed, etc.)

 ad features (ad type, ad size, ad dimensions, etc.),

 vendor features (where is the ad served from, hardware
used, etc.)

Experiments – Ad Latency

 AROW-MR decreased
training time from 17 days

to 25 minutes, with further

accuracy gains!

 Outperformed linear VW
classifier with comparable

training times

Table 1. Increasing number of mappers

Table 2. Performance of VW

 We compared AROW-MR to non-distributed AROW, as well

as to the state-of-the-art Vowpall Wabbit (VW)

 Increased no. of mappers to evaluate effects of parallelization

Conclusion

 Inadequacy of standard machine learning tools in

large-scale setting is apparent

 Novel methods are necessary in order to address a

plethora of Big Data problems

 We proposed AROW-MR, a large-scale, efficient linear

SVM solver based on the state-of-the-art CW classifiers

 AROW-MR validated on synthetic, as well as real-world,

industrial-size Ad Latency data sets

 Outperformed state-of-the-art, large-scale linear classifiers

Thank you!

 Questions?

