
BIG DATA ALGORITHMS FOR VISUALIZATION
AND SUPERVISED LEARNING

A Dissertation
Submitted to

the Temple University Graduate Board

In Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by
Nemanja Djuric
January 2014

Examining committee members:

Dr Slobodan Vucetic, Advisory Chair, Dept. of Computer and Information Sciences
Dr Zoran Obradovic, Department of Computer and Information Sciences
Dr Longin Jan Latecki, Department of Computer and Information Sciences
Dr Li Bai, External Member, Department of Electrical and Computer Engineering

Copyright c© 2013 by Nemanja Djuric

ABSTRACT

Explosive growth in data size, data complexity, and data rates, triggered by emer-

gence of high-throughput technologies such as remote sensing, crowd-sourcing, social

networks, or computational advertising, in recent years has led to an increasing avail-

ability of data sets of unprecedented scales, with billions of high-dimensional data

examples stored on hundreds of terabytes of memory. In order to make use of this

large-scale data and extract useful knowledge, researchers in machine learning and

data mining communities are faced with numerous challenges, since the data mining

and machine learning tools designed for standard desktop computers are not capable

of addressing these problems due to memory and time constraints. As a result, there

exists an evident need for development of novel, scalable algorithms for big data.

In this thesis we address these important problems, and propose both supervised

and unsupervised tools for handling large-scale data. First, we consider unsupervised

approach to big data analysis, and explore scalable, efficient visualization method

that allows fast knowledge extraction. Next, we consider supervised learning setting

and propose algorithms for fast training of accurate classification models on large

data sets, capable of learning state-of-the-art classifiers on data sets with millions of

examples and features within minutes.

Data visualization have been used for hundreds of years in scientific research, as

it allows humans to easily get a better insight into complex data they are studying.

Despite its long history, there is a clear need for further development of visualization

iii

methods when working with large-scale, high-dimensional data, where commonly

used visualization tools are either too simplistic to gain a deeper insight into the

data properties, or are too cumbersome or computationally costly. We present a novel

method for data ordering and visualization. By combining efficient clustering using

k-means algorithm and near-optimal ordering of found clusters using state-of-the-

art TSP-solver, we obtain efficient algorithm that achieves performance better than

existing, computationally intensive methods. In addition, we present visualization

method for smaller-scale problems based on object matching. The experiments show

that the methods allow for fast detection of hidden patterns, even by users without

expertise in the areas of data mining and machine learning.

Supervised learning is another important task, often intractable in many mod-

ern applications due to time and memory constraints, considering prohibitively large

scales of the data sets. To address this issue, we first consider Multi-hyperplane

Machine (MM) classification model, and propose online Adaptive MM algorithm

which represents a trade-off between linear and kernel Support Vector Machines

(SVMs), as it trains MMs in linear time on limited memory while achieving com-

petitive accuracies on large-scale non-linear problems. Moreover, we present a C++

toolbox for developing scalable classification models, which provides an Application

Programming Interface (API) for training of large-scale classifiers, as well as highly-

optimized implementations of several state-of-the-art SVM approximators. Lastly,

we consider parallelization and distributed learning approaches to large-scale super-

vised learning, and propose AROW-MapReduce, a distributed learning algorithm

for confidence-weighted models using MapReduce framework. Experimental evalu-

ation of the proposed methods shows state-of-the-art performance on a number of

synthetic and real-world data sets, further paving a way for efficient and effective

knowledge extraction from big data problems.

iv

To my parents Borka and Slavko, my sister Tijana, brother Stefan.

To Djuric, Cvijanovic, Savic families.

To Mitzi.

This dissertation is a result of their continuous love and support.

In loving memory of my grandparents

Ljubica and Milos Cvijanovic,

Zorka and Ilija Djuric.

v

ACKNOWLEDGEMENTS

I am deeply grateful and indebted to my advisor Dr Slobodan Vucetic for introducing

me to the world of data mining and machine learning, for keeping my attention to

the state-of-the-art research directions, for all his patience, invaluable advice and

continuous support and encouragement during my graduate studies.

Special thanks to Dr Zoran Obradovic, a great professor and researcher from

whom I learned a lot. I would also like to thank Dr Longin Jan Latecki and Dr

Li Bai for serving on my dissertation committee and for providing me with useful

comments and valuable suggestions.

During my graduate studies I was fortunate enough to work as a teaching assistant

for Prof. Longin Jan Latecki, Prof. John Fiore, Prof. Wendy Urban, and Prof. Abbe

Forman. Their experience and enthusiasm about the subjects being taught were of

great inspiration throughout my years of teaching. I am also like to thankful to all

my students at the Department of Computer and Information Sciences.

I thank professors and staff at the Department of Computer and Information

Sciences for making such a friendly and supportive working environment. I would

especially like to thank Ruth Briggs, for all the help, encouragement, and chocolate

chip cookies that a graduate student may ever need, and professor Justin Y. Shi, for

always being there for us graduate students.

I had a great opportunity to work closely with bright colleagues from Dr Slobodan

Vucetic’s lab, Mihajlo Grbovic, Vuk Malbasa, Zhuang Wang, Vladimir Coric, Liang

vi

Lan, Ana Milicic, Yi Jia, Shanshan Zhang, and Lakesh Kansakar. Thank you all for a

prosperous collaboration, useful and motivating discussions during our lab meetings.

Special thanks go to my friends at the Department of Computer and Informa-

tion Sciences, Mihajlo Grbovic, Vladan Radosavljevic, Xin Li, Kristiyan Georgiev,

Feipeng Zhao, Joseph Jupin, Xue Wei, Min Xiao, Meng Yi, Qingqing Cai, Moussa

Taifi, Vladimir Ouzienko, Kosta Ristovski, Vuk Malbasa, Uros Midic, Vladimir Coric,

Dusan Ramljak, Zhuang Wang, Mohamed Ghalwash, Suicheng Gu, Gregory John-

son, Solomon Jones, and many others, who I may have forgotten to mention, for

making my life at Temple University pleasant and enjoyable.

I would also like to thank all my friends back home in Serbia and here in Philadel-

phia for being with me throughout all these years.

Lastly, I would like to acknowledge support from the National Science Foundation

during my graduate studies, through its grants IIS-0546155 and IIS-1117433.

vii

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS vi

LIST OF TABLES xii

LIST OF FIGURES xiv

1 INTRODUCTION 1

1.1 Data Visualization . 2

1.2 Learning classification models on large-scale data 3

2 VISUALIZATION THROUGH MATRIX REORDERING 6

2.1 Introduction . 6

2.2 Background . 9

2.2.1 Data visualization . 10

2.2.2 Data reordering . 11

2.2.3 Traveling salesman problem (TSP) 13

2.3 Methodology . 15

2.3.1 Differential Predictive Coding (DPC) 15

2.3.2 Relationship between entropy minimization and ordering . . . 16

2.3.3 Reordering for entropy minimization 18

2.3.4 Feature scaling . 18

2.3.5 TSP-means algorithm . 19

viii

2.3.6 Further details . 22

2.4 Experiments . 24

2.4.1 Validation of TSP-means . 24

2.4.2 Validation of EM-ordering . 28

2.4.3 Applications of EM-ordering 30

3 VISUALIZATION THROUGH OBJECT MATCHING 33

3.1 Introduction . 33

3.2 Kernelized Sorting . 35

3.3 Convex Kernelized Sorting . 37

3.3.1 Numerical optimization . 40

3.3.2 Soft and hard assignments . 42

3.4 Experiments . 43

3.4.1 Data visualization . 44

3.4.2 Image alignment . 45

3.4.3 Multilingual document alignment 47

4 ONLINE LEARNING OF MULTI-HYPERPLANE CLASSIFICA-
TION MODELS 50

4.1 Introduction . 50

4.2 Preliminaries . 54

4.2.1 Multi-Class SVM . 54

4.2.2 Multi-Hyperplane Machine . 55

4.2.3 MM Training . 56

4.3 Adaptive Multi-Hyperplane Machine (AMM) 58

4.3.1 Solving the Sub-Problem (4.7) 58

4.3.2 Number of Weights . 60

4.3.3 Generalization Error . 61

ix

4.3.4 Weight Pruning . 62

4.3.5 Online AMM . 65

4.3.6 Implementation Details . 66

4.4 Experiments . 67

4.5 Improving the representability of AMM algorithm 72

4.5.1 Connection between MM and LVQ models 73

4.5.2 Growing AMM (GAMM) algorithm 75

4.5.3 Preliminary results . 78

5 BUDGETEDSVM: A TOOLBOX FOR SCALABLE SVM APPROX-
IMATIONS 81

5.1 Introduction . 81

5.2 Non-linear Classifiers for Large-scale Data 82

5.2.1 Adaptive Multi-hyperplane Machines (AMM) 82

5.2.2 Low-rank Linearization SVM (LLSVM) 83

5.2.3 Budgeted Stochastic Gradient Descent (BSGD) 83

5.2.4 Time and space complexity 84

5.3 The Software Package . 84

5.3.1 Performance comparison . 86

6 DISTRIBUTED LEARNING OF CLASSIFICATION MODELS 87

6.1 Introduction . 87

6.2 Confidence-Weighted Classification 90

6.3 MapReduce framework . 92

6.3.1 AllReduce framework . 95

6.4 Confidence-Weighted Classification using MapReduce Framework . . 96

6.4.1 Reducer optimization of AROW-MR 97

6.5 Experiments . 99

x

6.5.1 Validation on synthetic data 99

6.5.2 Ad Latency problem description 101

6.5.3 Validation on Ad Latency data 103

7 CONCLUSION 108

BIBLIOGRAPHY 110

xi

LIST OF TABLES

2.1 Complexities of the reordering algorithms 23

2.2 Evaluation of performance on waveform data of size 10,000; listed LK
time is required for solving one TSP 25

2.3 FOM scores for benchmark data sets (EM-1 and EM-5 denote EM-
ordering after 1 and 5 iterations of Algorithm 1, respectively, baseline
result is FOM before reordering; also shown size n, dimensionality m,
and number of classes c) . 29

3.1 Average number of correctly aligned non-English documents to doc-
uments in English (numbers in the parentheses are the best obtained
performances; baseline method matches the documents according to
their lengths) . 49

4.1 Summary of notation . 53

4.2 Summary of large datasets . 67

4.3 Error rate and training time comparison with large-scale algorithms
(RBF SVM is solved by LibSVM unless specified otherwise. Poly2
and LibSVM results are from Chang et al. (2010)). 68

4.4 The number of weights in the classifiers 68

4.5 Error rate as a function of checkerboard pattern 80

5.1 Time and space complexities of the classification algorithms 84

5.2 Error rates (in %) and training times1 on benchmark data sets 86

6.1 Features from the Ad Latency data set 104

6.2 Performance comparison of AROW and AROW-MapReduce on Ad
Latency task in terms of the AUC . 105

xii

6.3 Performance of distributed logistic regression 106

xiii

LIST OF FIGURES

2.1 (a) Binary tree after recursive k-means, with k � 2; (b) Resulting
2l-ary tree (l = 2), obtained after line 3 in Algorithm 2; (c) TSP
defined on node 5 is solved on its children, together with left and
right neighbor nodes 18 and 7, see Algorithm 3 19

2.2 Performance of ordering algorithms on circles data (n = 500, path
length L is given in parentheses) . 26

2.3 Execution times on 2-D and 3-D uniform data set 27

2.4 FOM and L measures on a 2-D toy data set (color encodes the order
of an example in the ordered data set, ranging from white to black):
(a) LK (0.038; 181.44); (b) TSP-means (0.033; 199.86) 28

2.5 Visualization of waveform, the last 3 columns are class assignments
averaged over sliding window of length 20; FOM and L measures given
in parentheses . 30

2.6 Traffic data: (a) the original data set (brighter pixels denote higher
volumes); (b) the ordered data set (white lines denote user-selected
cluster boundaries); (c) color-coded sensor locations in Minneapolis
road network (neighboring clusters were assigned similar colors) . . . 31

2.7 stocks data set (9 rightmost columns encode industries; dark pixels in
the heatmap encode high negative returns, while bright pixels encode
high positive returns): (a) the original data set; (b) the data set after
reordering and clustering upon inspection of the heatmap 31

3.1 Alignment of 320 images to ”AAAI 2012” letter grid 45

3.2 Number of correctly recovered images for different set sizes (error bars
represent confidence intervals of one standard deviation, calculated
after 10 runs) . 46

xiv

3.3 Alignment results of CKS for matching of 320 left and right image
halves (206 correct matches) . 47

3.4 Analysis of CKS performance on the task of aligning 320 left and right
images halves . 48

4.1 Convergence of MM training . 56

4.2 Detailed results on url data (upper two panels) and mnist8m bin data
(lower two panels) . 71

4.3 (a) Visualizing proof of Theorem 4; (b) GAMM on 1� 7 XOR-like data 73

4.4 Simple 1-dimensional XOR example where SGD training fails 77

4.5 (a) and (b) MM performance on 4� 4 checkerboard data; (c) and (d)
2-D weights data set . 78

4.6 AMM and GAMM performance on noisy 4� 4 checkerboard data set 79

6.1 Results on the synthetic waveform data set (with 50,000 training ex-
amples) . 100

6.2 ROC curve for AROW-MR and AROW 105

xv

CHAPTER 1

INTRODUCTION

Recent advent of high-throughput applications which generate data sets of unprece-

dented scales, with billions of high-dimensional data examples stored on hundreds of

terabytes of memory, such as remote sensing, crowd-sourcing, high-energy physics,

social networks, or high-frequency trading, has brought forward a clear need for

computational approaches that can efficiently learn from Big Data problems (Bizer

et al., 2012; Labrinidis and Jagadish, 2012; Lohr, 2012). Emerging conferences that

specifically address the Big Data issues, as well as the number of recent publica-

tions related to large-scale tasks, underline the significance of this emerging field.

Moreover, recently introduced Big Data Research and Development Initiative by

the United States government, aimed at providing support for these efforts, clearly

indicates globally-recognized, strategic importance, as well as future potential and

impact of research related to large-scale data (Mervis, 2012).

With the emergence of extremely large-scale data sets, researchers in machine

learning and data mining communities are faced with numerous challenges related

to the sheer size of the problems at hand, as many well-established supervised and

unsupervised tools were not designed and are not suitable for such memory- and

1

time-intensive tasks. The inadequacy of standard machine learning tools in this new

setting has led to investment of significant research efforts into the development of

novel methods that can address such challenges.

These important problems are in the focus of this thesis, and we propose novel

tools suitable for handling of large-scale data. First, we consider unsupervised ap-

proaches to data analysis, and explore and describe new visualization methods for

fast knowledge extraction. We introduce data visualization problem using method

based on efficient data reordering, and also describe method for smaller-scale data

based on object matching. Next, we consider supervised learning setting and pro-

pose algorithms for fast training of accurate classification models on large data sets,

capable of learning state-of-the-art classifiers on data sets with millions of examples

and features within minutes.

1.1 Data Visualization

Data visualization has been used for hundreds of years in scientific research (Friendly,

2006) as it allows researchers to get a better insight into data they are studying. Visu-

alization is used for exploratory analysis prior to application of statistical methods, it

can also be used as a confirmatory tool to disprove or confirm hypotheses, while some-

times visual presentation is an ultimate goal (Keim et al., 2006). However, despite its

long history and significant advantages of visual analysis of data (Friendly and Kwan,

2003), there still remains a need for further development of visualization methods.

This is particularly evident when working with large-scale, high-dimensional data,

where commonly used visualization tools are either too simplistic to gain a deeper

insight into the data properties (e.g., histograms, scatter plots, pie and bar charts),

or are too cumbersome and computationally costly in large-scale setting, such as

parallel coordinates (Inselberg, 1985; Inselberg and Dimsdale, 1991), correlation ma-

trix plots (Friendly, 2002), and biplots and star plots (Friendly and Kwan, 2003).

2

Inadequacy of standard tools has been recognized in a number of recent papers, as

summarized in the statement from Vempala (2012): Data in high dimension are dif-

ficult to visualize and understand. This has always been the case and is even more

apparent now with the availability of large high-dimensional datasets and the need to

make sense of them.

In this thesis we present novel methods for data ordering and data visualization.

By combining efficient clustering of data using k-means algorithm, and near-optimal

ordering of found clusters using state-of-the-art TSP-solver, we obtain efficient algo-

rithm (Djuric and Vucetic, 2013) that achieves performance better than existing ones,

computationally more intensive methods. We complement this large-scale method by

describing state-of-the-art object matching-based visualization based on Kernelized

Sorting algorithm (Djuric et al., 2012), suitable for smaller-scale problems, which

also helps to further exemplify and highlight the problems encountered when work-

ing with big data. Experimental evaluation confirms that the proposed methods

allow for fast detection of interesting and useful patterns inherent to the data, even

for users without expertise in data mining and machine learning.

1.2 Learning classification models on large-scale data

Supervised learning is another important task, often intractable in many modern ap-

plications due to time and memory constraints, considering prohibitively large scales

of the data sets. Classification tasks are of particular interest, as the problem of

classifying input data examples into one of finite number of classes can be found in

many areas of machine learning. However, state-of-the-art non-linear classification

methods, such as Support Vector Machines (SVMs) (Cortes and Vapnik, 1995), are

not applicable to truly big data due to very high time and memory overhead, which

are in general super-linear and linear in the data size N , respectively, significantly

limiting their use when solving large-scale problems. Several methods have been

3

proposed to make SVMs more scalable, ranging from algorithmic speed-ups (Platt,

1998; Kivinen et al., 2002; Vishwanathan et al., 2003; Tsang et al., 2005; Rai et al.,

2009), to parallelization approaches (Graf et al., 2004; Chang et al., 2007; Zhu et al.,

2009). However, scalability of SVM training is inherently limited as non-linear SVMs

are characterized by linear growth of model size with training data size N (Stein-

wart, 2003a). This led to an increased interest in linear SVM models (Gentile, 2002;

Li et al., 2002; Shalev-Shwartz et al., 2007a; Fan et al., 2008), which have constant

memory and OpNq training time and provide a scalable alternative to non-linear

SVMs, albeit with a certain drop in prediction accuracy. Unfortunately, even lin-

ear time complexity may not be sufficiently efficient for modern data sets having

petabytes of memory space, requiring researchers to develop and adopt new machine

learning approaches in order to address extremely large-scale classification tasks.

To address the deficiencies of standard classification tools designed for small-scale

problems, in this thesis we propose novel linear and non-linear classifiers suitable for

large-scale setting. We first review Multi-hyperplane Machine (MM) classification

model, and propose online Adaptive MM (AMM) algorithm Wang et al. (2011) which

represents a trade-off between linear and kernel Support Vector Machines (SVMs),

as it trains MMs in linear time on limited memory while achieving competitive ac-

curacies on large-scale non-linear problems. Moreover, we present a C++ toolbox

for developing scalable classification models (Djuric et al., 2013a), which provides an

Application Programming Interface (API) for training of large-scale classifiers. In

addition to the API, the toolbox provides easy-to-use command prompt and Matlab

interfaces to highly-optimized implementations of several recently proposed SVM ap-

proximators, allowing the users easy access to efficient and accurate state-of-the-art

large-scale classifiers. Lastly, we consider parallelization and distributed approaches

to large-scale supervised learning using Hadoop, and propose AROW-MapReduce

(Djuric et al., 2013b), a distributed learning algorithm for training of confidence-

4

weighted models using MapReduce framework. Experimental evaluation of the pro-

posed methods shows state-of-the-art performance on a number of synthetic and

real-world data sets, further paving a way for efficient and effective knowledge ex-

traction from big data problems.

5

CHAPTER 2

VISUALIZATION THROUGH MATRIX
REORDERING

2.1 Introduction

Data visualization has a long history in scientific research (Friendly, 2006) as it

allows researchers to get a better insight into data they are studying. Visualization

is used for exploratory analysis prior to application of statistical methods, it can also

be used as a confirmatory tool to disprove or confirm hypotheses, while sometimes

visual presentation is an ultimate goal (Keim et al., 2006). However, despite its long

history and significant advantages of visual analysis of data (Friendly and Kwan,

2003), there still remains a need for further development of visualization methods.

This is particularly evident when working with large-scale, high-dimensional data,

where commonly used visualization tools are either too simplistic to gain a deeper

insight into the data properties (e.g., histograms, scatter plots, pie and bar charts), or

are too cumbersome and computationally costly in large-scale setting, such as parallel

coordinates (Inselberg, 1985; Inselberg and Dimsdale, 1991), correlation matrix plots

(Friendly, 2002), and biplots and star plots (Friendly and Kwan, 2003). Inadequacy

6

of standard tools has been recognized in a number of recent papers, as summarized in

the statement from Vempala (2012): Data in high dimension are difficult to visualize

and understand. This has always been the case and is even more apparent now with

the availability of large high-dimensional datasets and the need to make sense of them.

In this paper, we focus on visualizing data sets that can be represented as an

n�m data table, where rows represent n examples and columns represent m features.

Standard data exploration tools such as histograms and scatter plots provide only a

basic understanding of the data; histogram is a tool for understanding distributions

of each feature, while scatter plot is a tool for understanding correlations between

pairs of features. A more advanced visualization approach is low-dimensional data

projection, where examples are projected into a two-dimensional subspace and visu-

alized using a scatter plot, such as Principal Component Analysis (PCA), Locally

Linear Embedding (LLE) (Roweis and Saul, 2000), or Stochastic Neighborhood Em-

bedding (SNE) (Hinton and Roweis, 2002). However, projecting examples into a

2-D subspace and visualizing them using a scatter plot often implies a significant

loss of information. Moreover, while the resulting 2-D or 3-D scatter plots can pro-

vide insight into an underlying manifold structure, they may be difficult to interpret

and provide actionable knowledge. This is evident when examining related publi-

cations that typically use non-linear projection methods to project a set of images

(e.g., faces, digits) to a 2-D scatter plot, and then plot the original image next to

the corresponding projected point to illustrate the quality of visualization. However,

practical problem is that there are only several types of data sets where the projected

examples can be conveniently annotated in a lower-dimensional plot.

An alternative to showing two- and three-dimensional scatter plots of the pro-

jected data is to plot the original data. By observing that a data set can be repre-

sented as a two-dimensional matrix, it becomes evident that is could be plotted as

a heatmap (e.g., using imagesc command in Matlab and Octave). Since examples

7

and features in a typical data set are sorted in an arbitrary order (e.g., randomly, or

by example or feature ID), heatmap of the original data might not be informative.

There are two possible alternatives for improving the heatmap. One is to perform

clustering (e.g., k-means clustering) and sort all examples based on which cluster

they are assigned to. However, the outcome greatly depends on the chosen number

of clusters, and could result in artifacts where it might appear that there are clear

clusters even when this is not the case. More appropriate strategy for plotting data

heatmaps is to first reorder its rows (columns), such that similar rows (columns) are

placed next to each other (Bertin and Barbut, 1967; Mäkinen and Siirtola, 2000;

Hahsler et al., 2007).

There are many possible approaches for ordering of data tables. One is to project

examples onto the largest principal component obtained by PCA or to a principal

curve obtained by LLE, and to order the examples by traversing the line or the

curve. However, ordering is not an explicit objective of either PCA or LLE but

only a byproduct of a manifold search, and may result in lower-quality visualization.

An alternative, very popular in gene expression analysis, is to perform hierarchical

clustering and to order examples by traversing leaves of the binary tree (Eisen et al.,

1998). However, the resulting algorithm is computationally expensive and can be

applied only to data sets with several thousand examples. Moreover, there are 2n�1

ways to order the resulting hierarchical tree, which may open a costly optimization

problem (Bar-Joseph et al., 2002). Another interesting approach presented in Ding

and He (2004) is ordering based on spectral clustering. Similarly to hierarchical

clustering approaches and unlike the method proposed in this paper, in large-scale

setting spectral analysis becomes time- and memory-intensive, and the algorithm

may also give suboptimal results when the data consists of several clusters that are

not well separated.

Data table reordering can also be seen as the Traveling Salesman Problem (TSP)

8

(Climer and Zhang, 2004), where examples represent cities, and the task is to find a

path through all the cities such that the traversal cost is minimized. While TSP is an

NP-complete problem that requires exponential computation time, there are efficient

heuristics that in practice give high-quality tours. The Lin-Kernighan (LK) method

(Lin and Kernighan, 1973) has been widely accepted as the method providing the best

trade-off between tour quality and computational speed, scaling as Opn2.2q; as such,

it is applicable only to moderately-sized data sets. Moreover, treating reordering

directly as TSP carries a strong assumption that the features were properly scaled

from the perspective of visual quality of heatmaps.

We propose a novel ordering method that addresses shortcomings of the existing

methods. Our main contributions are:

 Ordering is formalized as finding a permutation of rows (or columns) that results

in a maximally compressible data set, as defined by the entropy of the residuals of

predictive coding.

 The problem is solved by an Expectation-Maximization (EM)-like algorithm,

which alternatively solves a TSP and reweights features based on the quality of the

resulting tour.

 A fast O
�
n logpnq� TSP solver is proposed, called the TSP-means, that finds

tours with lengths comparable to those found by the LK algorithm. It is based on a

construction of a binary tree by recursive use of k-means (with k � 2) and subsequent

reordering of the tree nodes by the LK algorithm.

2.2 Background

In this section we describe the works and ideas that led to the proposed visualiza-

tion method. We first introduce the existing approaches for visualization of high-

dimensional data, and then present matrix reordering and data seriation techniques.

Lastly, we give an overview of the TSP and the existing methods for solving this

9

classical combinatorial problem.

2.2.1 Data visualization

Visualization of data has been an integral part of scientific research from the earliest

times, with visual representations of data appearing in scientific literature from as

early as the 10th century (Friendly, 2006). A great number of approaches for data

visualization has been introduced since (see Keim, 2001, 2002), with visualization

methods most commonly used in our everyday lives, such as histograms and pie

charts often encountered in newspaper and weather reports, being in use for more

than a century in a nearly unchanged form (Friendly, 2006; Wilkinson and Friendly,

2009; Loua, 1873). However, recent technological advances and emergence of large-

scale data sets have clearly indicated limitation of the existing methods in this new

setting (Keim et al., 2006; Vempala, 2012), and there remains a clear need for the

development of novel visualization approaches.

Visualization of high-dimensional data is of particular interest (Vempala, 2012),

and this problem has received significant attention in the visualization community.

Often explored direction is finding lower-dimensional representation of the data,

which could then be more easily visualized using the standard visualization tools. In

Vadapalli and Karlapalem (2009) and Tatu et al. (2012), the authors propose meth-

ods that explore interactions between examples in subspaces of the original high-

dimensional space, and plot these lower-dimensional representations in a form of

similarity matrices or scatter plots in order to gain better understanding of the data.

However, the methods become intractable as number of examples and dimensions

grows, and may not be suitable for large-scale visualization tasks. Instead of using

subspace search, another idea is to compute more involved projections of the data

into 2- or 3-D spaces. This approach includes PCA, where examples are projected

along the directions describing most of the variance, and non-linear projections such

10

as LLE (Roweis and Saul, 2000), SNE and its extension t-SNE (Hinton and Roweis,

2002; Van der Maaten and Hinton, 2008), Self-Organizing Maps (SOM) (Williams

et al., 2008), Isomap (Tenenbaum et al., 2000) or Laplacian eigenmaps (Belkin and

Niyogi, 2003), which attempt to project examples to a lower-dimensional, non-linear

manifold. However, lower-dimensional projection methods in most cases imply a sig-

nificant loss of information, and the resulting plots may also be difficult to interpret

by non-experts for whom the visualization results are often intended.

To address this issue, an interesting approach is to represent examples in their

original, high-dimensional space. A very popular technique implementing this idea

are parallel coordinates (Inselberg, 1985; Inselberg and Dimsdale, 1991), which have

been used for data visualization for more than a century (Friendly, 2006). However,

although parallel coordinates can be used to quickly discover trends in moderate-sized

data sets, they become cluttered when number of examples or dimensions becomes

large (Fua et al., 1999; Walter et al., 2003; Artero et al., 2004), thus significantly lim-

iting the quality of visualization. On the other hand, an alternative visualization tool

are heatmaps, with very long and rich history (Wilkinson and Friendly, 2009; Loua,

1873). In contrast to parallel coordinates, heatmaps do not suffer from the deficien-

cies related to extreme data sizes, and can be used in large-scale setting to provide

a holistic view of the data. We use this insight and propose a scalable algorithm

for generating high-quality, large-scale heatmaps, obtained by data preprocessing

through reordering.

2.2.2 Data reordering

Data reordering or seriation is an important step in exploratory data analysis. This

family of unsupervised methods is based on the following observation: assuming

that a data set is represented in a form of a two-dimensional reorderable matrix, any

permutation of its columns or rows does not lead to loss of information (Mäkinen

11

and Siirtola, 2000). Therefore, by permuting rows (columns) so that similar rows

(columns) are close, followed by visualization of the modified data matrix, we can re-

veal unknown regularities and patterns in the data without modifying the data. Data

ordering has deep roots in a number of disciplines in social studies (e.g., archeology

Petrie, 1899, anthropology Czekanowski, 1909; for an excellent overview see Liiv,

2010 and references therein). Beyond social sciences, data ordering has been popular

in gene expression data analysis in bioinformatics (Eisen et al., 1998; Bar-Joseph

et al., 2002) and analysis of geographical data (Guo, 2007). It is also important

in bandwidth minimization (Del Corso and Manzini, 1999) and data compression

(Blandford and Blelloch, 2002; Pinar et al., 2005).

We describe in more detail several popular methods for data ordering. As baseline

methods we can consider LLE and PCA, two popular low-dimensional projection

algorithms. One-dimensional projection by either PCA or LLE effectively induces a

linear ordering in the new 1-D space, and can be used to reorder rows and columns

of the data matrix. LLE method first finds k nearest neighbors in the original high-

dimensional space for each example, then attempts to project the data to lower-

dimensional space while keeping the relationships between neighbors the same. Due

to the fact that all distances between examples need to be computed, the time

complexity of the algorithm amounts to Opn2q. Regarding PCA, we can use the

first principal component and project the data onto it. As we only need to compute

the first principal component (found in Opnq (Roweis, 1998)), this algorithm is very

fast, and projection of the data to the first principal component and subsequent

sorting of the projected values result in modest O
�
n logpnq� time complexity. We

can also consider ordering based on spectral clustering (SC) (Ding and He, 2004),

which can be seen as a low-dimensional, non-linear projection method. In their work,

the authors show that linear ordering of examples can be found by computing the

second largest eigenvector of the normalized similarity matrix. However, similarly to

12

LLE, time and space complexity of Opn2q render the method infeasible in large-scale

setting.

Two approaches popularized in bioinformatics are hierarchical clustering (HC)

(Eisen et al., 1998) and hierarchical clustering with optimal leaf ordering (HC-olo)

(Bar-Joseph et al., 2002). Hierarchical clustering is a bottom-up method, which

starts by clustering two most similar examples and represents this new cluster with its

centroid. Examples and centroids are repeatedly grouped together until all examples

belong to a single, root cluster. The method finds binary tree representation of the

data, resulting in Opn2q time complexity as distances between all examples need to

be calculated. In order to find ordering of examples, we simply read leaves of the tree

from left to right. However, there are 2n�1 linear orderings of tree nodes that obey

the obtained tree structure (i.e., we can flip each of n � 1 internal nodes and still

have the same tree structure). To solve this issue, in Bar-Joseph et al. (2002) the

authors present a dynamic programming approach to find the optimal leaf ordering

for a given tree structure in Opn3q time, which makes the algorithm intractable for

larger data sets.

2.2.3 Traveling salesman problem (TSP)

Traveling Salesman Problem is a classical problem in computer science. The problem

can be described as follows: given n cities, along with non-negative costs of traveling

from the ith city to the jth city dpi, jq, i, j P t1, 2, ..., nu, find a shortest path such

that each city is visited exactly once and the path completes in the starting city.

More formally, letting π be permutation (or ordering) of n cities, the task is to find

optimal permutation π� so that the total tour length is minimized,

π� � arg min
πPΠn

�
d
�
πpnq, πp1q�� ņ

i�2

d
�
πpi� 1q, πpiq�

�
, (2.1)

13

where Πn is the set of all permutations of the first n integers, and πpiq denotes the

ith city to be visited. The TSP is NP-complete (Karp, 1972), thus very difficult to

solve optimally.

Due to the NP-completeness of the problem, TSPs were historically very hard

to solve with limited computational resources. One of the first large TSP problems

solved to optimality involved only 49 cities, and the solution was described in 1954

in Dantzig et al. (1954). Interestingly, the authors solved the problem by manu-

ally applying ideas that later led to the cutting-plane algorithm (Gomory, 1958).

Several polynomial-time heuristic methods with upper bounds on performance have

been proposed since to approximately solve the TSP, including nearest neighbor,

nearest insertion, furthest insertion (Rosenkrantz et al., 1977), Christofides heuristic

(Christofides, 1976), and LK heuristic (see Gutin and Punnen, 2002 for a comprehen-

sive overview of methods). Currently, the largest TSP instance solved to optimality

comprises nearly 86,000 cities (Applegate et al., 2009).

One of the most powerful heuristics for finding optimal or near-optimal solutions

to TSP is the LK method, having Opn2.2q time complexity. The method introduces

a variable λ-opt move (where λ ¥ 2) to reach a better tour, meaning that at each

iteration we search for increasing λ number of links on the current tour that could

be broken and replaced by the same number of links currently not on the tour.

The λ-opt move is performed if the resulting, modified tour has lower cost than the

current solution. The method starts with a random tour, and then iteratively applies

λ-opt moves, until no such move leads to a better solution (it is then said that the

current tour is λ-optimal). An efficient implementation of LK heuristic is presented

in Helsgaun (2000), which achieved the best results on all known large-scale TSP

problems.

An interesting application of TSP solvers is in matrix reordering and clustering,

where each data example is considered a city. Interestingly, one of the first matrix

14

reordering techniques, the Bond Energy Algorithm (BEA), is in fact a simple nearest

insertion TSP heuristic (McCormick et al., 1972). In Climer and Zhang (2004), the

authors propose adding several ”dummy” cities which have distances equal to 0 to

all other cities. In this way, after computing the shortest tour through all cities, the

”dummy” cities act as boundaries between different clusters. However, as discussed

in Biedl et al. (2001) and as shown in the experimental section of this paper, directly

applying TSP to the whole data set can lead to ordering that is very sensitive to noise

inherent in the data set, and consequently to poor data visualization. In DiMaggio

et al. (2008) the authors propose a TSP-based biclustering method, which first finds

clusters across rows, followed by clustering across columns of a data matrix to obtain

meaningful biclusters. As the proposed methods apply TSP solvers directly on the

whole data set, they are not scalable to large data sets due to super-quadratic time

complexity of the best available TSP solvers. In contrast to the existing methods, we

present an effective algorithm with time requirement of only Opn logpnqq, allowing

for high-quality, scalable reordering and visualization of large data matrices.

2.3 Methodology

An intuitive goal of ordering is to find permutation of rows so that similar examples

are grouped together. We propose a principled approach for ordering that finds per-

mutation of rows producing a maximally compressible data set. We will explain how

to order rows, while noting that columns can be ordered using the same procedure

on the transposed data table.

2.3.1 Differential Predictive Coding (DPC)

Let us assume a data set D is given in a form of an n � m data table, D �
rxijsi�1,...,n,j�1,...,m, where the ith row vector xi � rxi1, . . . , xims is the ith example

having m numeric features. DPC replaces the ith example xi with its difference from

15

the previous example, εi � xi�xi�1, where εi is called the DPC residual. Therefore,

DPC transforms the data table D � rxT
1 ,x

T
2 , . . . ,x

T
n sT into DDPC � rxT

1 , ε
T
2 , . . . , ε

T
n sT

without the loss of information, as the original data set D can be reconstructed from

DDPC .

If the data table D is ordered such that similar rows are placed next to each other,

DPC residuals ε would be smaller than the original examples xi. As a result, the

entropy of rows in DDPC would be smaller than the entropy of rows in D, indicating

that DDPC is more compressible than D. The entropy of the original examples

is defined as HDpxq � Er� logpPX pxqqs, where PX pxq is the probability density of

vectors x, and entropy of DPC residuals is defined as HDPCpεq � Er� logpPEpεqqs,
where PEpεq is a probability density of vectors ε. Thus, small entropy HDPCpεq
implies that DPC residuals are small, which in turn implies that D is a well-ordered

data set. As a result, entropy of the DPC residuals is a good measure of ordering

quality. We note that HDPCpεq can be estimated as

HDPCpεq � � 1

n� 1

ņ

i�2

logPEpxi � xi�1q. (2.2)

2.3.2 Relationship between entropy minimization and ordering

In data mining, data sets can often be considered as arbitrarily ordered collections

of examples and features. As a consequence, any permutation π of rows from D �
rxisi�1,...,n, resulting in Dπ � rxπpiqsi�1,...,n, does not lead to loss of information. We

propose that the optimal permutation π� is the one that results in minimization of

entropy of DPC residuals,

π� � arg min
πPΠn

Hπ
DPC , (2.3)

where we used superscript π to denote the specific permutation of rows of the data

table D.

16

We observed that when applying DPC on a number of well-ordered data sets

with numerical features PE often resembles multivariate Gaussian or Laplacian dis-

tribution with diagonal covariance matrix. Let us first consider the case when PE is

a multivariate Gaussian distribution,

PEpεq � p2 � πq�m{2|Σ|�1{2 � expp�0.5 � εT � Σ�1 � εq, (2.4)

where Σ is a diagonal covariance matrix with the jth element on a diagonal equal

to the variance σ2
j of the DPC residuals of the jth feature. Hπ

DPCpεq could then be

expressed as

Hπ
DPCpεq �

n

2pn� 1q

�
m � logp2πq �

m̧

j�1

log σj

�
�

1

2pn� 1q
ņ

i�2

m̧

j�1

pxπpiq,j � xπpi�1q,jq2
σ2
j

.

(2.5)

When PE is modeled as a Laplacian distribution, and assuming independence of

elements of ε, PEpεq is equal to

PEpεq �
m¹
j�1

1

2bj
expp�|εj|

bj
q, (2.6)

where b2
j � σ2

j {2. The corresponding Hπ
DPCpεq is similar to (2.5), with the main

difference being that |σj| is used instead of σ2
j in the third term of (2.5).

Upon modeling PE as Gaussian or Laplacian distribution, and observing that this

results in introduction of m new parameters tσjuj�1,...,m, we can restate (2.3) as

pπ�, tσ�j uj�1,...,mq � arg min
π,tσ�j uj�1,...,m

Hπ
DPCpεq. (2.7)

Solving (2.7) requires finding the best ordering and the best estimate of variance of

DPC residuals for each feature.

17

2.3.3 Reordering for entropy minimization

We propose to solve (2.7) in an iterative manner similar to the EM algorithm. The

method is given as Algorithm 1. In the M-step (line 2), by assuming that values of σj

are known, the problem reduces to finding ordering π that minimizes the last term

from (2.5), which is equivalent to solving the TSP on examples whose features are

downscaled using tσjuj�1,...,m. Given the current ordering π, the goal of the E-step

(line 3) is to find tσjuj�1,...,m that minimizes Hπ
DPCpεq. It is evident that the E-step

is equivalent to finding σj using the maximum likelihood approach, where σj is found

as

σ2
j �

1

n� 1

ņ

i�2

pxπpiq,j � xπpi�1q,jq2. (2.8)

Algorithm 1 converges to a local minimum, since both E- and M-steps lead to decrease

in Hπ
DPCpεq. As the algorithm resembles the EM and is based on an information-

theoretic principle of Entropy Minimization, we call it the EM-Ordering.

Note that successful ordering will result in small σj for features that are correlated

to others, and large σj for noisy or uncorrelated features. Intuitively, if the jth feature

cannot be ordered well during the procedure, its DPC entropy, and thus σj will be

increased. As a result, its importance will be reduced due to larger downscaling in

(2.5).

2.3.4 Feature scaling

We observe that the proposed algorithm allows for cases when for some features and

for some orderings it holds that HDpxjq Hπ
DPCpεjq, where HDpxjq and Hπ

DPCpεjq
are entropies of the jth feature and of its DPC residuals, respectively. If this is the

case, it might be preferable to ignore the jth feature during ordering. Considering

this observation, we propose two strategies:

18

1

4 5 76

10 151423221716 1918

1

4 5 67

23 1522101917 1816 14

2

11

3

10

5 76

l = 2

l = 2

(a)

(b)

(c)
151498

23221716 1918

1

4

Figure 2.1: (a) Binary tree after recursive k-means, with k � 2; (b) Resulting
2l-ary tree (l = 2), obtained after line 3 in Algorithm 2; (c) TSP defined on node 5
is solved on its children, together with left and right neighbor nodes 18 and 7, see
Algorithm 3

1. Hard feature scaling. In this case, features for which holds that HDpxjq
Hπ
DPCpεjq are scaled down to zero by introducing σj Ñ 8, in order to prevent their

adverse influence on the overall entropy minimization.

2. Soft feature scaling. In this case, no action is being taken for features

where HDpxjq Hπ
DPCpεjq.

Hard scaling results in a removal of the features that cannot be successfully

ordered and, as such, can be considered a feature selection algorithm. However, to

prevent removing features that at a given iteration just barely satisfy the condition

HDpxjq Hπ
DPCpεjq, but could be successfully ordered in future iterations of Alg.

1, we can use the following criterion:

3. Hard feature scaling with tolerance. The jth feature is removed if, for

some α ¡ 1, Hπ
DPCpεjq ¡ αHDpxjq.

2.3.5 TSP-means algorithm

In this section, we propose a TSP solver used in M-step of Algorithm 1, called TSP-

means. By combining data clustering and efficiently solving a number of small-scale

TSPs defined on the cluster centroids, we obtain a highly scalable algorithm. In

19

Algorithm 1 EM-ordering

Inputs: data set D; initial guess for tσjuj�1,...,m

Output: ordered set D; learned tσjuj�1,...,m

1. repeat until convergence
2. run TSP solver for current σj to find π
3. calculate σj for current ordering of D

Algorithm 2 Generation of 2l-ary tree T l

Inputs: binary tree T ; subtree depth parameter l
Output: 2l-ary tree T l

1. extend leafs of T at levels
�pi� 1q � l � 1

�
through pi � l � 1q to level i � l, i ¡ 0

2. select nodes of T at levels i � l, i ¥ 0 for inclusion in tree T l

3. connect nodes in T l originating from level i � l in T , i ¡ 0, to their
predecessor at level pi� 1q � l from T

4. add children to every leaf of T l, where the children are individual examples in
that leaf’s cluster

addition, as will be discussed later, by its design TSP-means often results in a more

informative visualization than when LK is directly used on all examples.

The solver, summarized in Algorithm 3, begins by recursively applying k-means

clustering with k � 2 (line 1), to create a binary-tree T representation of the data

set D, as shown in Figure 2.1(a). The root of the tree corresponds to the whole data

set and is represented by its centroid. Internal nodes correspond to clusters found

by running k-means on their parents, and are represented by the cluster centroids.

The k-means on a node is not performed if a node contains less than or exactly 2l

examples, where l is a user-defined parameter.

In the next step, as formalized in Algorithm 2 and illustrated in Figure 2.1(b),

we transform binary tree T into 2l-ary tree T l by keeping only nodes at every lth tree

level, starting with a root node. Each node at level pi � lq, i ¡ 0, becomes a child of

its predecessor at ppi� 1q � lqth level (e.g., nodes 22 and 23 become children of node

5). In addition, leafs at any level in the tree T also become leafs in the tree T l. For

20

Algorithm 3 TSP-means

Inputs: data set D; subtree depth parameter l
Output: ordered list L

1. create binary tree T by recursively splitting D
2. run Algorithm 2 on T to generate T l

3. set L Ð root r of T l

4. while (not all leaf nodes of T l in L)
5. for each z in L in left-to-right order
6. if (z has children)
7. solve local TSP defined on children of z and immediate neighbors of

z in the list L
8. replace z in L by its children, in order given by the TSP solution

example, node 10 becomes a child of node 5, as shown in Figure 2.1(b). Note that

leafs of the 2l-ary tree T l represent clusters with no more than 2l examples, and are

the same as leafs of T . Finally, we add another tree level to T l by making its current

leaf nodes parents of examples in their cluster. This results in the final 2l-ary tree

whose leaf nodes are the individual examples.

After the creation of 2l-ary tree, we perform a breadth-first traversal of the tree

from left to right (Alg. 3, lines 3 - 8). The main idea is to reorder the internal and leaf

nodes so that similar clusters and examples are closer, resulting in a good ordering of

the data set. For this purpose we create a list L, which initially holds only the root

of the tree (Algorithm 3, line 3). Then, we visit nodes in the list L sequentially from

left to right and solve a local TSP defined on centroids of children of the current

node in L, giving us an ordering where similar children are close (Algorithm 3, lines

4 - 7). Before moving on to the next node of the list L, we replace the current node

in the list L with its children reordered according to the TSP solution (Algorithm

3, line 8). Once we reach the end of the list L, we start again from the beginning.

For example, for the tree in Figure 2.1(b), we initialize L � r1s. We traverse the list

from left to right, and, after solving TSP defined on children of the current node of

the list (there is only node 1 at the moment), we replace node 1 in the list L with

21

its children in the order given by the TSP solution, resulting in L � r4, 5, 7, 6s, see

Figure 2.1(c). As we reached the end of the list, we start from the beginning and the

current node of L becomes node 4, whose children define the next TSP to be solved.

The algorithm completes when L contains only individual examples, and ordered

data set is returned in a form of the resulting list L.

TSP tour computed only on children of the current node of L would result in

discontinuity between tours of the neighboring nodes in L, as each local tour would

be computed irrespectively of the neighboring nodes. Therefore, to ensure that the

ordering is smooth, when solving a TSP defined on children of the current node

in L we also include its left and right neighbors from L if they exist. We set the

distance between left and right neighbor nodes to 0, so that they are guaranteed

to become neighbors on the found tour. After solving thus defined TSP, the found

tour is cut at these neighbors to obtain an ordered list, and the children of the

current node are reordered according to the TSP solution. For example, given L �
r17, 19, 16, 18, 5, 7, 6s, obtained after solving TSP defined by the previous current

node 4, we need to solve the TSP defined by the new current node 5. The TSP being

solved includes nodes t18, 10, 22, 23, 7u, and the resulting tour is r18, 23, 10, 22, 7s.
Before moving on to node 7, we replace node 5 with its ordered children to obtain

the updated list L � r17, 19, 16, 18, 23, 10, 22, 7, 6s, see Figure 2.1(c).

2.3.6 Further details

There are several important advantages that TSP-means offers over the existing

algorithms. First, it has very favorable time complexity. As k-means clustering has

time requirement linear in number of examples, it takes O
�
n logpnq� time to build the

binary tree T , assuming k-means results in nearly balanced clusters. After creating

T l in Opnq time, there are Op n
2l
q nodes in T l, assuming a nearly balanced tree T l of

expected depth close to logpnq. Each non-leaf node in T l requires solving a single

22

Table 2.1: Complexities of the reordering algorithms
Algorithm Time Space

PCA O
�
n logpnq

�
Opnq

LLE Opn2q Opn2q
SC Opn2q Opn2q
HC Opn2q Opnq
HC-olo Opn3q Opn2q
LK Opn2.2q Opnq
TSP-means O

�
n logpnq

�
Opnq

TSP whose size is bounded by p2l � 2q. Therefore, if LK algorithm is used for TSP,

time complexity of solving each TSP is Op22.2lq. It follows that the overall time

requirement of TSP-means is only O
�
21.2ln logpnq�. Summary of time and space

complexities of TSP-means and the competing methods is given in Table 2.1.

TSP-means is also amenable to parallelization. In particular, clustering of non-

root nodes can be distributed over multiple processors, while solving TSPs defined

on higher-level nodes can be performed concurrently with clustering of lower-level

nodes. In addition, the algorithm allows for interactive visualization of large data

sets. Unlike the competing algorithms, where a user can plot the results only once

the algorithm completes, TSP-means provides meaningful output during the exe-

cution at each depth of the tree. It can visualize the data during runtime, by first

showing coarse data ordering, and then transitioning (or ”zooming in”) towards finer

resolutions as the algorithm descends further down the tree. In particular, as the list

L is expanded we can show centroids currently in the list, weighted by the number

of examples in the cluster that they represent. In this way, useful local and global

patterns can be discovered even before completely traversing the tree T l. Note that

TSP-means can be further sped up by running k-means on a sub-sampled data for

each node in the tree T instead on the whole data set, resulting in constant-time

calls to k-means.

23

2.4 Experiments

In all experiments, initial values of variances tσjuj�1,...,m in EM-ordering were initial-

ized to standard deviation of features. We used hard feature scaling with tolerance of

α � 1.1, and run EM-ordering for 5 iterations. We assumed a Gaussian distribution

from (2.4) for DPC residuals. To build a tree T , at each step of recursion we run

k-means (k � 2) on 100 randomly sampled examples. For HC and HC-olo we used

the Bioinformatics toolbox in Matlab (with average linkage). SC was implemented

in Matlab (similarity matrix computed using Gaussian kernel), while codes for LLE1

(number of neighbors was set to 15), and Lin-Kernighan2 were found online.

It is not obvious how to measure quality of visualization. As a proxy measure we

used Figure of Merit (FOM) (Yeung et al., 2001) when labeled examples are available.

Denoting label of the ith example as ypiq, FOM score of ordering π is computed as

FOMpπq � 1

n� 1

n�1̧

i�1

I

�
y
�
πpiq� � y

�
πpi� 1q�
, (2.9)

where binary indicator function Ip�q returns 1 if the argument is true, and 0 otherwise.

As a result, lower values of FOM indicate higher-quality ordering π. To evaluate TSP-

means, we also report tour cost L, equal to the sum of Euclidean distances between

neighboring examples in the final ordering.

2.4.1 Validation of TSP-means

We first evaluated influence of parameter l in Algorithm 3. The results for waveform

data set of size 10,000, for l ranging from 2 to 10, are given in Table 2.2, where

we report number of calls to LK and k-means sub-routines, time required to solve a

single TSP, as well as FOM and L performance measures. As can be seen, setting l

1 http://cs.nyu.edu/�roweis/lle/code.html, accessed November 2013

2 http://www.tsp.gatech.edu/concorde.html, accessed November 2013

24

Table 2.2: Evaluation of performance on waveform data of size 10,000; listed LK
time is required for solving one TSP

l # LK LK time [sec] # k-means FOM L

2 4,721 0.000 5,224 0.234 31,663
4 2,496 0.002 3,541 0.235 31,244
6 2,304 0.035 3,604 0.233 30,925
7 533 0.067 1,369 0.229 29,840
8 257 0.253 255 0.228 30,823
9 504 0.516 506 0.233 30,420
10 985 1.093 1,019 0.230 30,007

to 7 led to good results. This can be explained by the fact that depth of the tree T

(after step 1 in Algorithm 3) was 14, as expected since rlog2p10,000qs 14, meaning

that the depth of T l was only 2. For l 7 the depth of T l was larger than 2, leading

to more calls to LK and k-means subroutines. On the other hand, for l ¡ 7 the TSP

of root node of T l had 2l children, while TSPs of non-root nodes had less than 214�l

children, thus not fully exploiting near-optimal ordering found by LK at the lower

levels. Taking this result into consideration, in the remaining experiments we set

l � r0.5 log2pnqs as a default value.

To get an insight into relative performance of the competing algorithms, we gen-

erated 2-dimensional data set called circles. We uniformly at random sampled half

of the examples from a circle of radius 3, and the second half from the circle of radius

4. We also added small noise to all examples. We set the size of the circles data set

to 500 for the clarity of visualization. The resulting ordering of all methods is shown

in Figure 2.2, where neighboring examples in the final linear ordering are connected

by a line. Performance of PCA was expected (Figure 2.2a), as the method projects

examples onto a straight line. We can see that LLE failed to find a desired principal

curve that would consist of two connected circles (Figure 2.2b). As can be seen in

Figure 2.5c, SC found better ordering than PCA and LLE and clearly separated

upper and lower parts of the data set, but failed to find good ordering within the

clusters. HC resulted in relatively smooth ordering with occasional jumps between

25

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

(a) PCA (1,131.9)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

(b) LLE (956.3)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

(c) SC (432.1)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

(d) HC (164.5)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

(e) HC-olo (94.5)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

(f) LK (83.2)

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

(g) TSP-means (84.5)

Figure 2.2: Performance of ordering algorithms on circles data (n = 500, path
length L is given in parentheses)

circles, see Figure 2.2d. We can see in Figure 2.2e that HC-olo reordered the HC

tree to provide smoother ordering. As expected, LK had the shortest route, while

the proposed TSP-means was very close to LK (Figures 2.2f and 2.2g, respectively).

To compare the execution times for HC-olo, LK and TSP-means, we uniformly

sampled 2-D and 3-D examples from a square and a cube of width 1, respectively,

and increased data size from 500 to 1,000,000. In Figure 2.3 we show times in both

logarithmic and linear scale in order to better illustrate the performance of algorithms

for small- and large-scale data sets. In Figure 2.3a we can see that HC-olo method

required prohibitively long processing time as n increased, and that it could not

process data sets with more than few thousand examples. For 1 million examples

TSP-means completed in around 20 minutes for both 2- and 3-D data, while for LK

it took around 1 and 5 hours, respectively. We note that HC-olo and TSP-means

scale linearly with the data dimensionality. On the other hand, LK algorithm uses

k-d trees to speed up computations in lower-dimensions, but for higher-dimensional

data the benefit of k-d trees decreases sharply. That is why results for LK in Figure

2.3 are representative only for 2- and 3-D data, while the execution time scaling for

26

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

Data set size n

HC−olo

LK, 2−D

LK, 3−D

TSP−means

(a) Logarithmic scale

0 2 4 6 8 10

x 10
5

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(b) Linear scale

Figure 2.3: Execution times on 2-D and 3-D uniform data set

higher dimensions would be higher than shown and scale as Opn2.2q. We did not run

experiments for higher-D data since in that case the LK implementation we used

requires distance matrix, which becomes infeasible for large n.

As observed in Biedl et al. (2001), although using LK on the whole data table

results in the smallest tour length, it does not necessarily translate into the visually

informative ordering. This can be explained by the fact that, unlike TSP-means,

LK is not constrained by the underlying clustering structure in the data, rendering

it sensitive to noisy examples. This is illustrated in Figure 2.4, where we generated

200 examples from each of the 2-D clusters representing 4 classes sampled from two-

dimensional Gaussians centered at p0, 0q, p0, 4.5q, p4.5, 0q and p4.5, 4.5q, with identity

covariance matrices. We can see that LK achieved smaller tour length than TSP-

means. However, TSP-means first visited examples from cluster 1, followed by cluster

2, then cluster 3, to finish by visiting examples from cluster 4 (see Figure 2.4b). On

the other hand, in Figure 2.4a we see that LK jumped between clusters visiting them

in the t3, 4, 1, 2, 1, 4, 3, 2, 3u order, resulting in a lower quality of visualization. As

discussed previously, this indicates that TSP-means accounts for clustering structure

present in the data.

27

−4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

1

2

4

3

(a)
−4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

1

2

4

3

(b)

Figure 2.4: FOM and L measures on a 2-D toy data set (color encodes the order
of an example in the ordered data set, ranging from white to black): (a) LK (0.038;
181.44); (b) TSP-means (0.033; 199.86)

2.4.2 Validation of EM-ordering

In this section, we present performance of algorithms on benchmark labeled sets

from UCI repository. Noisy waveform was created by appending 21 noise features

to waveform. All data sets were normalized to zero-mean and unit variance. We

limited ourselves to data sets of size n � 1,500 in order to be able to compare our

method with resource-intensive SC and HC methods, and report average FOM after

5 experiments.

In Table 2.3 we report FOM performance of ordering methods on 11 classifica-

tion data sets. Interestingly, in nearly all tasks the three lower-dimensional projec-

tion methods (PCA, LLE, and SC) were significantly outperformed by the competing

techniques. EM-ordering was best on 7 out of 11 data sets, with the additional advan-

tage of being much faster than the closest competitors HC-olo and LK. Results after

one iteration of Algorithm 1 were better than after five iterations in only two cases,

indicating the benefits on feature scaling. Feature scaling was especially beneficial

for wine, madelon and noisy waveform, where FOM dropped by the highest margin.

Moreover, on madelon and noisy waveform data, for which irrelevant, noisy features

were known beforehand, EM-ordering detected more than 90% of noisy features.

28

Table 2.3: FOM scores for benchmark data sets (EM-1 and EM-5 denote EM-ordering
after 1 and 5 iterations of Algorithm 1, respectively, baseline result is FOM before
reordering; also shown size n, dimensionality m, and number of classes c)

data set n m c baseline PCA LLE SC HC HC-olo LK EM-1 EM-5

iris 150 3 3 0.637 0.188 0.161 0.187 0.181 0.134 0.114 0.121 0.114
wine 178 13 3 0.649 0.225 0.531 0.056 0.062 0.056 0.045 0.047 0.032
breast 277 9 2 0.413 0.337 0.324 0.330 0.344 0.340 0.344 0.339 0.338
adult 1,500 123 2 0.374 0.267 n/a 0.235 0.276 0.267 0.252 0.238 0.232
banana 1,500 2 2 0.514 0.348 0.356 0.279 0.151 0.152 0.147 0.147 0.148
covertype 1,500 54 7 0.630 0.620 0.612 0.583 0.430 0.395 0.382 0.424 0.438
gauss 1,500 2 2 0.491 0.316 0.286 0.286 0.263 0.269 0.260 0.266 0.267
madelon 1,500 500 2 0.506 0.447 0.494 0.489 0.464 0.449 0.444 0.439 0.399
magic 1,500 10 2 0.464 0.416 0.451 0.360 0.258 0.235 0.243 0.244 0.259
waveform 1,500 21 3 0.680 0.462 0.461 0.461 0.266 0.250 0.249 0.239 0.238
wave noisy 1,500 42 3 0.680 0.472 0.493 0.466 0.344 0.309 0.310 0.282 0.237

In Figure 2.5 we show heatmaps of reordered waveform data set, where rows cor-

respond to examples, columns correspond to features, and color intensity represents

a numeric value. As the data set has 3 classes, in the 3 rightmost columns we encode

the class membership of examples. We averaged class membership over a column-

wise sliding window of length 20 for easier interpretation of the results. Darker

pixels indicate that examples within the window had the same label, thus indicating

successful ordering. As seen in Figures 2.5a, 2.5b, and 2.5c, lower-dimensional pro-

jection methods PCA, LLE, and SC obtained similar visualization results with very

smooth-appearing heatmaps, but FOM results and the last three columns suggest

that they did not provide compact grouping of examples with the same class labels.

In contrast, HC and HC-olo resulted in better ordering, as shown in Figures 2.5d and

2.5e, respectively. However, similarly to the results in Figure 2.2, tours often jumped

between classes, reducing FOM and the quality of visualization. LK algorithm found

the shortest path, as illustrated in Figure 2.5f, which did not translate into good

ordering. LK frequently jumped between classes, resulting in visually unappealing

ordering. On the other hand, EM-ordering had the best FOM, as can be seen from

Figure 2.5g.

29

5 10 15 20 25

200

400

600

800

1000

1200

1400

(a) PCA (0.462; 7,231)

5 10 15 20 25

200

400

600

800

1000

1200

1400

(b) LLE (0.461; 7,211)

5 10 15 20 25

200

400

600

800

1000

1200

1400

(c) SC (0.461; 7,244)

5 10 15 20 25

200

400

600

800

1000

1200

1400

(d) HC (0.266; 5,265)

5 10 15 20 25

200

400

600

800

1000

1200

1400

(e) HC-olo (0.250; 4,817)

5 10 15 20 25

200

400

600

800

1000

1200

1400

(f) LK (0.249; 4,577)

5 10 15 20 25

200

400

600

800

1000

1200

1400

(g) EM-ordering (0.239;
4,921)

Figure 2.5: Visualization of waveform, the last 3 columns are class assignments
averaged over sliding window of length 20; FOM and L measures given in parentheses

2.4.3 Applications of EM-ordering

To illustrate the usefulness of ordering, we applied EM-ordering on two real-world

data sets. The first is a set of traffic volumes (number of cars per minute) reported

every 10 minutes by 3,265 sensors on highways in Minneapolis, MN, on December

23rd, 2005. The original, unordered data set is shown in Figure 2.6a, from which

little can be seen beyond presence of heavy traffic volume during early morning and

late afternoon. In Figure 2.6b we show an ordered data matrix, where it becomes

clear that there are several types of traffic patterns (heavy traffic during morning

or afternoon only, light or heavy traffic during most of the day, etc.). To further

illustrate the benefits of ordering, upon visual inspection we split the ordered sensors

manually into 11 clusters. In Figure 2.6c we show the geographical locations of

30

Time of day

S
e
n
s
o
r
s

Traffic volumes

3:20 6:40 10:00 13:20 16:40 20:00 23:20

500

1000

1500

2000

2500

3000

(a)

O
r
d
e
r
e
d

s
e
n
s
o
r
s

Traffic volumes

500

1000

1500

2000

2500

3000

Time of day
3:20 6:40 10:00 13:20 16:40 20:00 23:20

1

2

3

4

5

6

7

8

9

11

10

(b) (c)
−93.45 −93.4 −93.35 −93.3 −93.25 −93.2 −93.15 −93.1 −93.05

44.75

44.8

44.85

44.9

44.95

45

45.05

45.1

45.15

45.2

Longitude

L
a
t
i
t
u
d
e

1

2

3

4

5

6

7

8

9

11

10

Figure 2.6: Traffic data: (a) the original data set (brighter pixels denote higher vol-
umes); (b) the ordered data set (white lines denote user-selected cluster boundaries);
(c) color-coded sensor locations in Minneapolis road network (neighboring clusters
were assigned similar colors)

50 100 150 200 250

10

20

30

40

50

60

70

80

Days

C
o
m
p
a
n
i
e
s

Daily stock returns

Industries

C
o
n
s
.

d
i
s
c
.

C
o
n
s
.

s
t
a
p
l
.

E
n
e
r
g
y

F
i
n
a
n
c
i
a
l
s

I
n
d
u
s
t
r
i
a
l
s

T
e
l
e
c
o
m
m
u
n
.

I
n
f
o
r
m
a
t
i
o
n

H
e
a
l
t
h

c
a
r
e

U
t
i
l
i
t
i
e
s

(a)
50 100 150 200 250

10

20

30

40

50

60

70

80

Days

C
o
m
p
a
n
i
e
s

Daily stock returns

Industries

C
o
n
s
.

d
i
s
c
.

C
o
n
s
.

s
t
a
p
l
.

E
n
e
r
g
y

F
i
n
a
n
c
i
a
l
s

I
n
d
u
s
t
r
i
a
l
s

T
e
l
e
c
o
m
m
u
n
.

I
n
f
o
r
m
a
t
i
o
n

H
e
a
l
t
h

c
a
r
e

U
t
i
l
i
t
i
e
s

6 7

1

2

3

4

Union Pacific

Deere & Company

Boeing

CSX
Norfolk Southern Corp.
Honeywell

Lockheed Martin

General Dynamics

Merck

Bristol Myers Squibb
Johnson & Johnson

Pfizer

Lehman Brothers

Bank of America
Capital One Financial

American Express

IBM

Dell

National Semiconductor

Microsoft
Intel
Motorola

Micron Technology

Hewlett-Packard

{
{

{

{

5

Duke Energy

CPFL Energia SA
Carlyle Group LP

Consolidated Edison}
Briggs & Stratton Corp.

(b)

Figure 2.7: stocks data set (9 rightmost columns encode industries; dark pixels in
the heatmap encode high negative returns, while bright pixels encode high positive
returns): (a) the original data set; (b) the data set after reordering and clustering
upon inspection of the heatmap

sensors, colored according to their cluster labels. We can see that the sensors along

the same road segments were clustered together, and that nearby road segments were

assigned to similar clusters. This example illustrates how ordering can be used for

interactive exploration and visualization of data, which could be very useful to traffic

engineers and planners. We note that this modestly-sized data set cannot be ordered

using HC-olo and LK algorithms on a regular computer.

We also ran EM-ordering on stocks data set, representing 252 daily stock returns

31

of 89 companies from 9 sectors of industry. Not much can be seen from the original

data set shown in Figure 2.7a (the companies were sorted alphabetically). After

reordering rows and columns of the data table interesting patterns emerged, as seen in

Figure 2.7b, which may provide useful insights to stock traders. We can observe that

the ordering revealed several clusters of companies operating in industrials, health

care, financials, and information technologies sectors (clusters 1 - 4, respectively),

having specific patterns of daily returns. We also detected companies from energy

and utilities sectors in cluster 5, whose daily returns, unlike returns of the companies

from other sectors, did not fluctuate much. Lastly, after reordering the transposed

data matrix (i.e., ordering days instead of companies), bear and bull trading days

can be easily detected (clusters 6 and 7, respectively).

32

CHAPTER 3

VISUALIZATION THROUGH OBJECT
MATCHING

3.1 Introduction

Object matching has been recognized as an important problem in many areas of ma-

chine learning. The problem can be described as follows: given two sets of objects,

match the objects from the first set to the objects in the second set so that they are

”similar”. Applications and research areas as diverse as graph matching in computer

vision (Luo and Hancock, 2001), document alignment in natural language processing

(Jagarlamudi et al., 2010), and multiple sequence alignment in bioinformatics (Bacon

and Anderson, 1986), all rely on the assumption that there is an underlying corre-

spondence between two sets of objects (possibly originating from two quite different

domains) which can be learned. Object matching is also closely related to transfer

learning (Wang and Yang, 2011), as the cross-domain alignments can be used to

transfer knowledge to new domains. This common thread can be extended to many

other areas, and a number of recently published works on the topic indicates the

importance of the matching problem.

33

Assuming that the objects from two sets are directly comparable, the task amounts

to finding matches so that certain cross-domain measure of similarity is maximized.

However, if the objects originate from different domains and are represented in dif-

ferent feature spaces, specifying a similarity measure can be very challenging. For

instance, if we have a set of documents in French and a set of documents in Chinese

language, it is not readily obvious how to find similar documents without a bilingual

dictionary. Several ideas have been proposed to solve this unsupervised problem.

Some approaches follow a simple rationale: match two objects that have compara-

ble local neighborhoods, each in their own domain. A direct realization of this idea

is Manifold Alignment (MA) (Wang and Mahadevan, 2009), where the information

about local relationships is translated into cross-domain measure of similarity. Fol-

lowing different line of reasoning, Haghighi et al. (2008) and Tripathi et al. (2011)

describe a method that aligns objects by maximizing the correlation between two

sets using Canonical Correlation Analysis (Hotelling, 1936). In order to find one-

to-one alignments they propose an EM-style algorithm, which iteratively finds new

canonical variables and the best alignments in a new common feature space shared

by the two groups of objects until convergence.

Following the idea from MA, Kernelized Sorting (KS) (Quadrianto et al., 2010)

tries to match objects with similar neighborhoods. However, unlike MA that uses

only information about local context, KS method computes two kernel matrices, one

for each object set. Then, using the kernel matrices, an alignment of objects across

domains is found so that the dependency between matched pairs is maximized, mea-

sured in terms of Hilbert-Schmidt Independence Criterion (HSIC). Although con-

ceptually very powerful, the technique is highly unstable as the object matching

problem is defined as maximization (not minimization) over a convex function, sub-

ject to linear constraints. This renders KS algorithm very vulnerable to local optima

and poor initialization. In Jagarlamudi et al. (2010), authors propose several mod-

34

ifications to the original algorithm to obtain a more stable method, but the local

optima issue persists nevertheless. Note that some authors propose maximization of

independence criteria other than HSIC (Yamada and Sugiyama, 2011), but as the

optimization problem is essentially unmodified, the methods are still plagued with

the same instability problems. To solve this issue, we propose a convex formulation

of the object matching problem, resulting in a robust algorithm guaranteed to find

the optimal solution.

3.2 Kernelized Sorting

Let X � tx1, x2, ..., xmu and Y � ty1, y2, ..., ymu be two sets of equal size m of

objects from two possibly different domains X and Y , respectively. Further, let

k : X � X Ñ R and l : Y � Y Ñ R be two kernels associated with domains X

and Y . Given kernel matrices K and L capturing the relationships between objects

within X and Y sets, namely Kij � kpxi, xjq and Lij � lpyi, yjq, the task is to find a

one-to-one correspondence between objects in X and objects in Y . The cross-domain

correspondence is encoded in m �m permutation matrix π P Πm, where πij � 1 if

objects xj and yi are matched, πij � 0 otherwise, and Πm is the set of all m � m

permutation matrices. In the remainder of the paper, we will use notation π to

denote both the permutation matrix and the corresponding object alignment, where

the usage should be clear from the context.

In Quadrianto et al. (2010), authors propose a method to find alignment π by

maximizing the dependency between K and L as measured by Hilbert-Schmidt In-

dependence Criterion. Given two random variables x and y drawn from some joint

probability distribution Pxy, HSIC (Smola et al., 2007) measures the dependence

between variables x and y by computing the Hilbert-Schmidt norm ∆2 of the cross-

covariance operator between Reproducing Kernel Hilbert Spaces (RKHS) on X and

Y , and the norm equals 0 if and only if variables x and y are independent. If we de-

35

fine the projection matrix H � I � 1{m, which centers the data in the feature space,

to obtain centered versions of K and L as K � HKH and L � HLH, respectively,

the Hilbert-Schmidt norm can be empirically estimated (Smola et al., 2007) as

∆2 � m�2 � tracepK � Lq. (3.1)

In order to find the best correspondence between objects across two domains,

we seek such permutation π� of rows and columns of kernel matrix L (i.e., the

alignment between two sets of objects) that maximizes the dependency (3.1) of two

kernel matrices. Thus, we obtain the following optimization problem,

π� � arg max
πPΠm

tracepKπTLπq. (3.2)

The optimization problem is an instance of quadratic assignment problem, therefore

NP-hard in general, and the authors propose an iterative, approximate method for

finding the matrix π�. Given permutation matrix πi at ith iteration, the optimization

problem (3.2) is converted into Linear Assignment Problem (LAP) and solved for

optimal πi�1 using one of the available LAP solvers (Kuhn, 1955; Jonker and Vol-

genant, 1987). Note that the optimization problem (3.2) involves maximization over

convex function of π. As a result, the optimization procedure is unstable and highly

sensitive to initial value of the permutation matrix π0 due to local optima issues.

Instead of HSIC, other independence criteria can also be used. In Yamada and

Sugiyama (2011), authors propose two variants of KS algorithm, using normalized

cross-covariance operator and least-squares mutual information as measures of de-

pendence between matrices K and L. However, as both the optimization problem

and the optimization procedure are essentially the same as the ones used in KS

method from Quadrianto et al. (2010), the algorithms are still susceptible to local

optima issues.

36

In order to mitigate the instability issue of KS methods, authors of Jagarlamudi

et al. (2010) describe two modifications to the original algorithm. Although the

authors were motivated by the problem of application of KS to Natural Language

Processing (NLP), it is straightforward to use their method in other areas as well.

The first improvement they propose is p-smooth, which involves using sub-polynomial

kernel on the original kernel matrices. Given a kernel matrix M , each element of

a kernel matrix is raised to the power of p (with 0 p ¤ 1) to obtain a matrix

Mp. This is followed by normalization of rows to unit length and calculation of a

new kernel matrix as M Ð Mp �MT
p . The second improvement is to use a set of

seed alignments, which will be favored during the optimization procedure. In this

way, the effect of low-confidence, thus possibly incorrect alignments can be reduced

during the optimization process. Although the modifications result in considerably

more robust algorithm (with the cost of introducing an additional parameter p), the

issue of local optima due to non-convex optimization problem remains.

3.3 Convex Kernelized Sorting

In this section, we present a method that is, unlike Kernelized Sorting described

in the previous section, guaranteed to find a global optimum solution. We begin by

observing that, given two m�m matrices K and L, value of tracepK �Lq is maximized

if rows and columns of K and L, respectively, are permuted such that rows of K and

corresponding columns of L are identical up to a constant multiplier. Then, we can

define a convex optimization problem for finding the optimal permutation matrix π�

as a minimization of the difference between the left half and transpose of the right

half of matrix product under trace operator in (3.2), or more formally

minimize
πPΠm

||K � πT � pL � πqT||2F , (3.3)

37

where || � ||F is Frobenius (or Hilbert-Schmidt) matrix norm. The product K � πT

permutes columns of K, while pL�πqT permutes rows of L, effectively aligning objects

in the same way as when both rows and columns of only one of the kernel matrices

are permuted. The optimization problems defined in equations (3.2) and (3.3) are

equivalent, as shown by the following lemma.

Lemma 1. The problems (3.2) and (3.3) are equivalent.

Proof. Let A � K � πT and B � L � π, and let aij and bij be values in ith row and jth

column of A and B. Further, let L1 � ||K �πT�pL �πqT||2F and L2 � tracepKπTLπq.
Then, it follows

L1 �
m̧

i�1

m̧

j�1

paij � bjiq2 �

m̧

i�1

m̧

j�1

a2
ij �

m̧

i�1

m̧

j�1

b2
ji � 2 �

m̧

i�1

m̧

i�1

paij � bjiq �

m̧

i�1

m̧

j�1

a2
ij �

m̧

i�1

m̧

j�1

b2
ji � 2 � L2.

The first two elements of the final sum do not depend on π, as right multiplication

with permutation matrix only permutes columns while not changing the values of

the original elements of the matrix. Consequently, it follows

arg min
πPΠm

L1 � arg max
πPΠm

L2.

In order to obtain a convex optimization problem, we relax the constraint that π

is strictly a permutation matrix, and define the following problem (by 1m we denote

38

an m-dimensional column vector of all ones)

minimize
π

||K � πT � pL � πqT||2F

subject to πij ¥ 0, for i, j P t1, 2, ...,mu,

π � 1m � 1m,

πT � 1m � 1m,

(3.4)

where the permutation matrix binary constraint πij P t0, 1u is replaced by the in-

terval constraint πij P r0, 1s. The constraints in (3.4) ensure that the matrix π is

doubly-stochastic (permutation matrix is a special case), meaning that it is a matrix

with positive elements with both rows and columns summing up to 1. Thus, we are

directly solving the problem (3.2) by converting it into convex problem (3.4). The

resulting optimization problem is convex because the objective function is a com-

position of convex non-decreasing square function and convex norm function with

affine argument, subject to linear equality and inequality constraints.

The relaxation of the constraint which restricts π to be strictly permutation

matrix comes with several advantages. Mainly, as shown above, the problem of find-

ing cross-domain object alignments can be stated as convex optimization problem,

lending itself to simpler optimization, effective computational methods, and globally

optimal solution (Boyd and Vandenberghe, 2004). In this way we also avoid sensitiv-

ity to initialization from which the method from Quadrianto et al. (2010) suffered.

In addition, soft assignments sum up to 1 and, consequently, assignment πij can now

be interpreted as a probability that objects xj and yi match. Therefore, the output

of the algorithm is more informative than hard alignments, giving us a degree by

which two objects should be aligned.

In order to numerically solve the problem (3.4), we compute first and second

derivatives, with respect to the elements of matrix π, of the objective function L �

39

||K � πT � pL � πqT||2F . The gradient can be calculated using

BL
Bπij � 2 �

m̧

k�1

�
�Lki �

m̧

l�1

pKjl � πkl � πlj � Lklq�

Kkj �
m̧

l�1

pKkl � πil � πlk � Lilq
	
,

(3.5)

while a Hessian matrix of the objective function L can be calculated using

B2L
BπijBπrn � 2 �

� m̧

k�1

�
Ipi � rq �Kkj �Kkn�

Ipj � nq � Lki � Lkr
	
� 2 �Kjn � Lir

,

(3.6)

where i, j, r, n P t1, 2, ...,mu, and Ipargq is a binary indicator function equal to 1 if

arg is true, and 0 otherwise.

3.3.1 Numerical optimization

The optimization problem (3.4) can be easily solved using one of the high-level

optimization packages such as CVX1, a package for specifying and solving convex

programs. However, since the number of variables scales as Opm2q, this and other

similar solvers are not suitable if we want to align larger sets of objects. To make

the numerical optimization more scalable, we present another convex variant of the

optimization problem (3.4). In order to reduce the number of constraints and retain

only inequalities, we reformulate (3.4) into the following dual problem

minimize
π

||K � πT � pL � πqT||2F �

C �
m̧

k�1

�
p
m̧

l�1

πkl � 1q2 � p
m̧

l�1

πlk � 1q2
�

subject to πij ¥ 0, for i, j P t1, 2, ...,mu,

(3.7)

1 http://cvxr.com/cvx/, accessed November 2013

40

where we set regularization parameter C to some large value (we set C � 10 in

our experiments). Then, since we now have only inequalities without any equality

constraints, we can use the trust-region-reflective algorithm (Coleman and Li, 1996)

for solving convex problem (3.7) (algorithm implemented in, e.g., fmincon solver

available in Matlab). With this modification, the gradient and the Hessian of the

objective function are slightly different than (3.5) and (3.6). More specifically, 2 �C �
p°m

k�1pπjk � πkiq � 2q is added to (3.5), while Hessian is modified by adding 4 �C to

diagonal elements, and 2 � C to off-diagonal elements if pi � rq or pj � nq in (3.6).

It is important to mention that, due to the nature of the trust region method and

convexity of the optimization problem, approximate, diagonal-only Hessian can be

used, where all off-diagonal elements are set to 0. Use of the exact Hessian leads to

fewer iterations until convergence of the trust-region-reflective algorithm, while, on

the other hand, the use of approximate Hessian requires significantly less memory

and floating-point operations per iteration to reach globally optimal solution.

Note that after solving the convex problem (3.7), matrix π is not necessarily

doubly-stochastic, although sums of rows and sums of columns will be very close

to 1. Therefore, as a final step in our algorithm, we can project matrix π, the

solution of problem (3.7), to the set of doubly-stochastic matrices. Finding this

closest projection is an old problem, and we can use one of the proposed, approximate

methods (Sinkhorn and Knopp, 1967; Parlett and Landis, 1982). Alternatively, we

can define an additional convex optimization problem in order to find the optimal,

closest doubly-stochastic matrix πDS as follows

minimize
πDS

||π � πDS||2F

subject to πDSij ¥ 0, for i, j P t1, 2, ...,mu,

πDS � 1m � 1m,

pπDSqT � 1m � 1m,

(3.8)

41

which can be solved as a constrained linear least-squares problem or constrained

Euclidean norm, and an optimal solution can be found by a number of solvers (e.g.,

SeDuMi2 or lsqlin solver available in Matlab).

3.3.2 Soft and hard assignments

Soft assignments contained in matrix π provide deeper understanding of the cross-

domain alignment between two sets of objects. As such, output of Convex Kernelized

Sorting (CKS) can be used to rank the objects by sorting them by the probabilities

that they should be aligned. For instance, if we are matching documents in French

with documents written in Chinese language, for each French document we can

provide a user with top 5 matches together with the degree showing how confident

about each match are we.

Similarly to the existing methods, CKS can also give hard alignments, defined

as a one-to-one correspondence between two sets of objects. In order to obtain

the hard alignments, we use the Hungarian algorithm (Kuhn, 1955) to solve LAP

defined by the learned doubly-stochastic matrix π. The Hungarian algorithm is

a polynomial-time algorithm for combinatorial optimization, efficiently solving the

linear assignment problem. More specifically, if we have m workers each requiring

certain pay to work on one of m jobs, the algorithm finds the lowest-cost one-to-one

assignment of workers to jobs in Opm3q time.

Finally, quality of the obtained alignments greatly depends on the choice of kernel

functions k and l (Yamada and Sugiyama, 2011). Using CKS we can visualize the

alignments and thus provide a user with additional evidence that appropriate kernels

were used. For instance, if Gaussian kernel is used to generate kernel matrices K

and L, choice of kernel-width parameter will critically influence the alignment. One

simple way to verify that appropriate value of the parameter is chosen is to plot

2 http://sedumi.ie.lehigh.edu/, accessed June 2013

42

matrix π (e.g., using function imagesc in Octave and Matlab) and visually check if

there are clear matches between objects. By visualization of the results, a user can

be more confident that appropriate kernel functions and parameters are used.

3.4 Experiments

In this section, we empirically evaluate performance of our CKS algorithm. We

used the trust-region-reflective algorithm to solve convex problem (3.7), and stopped

the optimization either after 10,000 iterations or when objective function stopped

decreasing by more than 10�6. In all our experiments we used the diagonal approx-

imation of the Hessian, as experiments showed that this leads to substantial gains

in memory and time. Unlike the competing algorithms, CKS does not depend on

the initialization of π, and as an initial point for the trust-region-reflective algorithm

we simply set π � 1m � 1T
m{m. To find hard alignments, we used implementation

of the Hungarian algorithm available online3. Lastly, we note that the projection

of nearly doubly-stochastic matrix π to the set of doubly-stochastic matrices was

not necessary, as we found that this additional step did not significantly affect the

results.

We compared CKS performance to Kernelized Sorting algorithm from Quadrianto

et al. (2010), and to p-smooth Kernelized Sorting (KS-p) method from Jagarlamudi

et al. (2010). We also compared our algorithm to Least-Squares Object Matching

method4 (LSOM) (Yamada and Sugiyama, 2011), which maximizes least-squares mu-

tual information criterion instead of HSIC. Except for CKS, which requires only a

single run, all experiments were repeated 10 times with both random and PCA-based

initializations of matrix π, and the average and the best accuracy are reported. For

3 http://www.mathworks.com/matlabcentral/fileexchange/20652-hungarian-algorithm-for-linear-
assignment-problems-v2-3, accessed November 2013

4 code from sugiyama-www.cs.titech.ac.jp/�yamada, accessed November 2013

43

each run of p-smooth KS method we tried all p values from 0.1 to 1 in increments of

0.1, and used the best performance as a result for that run. Manifold Alignment algo-

rithm (Wang and Mahadevan, 2009) was also considered, but this local-neighborhood

method performed poorly in the experiments, which can be explained by the high

dimensionality of the matching tasks.

First, we show application of CKS to data visualization, and then explore per-

formance on the task of alignment of left and right halves of images from a set of

images. Here, we used a set of 320 images from Quadrianto et al. (2010). The images

were processed in the same manner as in Quadrianto et al. (2010). Namely, images

were resized to 40 � 40 pixels, then converted from RGB to LAB color space and

vectorized. For experiments in which we used the image set, kernel matrices were

generated using Gaussian RBF kernel kpx, x1q � lpx, x1q � expp�γ � ||x � x1||2q, set-

ting γ to inverse median of ||x� x1||2. Finally, application to document alignment is

presented, where we used linear kernel function to compute the kernel matrices.

3.4.1 Data visualization

One of possible applications of CKS is data visualization. Although we can use

the existing algorithms for low-dimensional projection of high-dimension data (e.g.,

Principal Component Analysis), they cannot be used if we want to project data to

arbitrary fixed structures (Quadrianto et al., 2010). KS methods, on the other hand,

can be used for projection of data in such cases.

Figure 3.1 shows a low-dimensional projection of 320 images from the data set to

a 2-dimensional ”AAAI 2102” letter grid. The pattern in the layout is discernible, as

similar images are closer in the grid, and lighter images are located near the middle

of the grid while darker ones are closer to the edges.

44

Figure 3.1: Alignment of 320 images to ”AAAI 2012” letter grid

3.4.2 Image alignment

As done in Quadrianto et al. (2010), we split the 320 images into left and right

image halves. The task is to align a set of left halves with the set of right halves,

and measure how many halves are correctly matched. We increased the number of

images from 5 to 320 in increments of 5, and the performances of 4 algorithms for

all image set sizes are given in Figure 3.2. It can be seen that CKS consistently

recovers more original images than the competing algorithms. The problem with

local optima of KS method is clearly illustrated in Figure 3.2a. The results for

two consecutive image set sizes are very inconsistent, due to the sensitivity of the

method. The modifications introduced by KS-p result in more robust algorithm

(Figure 3.2b), but the method still achieves smaller number of correct matches than

both LSOM and CKS. LSOM method is for most image set sizes quite competitive

when considering the best achieved accuracy, although the average performance and

the wide confidence intervals indicate the instability of the method, see Figure 3.2c.

Figure 3.3 illustrates the outcome of matching of all 320 images using CKS, which

had 64.38% matching accuracy after applying the Hungarian algorithm to compute

hard assignments.

One of the advantages of CKS is that it outputs soft assignments. This can be

used to rank the alignments by a probability of a match, and is illustrated in Figure

45

0 50 100 150 200 250 300 350

0

50

100

150

200

250

Image set size

C
o
r
r
e
c
t

m
a
t
c
h
e
s

KS average

KS best

CKS

(a) CKS vs. KS

0 50 100 150 200 250 300 350
0

50

100

150

200

250

Image set size

C
o

rr
e

ct
 m

a
tc

h
e

s

KS−p average

KS−p best

CKS

(b) CKS vs. KS-p

0 50 100 150 200 250 300 350
0

50

100

150

200

250

Image set size

C
o
r
r
e
c
t

m
a
t
c
h
e
s

LSOM average

LSOM best

CKS

(c) CKS vs. LSOM

Figure 3.2: Number of correctly recovered images for different set sizes (error bars
represent confidence intervals of one standard deviation, calculated after 10 runs)

3.4a where we calculated recall for top N ranks. If we sort the soft assignments,

then 81.25% of correct image pairs are ranked among the top 5, while for the top

13 matches the recall jumps to nearly 90%. Furthermore, for each left image half,

Figure 3.4b shows the maximum learned probability among right image halves versus

the learned probability of the correct match (as a reference we plot y � x line). As

can be seen, the probability of the correct match is either the highest, or is very close

to the highest probability.

Finally, in order to visually verify quality of the alignment and evaluate appro-

priateness of kernel parameters, we can also plot the learned matrix π (see Figure

46

Figure 3.3: Alignment results of CKS for matching of 320 left and right image
halves (206 correct matches)

3.4c, darker color corresponds to higher probability of alignment). To make the re-

sult more clear, we arranged two sets of image halves in such a way so that the ith

image in the left-halves set should be matched to the ith image in the right-halves

set. Consequently, the perfect matrix π would be equal to the identity matrix. As

shown in Figure 3.4c, CKS recovered π very close to the identity matrix. Too few

or too many dark peaks in the plot can be used as a visual clue that the choice

of parameters might be wrong, thus providing an additional, visual insight into the

matching problem.

3.4.3 Multilingual document alignment

We evaluate CKS on the task of aligning multilingual documents. We used the

Europarl Parallel Corpus5 (Koehn, 2005), a collection of proceedings of the European

Parliament available in 10 different European languages. The objective was to align

a set of English documents with a set of corresponding documents written in other

5 http://www.statmt.org/europarl/archives.html, version 1, accessed November 2013

47

0 5 10 15 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of considered top alignments (N)

R
e
c
a
l
l

(a) Recall for top N -ranked alignments

0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Maximal alignment probability

P
r
o
b
a
b
i
l
i
t
y

o
f

c
o
r
r
e
c
t

m
a
t
c
h

(b) Maximal learned probability vs. correct-
match probability (each circle represents a sin-
gle object)

Right image halves

L
e
f
t

i
m
a
g
e

h
a
l
v
e
s

50 100 150 200 250 300

50

100

150

200

250

300

(c) Matrix π for alignment of 320 image halves

Figure 3.4: Analysis of CKS performance on the task of aligning 320 left and right
images halves

languages. As a preprocessing step, stopwords were removed and stemming was

performed using Snowball6. Then, the documents were represented using TF-IDF

features of a bag-of-words kernel, followed by `2 normalization of feature vectors to

unit length. As the resulting kernel matrices were notably diagonally dominant, for

KS method we zeroed-out the diagonal, as suggested by authors in Quadrianto et al.

(2010). For the remaining algorithms, no post-processing was done and the original

kernel matrices were used.

6 http://snowball.tartarus.org/, accessed November 2013

48

Table 3.1: Average number of correctly aligned non-English documents to documents
in English (numbers in the parentheses are the best obtained performances; baseline
method matches the documents according to their lengths)

Language Corpus size Baseline KS KS-p LSOM CKS
Danish 387 39 261 (318) 258 (273) 159 (173) 379
Dutch 387 50 266 (371) 237 (317) 146 (375) 383
Finnish 308 54 19 (32) 22 (38) 10 (10) 114
French 356 64 319 (356) 320 (334) 354 (354) 356
German 356 50 282 (344) 258 (283) 338 (350) 356
Italian 387 49 341 (382) 349 (353) 378 (381) 385
Portuguese 356 46 308 (354) 326 (343) 342 (356) 356
Spanish 387 48 342 (365) 351 (364) 386 (387) 387
Swedish 337 76 20 (39) 20 (33) 5 (5) 97

The results are presented in Table 3.1, where we report the rounded average

and the best achieved (given in parentheses) number of correctly aligned documents

after 10 runs. As a baseline reference, we calculated the performance of a simple

method which aligns the documents according to their lengths. We can see that CKS

algorithm recovered more correct matches than all other competing methods on all 9

NLP tasks. Even if we consider only the best performances achieved by the competing

algorithms, our method still outperforms the competition. Considering that CKS

algorithm requires only a single run, this is an impressive result. Furthermore, for

most languages our method found nearly all the correct matches, except on the tasks

of alignment of documents written in Finnish and Swedish languages. Although the

two Nordic languages proved to be very challenging for all methods, CKS achieved

around 5 times more correct alignments than the previously proposed algorithms.

Interestingly, on these two tasks the baseline method is the second best, actually

performing better than the existing algorithms.

49

CHAPTER 4

ONLINE LEARNING OF MULTI-HYPERPLANE
CLASSIFICATION MODELS

4.1 Introduction

In the environment where new large-scale problems are emerging in various disci-

plines and pervasive computing applications are becoming more common, there is

an urgent need for machine learning algorithms that can achieve high accuracy in

computationally efficient way. Support Vector Machines (SVMs) (Cortes and Vap-

nik, 1995) provide a powerful paradigm for solving complex classification problems.

However, this ability comes at the price of significant computational costs. There

has been active research over the last decade to improve efficiency of SVM training

(Vishwanathan et al., 2003; Zhang, 2004; Bordes et al., 2005; Tsang et al., 2005; Col-

lobert et al., 2006; Joachims, 2006; Rahimi and Recht, 2007; Shalev-Shwartz et al.,

2007b; Hsieh et al., 2008; Bordes et al., 2009; Zhu et al., 2009; Teo et al., 2010; Wang

and Vucetic, 2010b; Chang et al., 2010; Sonnenburg and Franc, 2010; Yu et al., 2010;

Wang et al., 2010) and today’s state-of-the-art solvers are able to tackle data sets

having hundreds of thousands or even millions of highly dimensional examples. De-

50

spite the recent advances, there is a fundamental limitation of SVMs with nonlinear

kernels that prevents applying them on truly large data sets or data streams. This

is a well documented and understood property that on the noisy or highly nonlinear

data sets, the size of SVM model, measured in the number of support vectors, grows

linearly with number of training examples (Steinwart, 2003b). This limitation could

explain the recent increased interest in linear SVMs whose model size remains fixed

regardless of the data size. However, this comes at a price of significantly reduced

representational power of linear SVMs.

As a result, there is a large scalability and representability gap between linear and

kernel SVMs. On the kernel SVM side, recent empirical results show that training

on data with millions of examples can take days even when using parallel processing

techniques and result in a classifier consisting of hundreds of thousands of support

vectors. On the linear SVM side, training on such large data takes only seconds on a

regular PC and results in a single weight vector as the final classifier. The scalability

and short prediction time of linear SVMs make them popular in applications such

as text categorization, where examples are sufficiently high dimensional to make the

classification problem nearly linearly separable. However, in many other applications,

high representational power of kernel SVMs makes them significantly more accurate

than linear SVMs. Filling the representability and scalability gap between linear and

nonlinear classification is the challenge we intend to address in this paper.

We propose the Adaptive Multi-hyperplane Machine (AMM), a fast learning al-

gorithm applicable to large-scale nonlinear classification problems, which provides

a computationally efficient alternative to kernel SVMs. The AMM model consists

of a set of weights, each assigned to one of the classes, and it predicts based on

the class of weight that provides the largest prediction. The idea of using multiple

weights for classification can be traced back to the multi-class SVM (Crammer and

Singer, 2002), which assigns a single weight to each class and predicts the class whose

51

weight gives the largest prediction. By defining the cost function as the regularized

margin-based training error, the resulting learning problem becomes convex and can

be solved by standard tools of convex optimization. An extension of this idea that

allows multiple weights per class has been originally proposed in Aiolli and Sperduti

(2005). Since each weight defines a hyperplane, we refer to this approach as the

Multi-hyperplane Machine (MM). There are two important properties of the MM

approach. The first is that the resulting optimization problem is nonconvex, such

that only convergence to a local optimum can be guaranteed. The second is that it

has higher representational power than the single-hyperplane approach. It has been

demonstrated experimentally that the benefits of increased representational power

outweigh problems with nonconvexity and that MM could accurately solve nonlinear

classification problems.

There are two issues that prevent use of MM on large-scale classification prob-

lems. The first is that it uses a Sequential Minimal Optimization (SMO) (Platt,

1998) based training algorithm, which is a batch solver that is not suitable for large-

scale data. Another is that it requires a user to pre-specify the number of weights

per class. Since the optimal number of weights depends on a particular classifica-

tion problem, this creates a need to select this hyperparameter using an expensive

cross-validation procedure. The proposed Adaptive MM approach addresses both

of these issues, which makes it practically applicable to very large-scale nonlinear

classification problems, as will be illustrated in the experiments.

AMM achieves its computational efficiency through the Stochastic Gradient De-

scent (SGD), a popular optimization technique that has recently attracted much

interest as an alternative to the traditional batch-mode convex optimization for train-

ing of SVMs on large-scale data (e.g., Shalev-Shwartz et al., 2007b). SGD works by

sampling labeled examples one at a time and updating the model through (sub-

)gradient descent over the instantaneous objective function. Its sequential access to

52

Table 4.1: Summary of notation

x Instance
y Label
t, n Indexes for x
W Weight matrix
wi,j j-th weight vector of i-th class (column vector)
i, j, k, z Indexes for w

Aptq A at the t-th iteration
P (W) Objective function parameterized by W
P (W|z) Function of W given the fixed z

P ptq(W) Instantaneous version of P (W) upon (xt, ytq
W� The optimal solution of minP (W—z)

data makes it very suitable for large-scale or online learning. We will show analyti-

cally that our implementation of SGD allows AMM to converge to a local optimum,

a property shared by the MM.

AMM addresses the problem of selection of number of weights by an adaptive

procedure that allows SGD algorithm to automatically select an appropriate number

of weights. Specifically, the SGD algorithm starts with a single zero weight assigned

to each class and adds new weights as necessary. On simple problems such as linear

or near-linear classification, the number of weights remains low, while it can become

relatively high on more complex problems. Since the generalization error of AMM

grows with the number of weights, as shown by an extension of the generalization

theorem from Aiolli and Sperduti (2005), AMM also contains a pruning mechanism

that removes small weights, such that it provably results in only a minor degradation

in optimization accuracy. In addition to improving generalization error, pruning is

also useful because it reduces the cost of training and prediction.

With efficient training and prediction, comparable to linear SVM, and the ability

to solve nonlinear classification problems, similar to kernel SVM, AMM fills the scal-

ability and representability gap between linear and nonlinear classification. As such,

AMM can be an appealing option when solving large-scale nonlinear classification

problems.

53

4.2 Preliminaries

In this paper we focus on multi-class problems. To facilitate reading, the main

notation used in the paper is summarized in Table 1. Let us assume we are given a

set of training examples S � tpxn, ynq, n � 1, ..., Nu, where instance xn P RD is a D-

dimensional feature vector and yn P Y � t1, ...,Mu is the multi-class label. The goal

is to learn a function f : RD Ñ Y that accurately predicts the label of new instances.

Next, we will give an overview of multi-class SVMs proposed in Crammer and Singer

(2002) and their extension, the Multi-hyperplane Machine (MM) proposed in Aiolli

and Sperduti (2005). This overview will provide the necessary background needed

for description of the proposed AMM algorithm, given in Section 3.

4.2.1 Multi-Class SVM

In multi-class SVM (Crammer and Singer, 2002), the model fpxq is of the form

fpxq � argmaxiPYgpi,xq, (4.1)

where

gpi,xq � wT
i x (4.2)

is parameterized by the weight vector wi P RD of the i-th class. Thus, the predicted

label of x is the class of the weight vector that achieves the maximum value gpi,xq.
By concatenating all the class-specific weight vectors, we can construct

W � rw1 w2 ... wM s

as the D �M weight matrix representing fpxq. Under this setup, the multi-class

SVM problem was defined in Crammer and Singer (2002) as

min
W

P pWq � λ

2
||W||2 � 1

N

¸N

n�1
lpW; pxn, ynqq, (4.3)

54

where λ ¡ 0 is a regularization parameter that trades off the model complexity

defined as the Frobenius norm on W,

||W||2 �
¸

iPY
||wi||2,

and the margin-based training loss

lpW; pxn, ynqq � max

�
0, 1� max

iPYzyn
gpi,xnq � gpyn,xnq

. (4.4)

It can be seen from (4.4) that the training loss is zero if the prediction from the

correct class is larger by at least one than the maximal prediction from the incorrect

classes; otherwise, linear penalty is charged.

4.2.2 Multi-Hyperplane Machine

In order to increase the expressiveness of the classifier, Aiolli and Sperduti (2005)

extended the multi-class SVM by allowing multiple weights per class. Let us denote

wi,j as the j-th weight of the i-th class and let us assume that the i-th class has a

total of bi weights. By redefining gpi,xq from (4.2) as

gpi,xq � max
j

wT
i,jx, (4.5)

the classifier fpxq from (4.1) returns the associated class of the weight with the

maximal prediction. With this modification to multi-class SVM, the training loss

(4.4) equals zero if the maximal prediction from the weights of the correct class is

by at least one larger than any prediction from weights of the incorrect classes.

We can now concatenate all weights and define

W �
�

w1,1...w1,b1 w2,1...w2,b2 ... wM,1...wM,bM

�
(4.6)

where b1, ..., bM are the numbers of weights assigned to each of the classes and each

block in (4.6) is a set of class-specific weights. Given this setup, W is learned by

55

Figure 4.1: Convergence of MM training

solving the optimization problem (4.3) where gpi,xq is defined as in (4.5) and the

model complexity is calculated as the Frobenius norm on W from (4.6). We call this

algorithm the Multi-hyperplane Machine (MM).1

We should note that although the MM algorithm allows using different number of

weights (i.e. bi) for different classes, due to practical difficulties in determining these

numbers, in Aiolli and Sperduti (2005) all classes are assigned the same number of

weights b. This can be suboptimal since, depending on their distribution, different

classes might require different numbers of weights.

4.2.3 MM Training

Let us consider finding the optimal MM weight matrix (4.6) by minimizing (4.3).

As explained in Aiolli and Sperduti (2005), the cost function P pWq is nonconvex

and finding the global optimum cannot be guaranteed. To find a local optimum,

an iterative procedure was proposed that solves a series of convex upper bounds of

P pWq. The convex-approximated problem is defined as

min
W

P pW|zq � λ

2
||W||2 � 1

N

¸N

n�1
lcvxpW; pxn, ynq; znq, (4.7)

1 In Aiolli and Sperduti (2005) this algorithm was called the Multi-Prototype SVM.

56

where the non-convex loss function l in (4.3) is replaced by its convex upper bound

lcvxpW; pxn, ynq; znq
� max

�
0, 1�maxiPYzyn gpi,xnq �wT

yn,znxn
� , (4.8)

that replaces the concave term �gpyn,xnq in (4.4) with the convex term �wT
yn,znxn.

Element zn of vector z � rz1...zN s determines which weight from the correct class

of n-th example is used to calculate (4.8). Values z are fixed during optimization of

(4.7).

The resulting MM algorithm can be described in the following way. At step

r � 1, initialize zp1q, typically by random weight assignment. Then, solve the convex

optimization problem (4.7) to find model weights as

W� � arg min
W

P pW|zprqq.

Then, at step pr � 1q, recalculate assignments z such that the objective function is

minimized,

zpr�1q � arg min
z
P pW�|zq. (4.9)

This can be achieved by calculating z
pr�1q
n as

zpr�1q
n � arg max

k
pw�

yn,kqTxn, (4.10)

which is the correct class weight that gives the highest prediction on n-th example.

The procedure of optimizing W and reassigning z is then repeated until convergence

to a local optimum. The convergence is guaranteed because each step of the algo-

rithm leads to a decrease of the objective function P pW|zq. Convergence of MM is

illustrated in Figure 1, where it can be seen that

min
W

P pW|zprqq ¥ min
W

P pW|zpr�1qq.

57

4.3 Adaptive Multi-Hyperplane Machine (AMM)

In this section we describe the AMM algorithm. We start by describing AMM

training using Stochastic Gradient Descent (SGD). Then, we explain that SGD allows

us to easily address the problem of selecting the number of class-specific weights.

After pointing out that the generalization error increases with the number of weights,

we propose a pruning strategy that allows reducing the generalization error while

having a provably small negative impact on the optimization. Finally, we propose a

simplified version of AMM that is suitable for online learning.

4.3.1 Solving the Sub-Problem (4.7)

We propose an SGD algorithm to solve the convex optimization problem (4.7). The

SGD is initialized with the zero weight matrix Wp1q � 0 and it reads examples one

by one and modifies the weight matrix accordingly. Let us for now assume that there

are bi weights for each class. Upon receiving example pxt, ytq P S at t-th round, Wptq

is updated using the sub-gradient of the instantaneous objective on t-th example

defined as

P ptqpW|zq � λ

2
||W||2 � lcvxpW; pxt, ytq; ztq. (4.11)

As seen, the instantaneous objective differs from (4.7) in that it only calculates the

convex loss on t-th example. The model weights are updated in the negative direction

of the sub-gradient as

Wpt�1q � Wptq � ηptq∇ptq, (4.12)

where ηptq � 1{pλtq is the learning rate and the sub-gradient matrix ∇ptq is defined

as

∇ptq �
�
∇ptq

1,1...∇
ptq
1,b1

∇ptq
2,1...∇

ptq
2,b2

... ∇ptq
M,1...∇

ptq
M,bM

�
(4.13)

where ∇ptq
i,j � ∇w

ptq
i,j
P ptqpWptq|zq is a column vector. If convex loss lcvxpW; pxt, ytq; ztq

58

Algorithm 4 Training Algorithm for AMM

Input: Training set S, the regularization parameter λ
Output: Wptq

Initialize: Wp1q � 0, t � 1, r � 1;

1: initialize zp1q; /* Build 1-st sub-problem P pW|zp1qq */
2: repeat
3: /* Solve each sub-problem P pW|zprqq: lines 4 � 7*/
4: repeat
5: pxt, ytq Ð t-th example from S;

6: compute Wp��tq using (4.12);
7: until (enough epochs)
8: compute zp��rq using (4.9); /* Reassign z */
9: until (zpr�1q �� zprq or enough epochs)

equals zero, then ∇ptq
i,j � λw

ptq
i,j ; otherwise,

∇ptq
i,j �

$'&
'%

λw
ptq
i,j � xt, ifi � it, j � jt

λw
ptq
i,j � xt, ifi � yt, j � zt

λw
ptq
i,j , otherwise,

(4.14)

where

it � arg max
kPYzyt

gpk,xq and jt � arg max
k

pwptq
it,k
qTxt.

The update rule (4.12) can be summarized as follows. At every round, all model

weights are reduced towards zero. In addition, if the convex loss on the t-th example

is positive, then the class weight from the true class indexed by zt, w
ptq
yt,zt , is moved

towards xt, while the class weight with the maximum prediction from the remaining

classes w
ptq
it,jt

is moved away from xt. The SGD updates are summarized in Algorithm

1 (Steps 4-7).

The convergence to the global optimum of the convex sub-problem (4.7) by SGD

can be shown by the following theorem. Without the loss of generality, let us assume

||x|| ¤ 1.

Theorem 1. Run the SGD update rule (4.12) to solve the optimization problem

59

(4.7). Let W� be the optimal solution of (4.7). Then we have

1

T

Ţ

t�1

P ptqpWptq|zq � 1

T

Ţ

t�1

P ptqpW�|zq ¤ 8plnpT q � 1q
λT

.

The proof of Theorem 1 is given later together with the proof of Theorem 3.

The theorem tells that when T is large the averaged instantaneous loss of the algo-

rithm converges towards that of the optimal solution. The following corollary can

be obtained by following the proof of Theorems 2 and 3 from Shalev-Shwartz et al.

(2007b).

Corollary 1. Assume that the conditions stated in Theorem 1 hold and for all t

pxt, ytq is i.i.d. sampled from S. Let δ P p0, 1q. Then, with probability of at least

1� δ, we have

P pWpT q|zq ¤ P pW�|zq � 8plnpT q � 1q
δλT

.

The corollary tells that when T is large the weight matrix Wptq converges to the

optimal solution in the limit and that the convergence rate is inversely proportional

to the confidence parameter δ.

4.3.2 Number of Weights

As mentioned in Section 2.2, a drawback of MM is the need to pre-specify the number

of model weights. In our AMM algorithm that uses SGD, we address this issue

by simply setting the number of weights per class to infinity. Let us discuss the

consequences of this idea.

First, we should observe that SGD initializes all model weights to zero. At t-th

round, zero weight wi,j becomes non-zero only if the convex loss lcvxpW; pxt, ytq; ztq is

positive and either (i) i � it and j � jt (the largest prediction from nonzero weights

of incorrect classes is less than zero) or (ii) i � yt and j � zt (the assigned weight

60

from true class is zero). Therefore, at most two zero weights can become nonzero

at each round. In practice, as the AMM classifier improves during training, it will

become less likely that any zero weight satisfies either condition (i) or (ii). On more

complex and noisy data sets, we can expect to have more nonzero weights than on

the simpler classification problems.

Second, let us discuss the implementation issue of storing an infinite number of

model weights. We address it by storing all nonzero weights and a single reserved

zero weight per class. Any time a zero weight becomes nonzero, we create a space for

the newly created nonzero weight. In this way, a compact storage is achieved that is

equivalent to storing an infinite number of weights.

4.3.3 Generalization Error

We now discuss the generalization error of the learned AMM model. Let us de-

note by bi the number of AMM weights for i-th class, which is the sum of all its

nonzero weights plus one for the reserved zero weight. In Aiolli and Sperduti (2005),

the authors derived a generalization error of MM model under the assumption that

training data can be separated by the model. Their proof follows the framework of

Decision Directed Acyclic Graph (DDAG) (Platt et al., 2000) and the techniques

used in Crammer and Singer (2002). The proof was based on the assumption that

each class has equal number of weights. Here, we provide an extension of the proof

in case when the number of weights per class varies.

By considering the classification process of AMM model as a Decision Directed

Acyclic Graph (DDAG) with 1
2

M°
i�1

bi
M°
j�i

bj nodes, and following the proof of Lemma

3 in Aiolli and Sperduti (2005), we can obtain a margin-based bound. By upper

bounding the margin-relevant terms by the norm of model weights, we have the

following error bound.

61

Theorem 2. Suppose we are able to correctly classify an i.i.d sampled training set

S using the AMM model

W � rw1,1...w1,b1w2,1...w2,b2 ...wM,1...wM,bM s,

then we can upper bound the generalization error with probability greater than 1� δ

as

130

N

�
||W||2B logp4eNq logp4Nq � logp2p2Nq

K

δ
q

,

where B �
M°
i�1

bi � 1 � b2
max � bmax � bmin, K � 1

2

M°
i�1

bi
M°
j�i

bj, bmin � mini�1,...,Mtbiu

and bmax � maxi�1,...,Mtbiu.

Theorem 2 shows that the generalization error is proportional to ||W||2B and

that it can be reduced either by reducing the model weight norm or the number

of weights. This clearly suggests that AMM should attempt to use as few nonzero

weights as possible. This conclusion is a motivation for weight pruning strategy

proposed next.

4.3.4 Weight Pruning

Every round of SGD training results in shrinking AMM model weights towards zero.

As a result, the class weights that are rarely updated can become very small and

start resembling zero weights. Such weights are typically generated during initial

stages of training when AMM model is less accurate or during model updates caused

by noisy examples. Since, by Theorem 2, nonzero weights negatively impact the gen-

eralization error, and since replacing small weights with zero weights is not likely to

significantly influence AMM accuracy, we propose a pruning step that occasionally

removes weights with sufficiently small norms. In addition to reducing the general-

ization error, weight removal is beneficial from computational viewpoint because it

can speed-up both training and prediction and reduce model size.

62

The pruning step can be formulated as

Wpt�1q Ð Wpt�1q �∆Wptq, (4.15)

where ∆Wptq is a sparse matrix of the same size as Wpt�1q whose nonzero columns

correspond to removed weights. For example, if w
ptq
i,j is removed, ∆w

ptq
i,j � w

ptq
i,j , and all

other columns of ∆Wptq are zero. In AMM, pruning is performed periodically after

every k rounds and only on the weights that are below a threshold. The following

theorem analyzes the impact of pruning on the convergence of SGD.

Theorem 3. Consider the SGD update rule (4.12). Let W� be the optimal solution

of the problem (4.7) . Define a pruning constant c ¥ 0 and execute the pruning step

(4.15) after each k iterations with ∆Wptq ¤ c{ppt� 1qλq. Then we have

1

T

Ţ

t�1

P ptqpWptq|zq � 1

T

Ţ

t�1

P ptqpW�|zq

¤ p8� cqplnpT q � 1q
λT

� 2p4� cqc
kλ

.

Unified Proof of Theorems 1 & 3. First, we rewrite the update rule of SGD with the

optional pruning step as Wpt�1q Ð Wptq � ηptqBptq, where Bptq � ∇ptq � Eptq and

Eptq � 0 if no pruning is used. The relative progress towards the optimal solution

W� at t-th round Dptq can be lower bounded as

Dptq � ||Wptq �W�||2 � ||Wptq � ηptq∇ptq � ηptqEptq �W�||2
� �pηptqq2||Bptq||2 � 2ηptqpEptqqT pWptq �W�q
�2ηptqp∇ptqqT pWptq �W�q
¥1 �pηptqq2G2 � 2ηptq||Eptq||4�c

λ

�2ηptq
�
P ptqpWptqq � P ptqpW�q � λ

2
||Wptq �W�||2� .

(4.16)

In ¥1, we assume there is a constant G ¥ 0 such that ||Bptq|| ¤ G and we will

quantify G later on. For the second term, we first bound Wptq as

||Wptq|| ¤ ||p1� ηpt�1qλqWpt�1q|| � 2ηpt�1q � ||∆Wpt�1q||
¤ t�2

t�1
||Wpt�1q|| � 2

pt�1qλ
� c

pt�1qλ

¤ 1
t�1
||Wp0q|| � 2pt�1q

pt�1qλ
� pt�1qc

pt�1qλ
� 2�c

λ
,

63

and then use triangle inequality to bound ||Wptq�W�|| ¤ p2�cq{λ�2{λ by using the

fact ||W�|| ¤ 2{λ according to the result in Kivinen et al. (2002). Then, we bound

the third term using function P ptqpWptqq’s λ-strong convexity (Shalev-Shwartz and

Singer, 2007).

Dividing both sides of inequality (4.16) by 2ηptq and rearranging, we obtain

P ptqpWptqq � P ptqpW�q ¤ Dptq

2ηptq
� λ

2
||Wptq �W�||2

�ηptqG2

2
� p4�cq||Eptq||

λ
.

(4.17)

Summing over all t, we get

T°
t�1

P ptqpWptqq �
T°
t�1

P ptqpW�q ¤
T°
t�1

Dptq

2ηptq

�
T°
t�1

λ
2
||Wptq �W�||2 � G2

2

T°
t�1

ηptq � p4�cq
λ

T°
t�1

||Eptq||.

We bound the first and second terms in inequality (4.17) as

1
2

N°
t�1

�
Dptq

ηptq
� λ||Wptq �W�||2

	
� 1

2

�
p 1
ηp1q

� λq||Wp1q

�W�||2 �
N°
t�2

�
1
ηptq

� 1
ηpt�1q � λ

	
||Wptq �W�||2

� 1
ηpNq

||WpT�1q �W�||2
	

�1 � 1
2ηpNq

||WpT�1q �W�||2 ¤ 0.

(4.18)

In �1, the first and second terms vanish after plugging ηt � 1{pλtq. Next, we bound

the third term in inequality (4.17) according to the divergence rate of harmonic

series,

G2

2

Ţ

t�1

ηptq � G2

2λ

Ţ

t�1

1

t
¤ G2

2λ
plnpTq � 1q. (4.19)

Then, we quantify G as

||Bptq|| ¤ ||∇ptq|| � ||Eptq|| ¤ pλ||Wptq|| � 2q � 2� c ¤ 6� c � G.

64

If no pruning is used, ||Eptq|| � 0. For the iterations when the pruning is executed,

we bound ||Eptq|| as ||Eptq|| ¤ 2c using the bound on ∆Wptq. Combining inequality

(4.18) with (4.19) and dividing two sides of inequality by T , we get the stated bounds

as in Theorems 1 and 3.

Theorem 3 quantifies the upper bound on the difference between the averaged

instantaneous loss of the AMM with pruning and the optimal solution. It can be seen

that the gap is proportional to the pruning threshold c and inversely proportional to

the pruning interval k. When c � 0, Theorem 3 is equivalent to Theorem 1. Large c

and small k correspond to a more aggressive pruning that enforces a simpler classifier

but with a wider gap with the optimal solution; while small c and large k shrink the

gap but lead to larger AMM model. Next, we state the following important property

of pruning.

Proposition 1. Let us consider the case where pruning (4.15) is executed after each

k iterations with threshold c. Let us consider a weight which is being updated at least

c times through the first two cases in (4.13) during the previous k iterations. It can

be shown that such weight will not be pruned.

We omit the proof due to lack of space. The Proposition 1 provides a very useful

interpretation of the effect of the pruning threshold c in Theorem 3. To be consistent

with Theorem 3, pruning in AMM is implemented as follows: every k rounds, AMM

weights are pruned starting from the one with the smallest norm, and continued

as long as the cumulative Frobenius norm of the pruned weights is below threshold

c{ppt� 1qλq.

4.3.5 Online AMM

AMM described in Algorithm 1 is suitable for offline application where the whole

data set is residing on a computer and multiple passes through the data are allowed.

65

This is due to the procedure that iteratively solves an approximate convex problem

(4.7) and recalculates assignments z on the whole data set. Here, we propose a

modification of AMM that allows its use in an online setting, where the data set

is observed sequentially in a single pass. Online AMM calculates assignment of the

incoming t-th example as

zt � arg max
k
ppwptq

yt,k
qTxtq

and updates Wptq to Wpt�1q using SGD (4.12) with this assignment. The resulting

online training procedure is summarized in Algorithm 2.

The main difference between the offline (Algorthm 1) and online (Algorithm 2)

versions of AMM is that the online version does not wait for convergence of (4.7) but

changes the assignment z after every update of SGD. As a result, instead of having

to periodically calculate assignment z on the whole data set, it only has to be done

on the single incoming example. This allows a single-pass AMM training, and it also

leads to savings in computational speed and memory. The price to be paid is that

convergence of online AMM to a local optimum cannot be guaranteed, because the

online AMM greedily minimizes the non-convex instantaneous objective (4.3). As

will be seen from the experimental results, the online AMM behavior is very similar

to the offline AMM. Coupled with computational efficiency, ease of implementation,

and applicability for stream learning, this makes online AMM a highly attractive

learning algorithm.

4.3.6 Implementation Details

A näıve implementation of the update rule (4.12) would require OpDqtime for weight

shrinking p1 � ηptqλqwptq
i,j and OpDq time to perform weight update. This computa-

tional burden is unnecessary when instances are highly dimensional and sparse (e.g.

in text/image data). To circumvent this problem we apply an approach used to

66

Algorithm 5 Online Algorithm

Input: Training set S, the regularization parameter λ
Output: Wptq

Initialize: Wp1q � 0, t � 1
1: repeat
2: pxt, ytq Ð t-th example from S;
3: calculate zt by (4.10);

4: update Wp��tq by (11);
5: until (data set exhausted)

Table 4.2: Summary of large datasets

Datasets #train #test #dim #class non-zero % file size domain

a9a 32,561 16,281 123 2 11.3% 2M social survey
ijcnn 49,990 91,701 22 2 66.7% 7.5M time series
webspam 280,000 70,000 254 2 41.9% 327M web text
rcv1 bin 677,399 20,242 47,236 2 0.2% 35M news text
url 1,976,130 420,000 3,231,961 2 0.004% 1.7G Internet data
mnist8m bin 8,000,000 10,000 784 2 19.3% 18G OCR images
mnist8m mc 8,000,000 10,000 784 10 19.3% 18G OCR images

speed-up linear SVM training (Shalev-Shwartz et al., 2007b) that represents wi,j as

wi,j � si,jvi,j, where si,j is a scalar and vi,j P RD. In this case, the update rule can

be decomposed into s
ptq
i,j Ð p1 � ηptqλqsptqi,j and v

ptq
i,j Ð v

ptq
i,j � ηptq{sptqi,jxt in time only

proportional to the number of non-zero features in xt.

4.4 Experiments

In this section, we evaluate the proposed batch and online AMM algorithms and

compare them with the large-scale Kernel and Linear SVM algorithms on several

large real-life data sets. The competing algorithms are listed as follows:

• LibSVM (Chang and Lin, 2011) A popular SMO-based SVM solver which is

scalable to hundreds of thousands examples.

• LaSVM (Bordes et al., 2005) A large-scale online SVM algorithm that accesses

67

Table 4.3: Error rate and training time comparison with large-scale algorithms (RBF
SVM is solved by LibSVM unless specified otherwise. Poly2 and LibSVM results are
from Chang et al. (2010)).

Datasets

Error rate (%) Training time (seconds)1

AMM AMM Linear Poly2 RBF AMM AMM Linear Poly2 RBF
batch online (Pegasos) SVM SVM batch online (Pegasos) SVM SVM

a9a 15.03�0.11 16.44�0.23 15.04�0.07 14.94 14.97 2 0.2 1 2 99
ijcnn 2.40�0.11 3.02�0.14 7.76�0.19 2.16 1.31 2 0.1 1 11 27

webspam 4.50�0.24 6.14�1.08 7.28�0.09 1.56 0.80 80 4 12 3,228 15,571

mnist bin 0.53�0.05 0.54�0.03 2.03�0.04 NA 0.432 3084 300 277 NA 2 days2

mnist mc 3.20�0.16 3.36�0.20 8.41�0.11 NA 0.673 13864 1200 1180 NA 8 days3

rcv1 bin 2.20�0.01 2.21�0.02 2.29�0.01 NA NA 1100 80 25 NA NA
url 1.34�0.21 2.87�1.49 1.50�0.39 NA NA 400 24 100 NA NA

1 excludes data loading time.
2 achieved by parallel training P-packSVMs on 512 processors; results from Zhu et al. (2009).
3 achieved by LaSVM; results from Loosli et al. (2007).

Table 4.4: The number of weights in the classifiers

Datasets a9a ijcnn webspam mnist8m bin mnist8m mc rcv1 url

batch AMM 11�1 11�1 13�2 20�1 65�2 22�2 4�0
online AMM 16�2 15�1 10�1 13�1 61�3 44�5 5�1

one example at a time.

• P-packSVM (Zhu et al., 2009) An SVM solver that parallelizes the SGD style

training on multiple processors.

• Pegasos (Shalev-Shwartz et al., 2007b) The state-of-the-art Linear SVM solver

which is based on SGD.

• Poly 2 SVM by Liblinear (Chang et al., 2010) A fast solver for Polynomial

degree 2 kernel SVM. The algorithm explicitly expresses the feature space as a

set of attributes and then trains Liblinear on the transformed data. However,

it is only scalable to very sparse or low dimensional data.

A summary of datasets2 is shown in Table 2.

2 url dataset (Ma et al., 2009) is available at http://www.sysnet.ucsd.edu/projects/url/; all the
others are available at http://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/

68

For Algorithm 1, instead of a random assignment, we initialized zp1q by a single

scan of data using Online AMM, which sequentially sets each element of zp1q as in

(4.10). Our preliminary results showed it worked better than the simple random

initialization approach. We used the epoch-based stopping criteria3 for SGD for

each sub-problem. Since all studied data sets were large we used only 1 epoch

before reassigning the weights. We stopped training after 5 passes through the data.

We ran online AMM using a single pass of the data. In addition, we also explored

performance of online AMM when 5 passes through data. This allowed us to compare

online and batch AMM. The pruning step with k � 10, 000 and c � 10 was used

with Algorithms 1 & 2 in all the experiments.

The training error and training time of LibSVM, LaSVM, P-packSVM and Poly 2

SVM were taken from recently published results in Chang et al. (2010); Loosli et al.

(2007); Zhu et al. (2009). For Pegasos and the proposed batch and online AMM

algorithms, we selected the regularization parameter λ through cross-validation. The

considered range was λ � 10�2, ..., 10�7. We repeated all the experiments five times,

each with randomly shuffled training data. Mean and standard deviation of each set

of experiments are reported. All the training examples were normalized such that

all attributes were within range r�1,�1s. Both batch and online AMM algorithms

were implemented in C++. Unless otherwise stated, all the experiments were run

using a 3.0GHz Intel Xeon processor with 16G memory on Linux.

The generalization error and the training time of all the algorithms on large

datasets are summarized in Table 3. Due to the large computational costs of Kernel

SVM training on the largest datasets from our collection, no previous results are

reported (to the best of our knowledge), so we use NA to mark these cases in the

table. The original MM algorithm (Aiolli and Sperduti, 2005) is also not scalable to

3 As suggested in Bordes et al. (2009). Shalev-Shwartz et al. (2007b) uses a predefined threshold
on the objective value as the stopping criteria. However, this threshold can vary from case to case.

69

any of the studied large datasets, so it is not included in the comparison.

Batch vs. Online First, let us compare two versions of AMM. We can see

that batch AMM achieved lower generalization error than its online sibling at the

expense of significantly longer training time that occasionally was more than one

order of magnitude longer. The difference in accuracy depends on the difficulty of

the datasets. Considering that online AMM used only a single pass of the data, its

slightly degraded generalization error is understandable.

AMM vs. Linear SVM Comparing the generalization error of AMM with Lin-

ear SVM, we can see that both AMM algorithms significantly outperformed Linear

SVM on 5 out of 7 datasets. Considering training time, online AMM had comparable

training time to Linear SVM and batch AMM was somewhat slower. Considering

prediction time, Table 4 lists the number of weights in the AMM classifiers that

dictate prediction time and memory needed to store the classification model. These

numbers divided by the number of classes directly reflect the increased prediction

time of AMM as compared to Linear SVM. We can see that AMM classifiers are

around one order of magnitude slower than Linear SVM, which has OpMDq predic-

tion time. This is very impressive result considering that AMM achieves significantly

lower error rate than Linear SVM. This indicates that AMM is superior to linear SVM

because it provides a better tradeoff between accuracy and speed in all but the most

resource-constrained applications.

AMM vs. Kernel SVM Comparison against Poly2 SVM on three relatively

small datasets (a9a, ijcnn, webspam) shows that AMM had similar error rates as

Poly2 SVM, while achieving several orders of magnitude faster training. Also, the

OpMDq prediction time of AMM is much more favorable than the OpMD2q predic-

tion time of Poly2 SVM. By comparing AMM with RBF SVM on 5 low-dimensional

datasets (where RBF SVM’s results were reported in the previous literature), we can

see that AMM has somewhat lower (0.1% � 2.9%) but still comparable error rate.

70

(a) (b)

(c) (d)

Figure 4.2: Detailed results on url data (upper two panels) and mnist8m bin data
(lower two panels)

Particularly, on the two largest datasets (mnist8m bin and mnnist8m mul), the error

rate achieved by AMM after running on a single processor for a couple of hours is

very competitive to P-packSVM’s classifier trained in 2 days on 512 processors and

LaSVM’s classifier trained in 8 days on a single processor. These results show that

the AMM algorithms are appealing alternative to kernel SVMs when learning from

very large data.

Train Online AMM in Batch Mode Table 3 lists Online AMM results when

it was run with a single pass through the data. We also performed experiments when

it was allowed to make multiple passes through the data. The detailed results on the

two largest datasets for the multi-pass Onine AMM are shown in Figure 2. The top

left and bottom left panels in Figure 2 show the evolution of the error rate and the

total training time as a function of the number of epochs (one epoch denotes a full

71

pass through the data). We can see that the error rate rapidly decreases during the

first epoch and that it continues to improve slightly after the first epoch. The training

time increases linearly, as expected. The results suggests that, if the training time

is not of major concern and if data could be stored in memory, multiple accesses to

the training data should be recommended. The top right and bottom right panels of

Figure 2 show the number of AMM weights as training progresses. In addition to the

current number of weights, the panels also show the total number of weights created

and pruned at any stage of training process. It can be seen that the pruning has the

desired effect of controlling the total number of model weights without negatively

influencing the error rate.

4.5 Improving the representability of AMM algorithm

The empirical results from Wang et al. (2011) indicate that AMM is more accurate

than linear SVM, but less accurate than non-linear SVMs. The question is whether

the reduced performance is due to limited representability of the MM model, or

due to limitations of MM learning algorithms. The following theorem answers this

question by showing that MM can represent any concept.

Theorem 4. Assume that we are given a training set D � tpxt, ytq, t � 1, . . . , T u,
in which there are no two examples with the same feature vector and different class

labels. Then, there exists an MM classifier of the form (4.1) with gpi,xq defined as

in (4.5), that perfectly classifies the training set.

Proof sketch. We give a proof by construction. Let us choose any strictly convex

function h : RD Ñ R. For each xt find a tangent to hpxq at xt, include the tangent

into the weight matrix W, and label it with yt. Then, MM with weight matrix W

perfectly classifies the training set, since, due to the strict convexity of hp�q, among

all other tangents the tangent at xt has the maximal value for the tth example and

72

Strictly convex

function

Feature value

Weight

prediction

Tangents

0

20

40

60

Feature value

Decision boundaries
Weights

Red wins Red wins Red winsBlue wins Blue wins Blue winsBlue wins

Figure 4.3: (a) Visualizing proof of Theorem 4; (b) GAMM on 1�7 XOR-like data

it returns the correct label yt of the tth example.

Figure 4.3a illustrates how MM can be constructed given a training data set

with 1-D examples. However, MM trained using the construction from the proof

is not practical, as it would require T weights and would be prone to overfitting.

Similar argument to Theorem 4 can be given to show that MM can represent an

arbitrarily complex concept. For any partitioning of feature space in classes, we

can split the space into a fine grid, find a tangent to a center of each grid cell, and

assign the tangent a dominant class of its grid cell. The classification error could be

made arbitrarily small by increasing the grid density. However, for high-dimensional

feature spaces the size of the resulting MM model would be prohibitively large for

practical purposes.

An interesting experimental observation is that MM models learned by the pro-

posed GAMM algorithm resemble the constructive MM models from the proof of

Theorem 4. To illustrate this, in Figure 4.3b we show the model trained on 1 � 7

XOR-like data by GAMM. As can be seen, the active hyperplanes indeed form a

convex-shaped envelope. For completeness, we note that the resulting model also

contains several inactive hyperplanes below the convex envelope.

4.5.1 Connection between MM and LVQ models

By considering Figure 4.3b and the proof of Theorem 4, we can observe that the

weights of MM model define a partition of the input space into disjoint one-class

73

regions. This, along with prototype-based nature of MM, indicates a connection

between MM models and the well-known Learning Vector Quantization (LVQ) algo-

rithm (Kohonen, 2001) which finds a Voronoi tessellation of the input space. Interest-

ingly, the connection between LVQ and large-margin classifiers has been established

before in Crammer et al. (2002), where the authors showed that LVQ is a large-

margin classifier that attempts to minimize loss function LptqLV Q defined in terms of

margin θ
ptq
LV Q for a current training example xt,

LptqLV Q � maxp0, 1� θ
ptq
LV Qq, where θ

ptq
LV Q �

1

2
p}xt � µ�}2 � }xt � µ�}2q, (4.20)

and µ� and µ� are the closest LVQ prototypes to xt belonging to correct and one

of incorrect classes, respectively. Note that the loss function LptqLV Q does not include

regularization term, and, considering LVQ training scheme (Kohonen, 2001), it is

not readily obvious how to regularize the LVQ model.

Let us introduce an alternative definition of margin as θ
ptq
MM � µT

�xt � µT
�xt.

Then, if we choose µ� to be a correct-class MM weight assigned to xt according to

z, and µ� is an incorrect-class weight maximizing (4.5), we can rewrite (4.11) as

LptqpW|zq � maxp0, 1� θ
ptq
MMq � regularization term. (4.21)

Clearly, the instantaneous loss functions LptqLV Q from (4.20) and LptqpW|zq from (4.21)

are equivalent up to a definition of margin θ and the addition of MM regularization.

However, if we expand θ
ptq
LV Q,

θ
ptq
LV Q �

1

2
p}xt�µ�}2 �}xt�µ�}2q �

�
µT
�xt�µT

�xt

	
� 1

2

�
}µ�}2 �}µ�}2

	
, (4.22)

we can see that the LVQ margin θ
ptq
LV Q can be expressed as the sum of MM-type

margin θ
ptq
MM and an additional term involving norms of the prototypes. In other

74

Algorithm 6 Training algorithm for GAMM
Inputs: Training set D, regul. param. λ, duplication params p, β
Output: Wptq

1. Initialize Wp0q Ð 0, tÐ 1, r Ð 0, iÐ 1, and randomly initialize zp0q

2. repeat
3. repeat

4. if (lcvxpW
ptq; pxt, ytq; z

prq
t q ¡ 0) then

5. if (randpq p) then

6. duplicate weight w
ptq

yt,z
prq
t

;

7. decrease duplication probability as pÐ βp;

8. compute Wpt��q using (4.12);
9. until (enough epochs)

10. compute zp��rq using (4.10), and set iÐ 1;

11. until (zpr�1q � zprq or enough epochs)

words, LVQ can be seen as an MM model without explicit regularization that max-

imizes the margin θ
ptq
MM at each training step, where the regularization is implicit

through the additional margin term forcing the prototypes to have similar norms.

Having emphasized these strong ties between MM and LVQ models, we note that

there remains a difference in a way the distance measure between prototypes and ex-

ample xt is defined. Unlike MM that uses linear kernel, LVQ uses Euclidean distance,

thus exhibiting limited performance in high-dimensional spaces due to the curse of

dimensionality (Hastie et al., 1995; Verleysen et al., 2003).

4.5.2 Growing AMM (GAMM) algorithm

Both MM and LVQ can represent arbitrarily complex concepts, as shown in Theorem

4 and Hornik et al. (1989), respectively. However, in practice they might obtain lim-

ited results due to constraints of their respective training algorithms, as illustrated

in Section 6.5. Significant efforts have been invested to address this issue for LVQ,

resulting in a highly-influential work on Growing Self-Organizing Networks (Fritzke,

1994, 1995). These growing networks obtain significant performance improvements

over the competing LVQ methods through insertion of prototypes into the model

75

that are a linear combination of existing prototypes. Considering the correspon-

dence between LVQ and MM and inspired by the ideas from Fritzke (1994, 1995)

shown to increase representability of LVQ, we present a novel MM method with sig-

nificantly improved performance over the aforementioned AMM algorithm. Higher

accuracy is achieved by allowing MM weights to be duplicated during the SGD train-

ing procedure. In particular, in addition to moving the true-class weight closer to

the misclassified example, a duplicate of the weight is made with probability p.

The pseudocode of the proposed Growing AMM (GAMM) algorithm is shown

in Algorithm 6. GAMM training closely follows the training procedure of AMM.

However, unlike in the original AMM, when a convex classification loss is incurred

at the tth training iteration (line 6), with probability p we duplicate the true-class

weight assigned to the observed example pxt, ytq (line 7). Since we expect that the

weights will eventually stabilize as the training continues, and to prevent unnecessary

generation of duplicate weights in later stages of training, the algorithm gradually

decreases the probability p by multiplying with a positive constant β 1 after every

insertion (line 8; in the experiments we used β � 0.99). GAMM is a generalization of

AMM algorithm, since by setting p � 0 we obtain the original AMM algorithm. Note

that we can trade-off between exploration and exploitation strategies by manipulating

the value of p. By using higher p we explore a larger hypothesis space, possibly

leading to discovery of more powerful classifiers but also to overfitting.

Effect of weight duplication illustrated on toy example

Consider a simple two-class example shown in Figure 4.4. The two classes (with

examples denoted by blue pluses and red minuses) are not linearly separable; they

follow a complex XOR-like pattern, with each class consisting of two separate regions

of 1-dimensional space (R1 and R2 regions for the red class, B1 and B2 regions for

the blue class). Let us assume that Figure 4.4a represents AMM weights at some

76

Weight

prediction

Feature value

w1

w2

w3

Red wins Blue wins Red wins

Decision

boundaries

R1 R2B1 B2

(a) Without duplication (misclassified region
shown by the arrow)

Feature value

w1

w2

w3

Red wins Blue wins Red wins

R1 R2B1 B2

Blue wins

w4

(b) With duplication (succeeds to per-
fectly classify the data set)

Figure 4.4: Simple 1-dimensional XOR example where SGD training fails

point during SGD procedure. The current MM model nearly perfectly separates

the two classes (red-class weights denoted by w1 and w2, and blue-class weight

by w3), except for B2 region shown by the arrow. As the SGD training continues

from the point shown in Figure 4.4a, the examples from smaller B2 region would

start moving weight w3 toward them, leading to misclassification of currently well-

classified examples from B1 andR2 regions. In turn, the newly misclassified examples

from B1 and R2 regions would move w3 back to its previous position shown in Figure

4.4a. The outcome would be that w3 goes back and forth as it attempts to correctly

classify examples from both blue regions. We can see that, even though this simple

example is absolutely noise-free, AMM that observes one example at a time would

fail to solve the posed classification problem.

Now let us consider the case in which w3 would be cloned upon misclassification

of an example from B2 region, thus creating a new blue-class weight w4. Instead of

moving the well-positioned weight w3 responsible for correct classification of exam-

ples from B1 region, the new weight would be pushed towards B2 region, without

affecting correctly classified points from B1 region. As w4 is pushed more and more

towards B2 region, it will eventually cover the whole region, resulting in a perfect

separation of blue and red classes illustrated in Figure 4.4b.

77

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) AMM (27.95% err. r.)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) GAMM (7.38% err. r.)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) nw � 50

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d) nw � 200

Figure 4.5: (a) and (b) MM performance on 4 � 4 checkerboard data; (c) and (d)
2-D weights data set

4.5.3 Preliminary results

In this section we present preliminary results of GAMM algorithm on synthetic data

sets. We considered 4 � 4 checkerboard data set, and compared performance of

AMM and GAMM. The data set is not linearly separable, and provides an excellent

benchmark to show the benefits of the proposed algorithm. We created a balanced,

two-class training set with 15,000 examples and a test set with 5,000 examples. We

set parameters to default values, c � 10 for AMM and c � 50 for GAMM (due to its

frequent introduction of new weights), probability p � 0.2, and set λ through cross-

validation. We trained for 15 epochs. As seen from Figures 4.5a and 4.5b, AMM

78

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Percentage of noisy data points

GAMM

AMM

Figure 4.6: AMM and GAMM performance on noisy 4� 4 checkerboard data set

could not solve this difficult non-linear problem, while GAMM achieved near-perfect

class separation.

To further explore robustness of AMM algorithms, we added label noise to the

4 � 4 checkerboard data. We increased the percentage of noisy examples (to which

we uniformly at random assigned a class label) from 0 to 1 in increments of 0.05,

repeating each experiment 10 times. The accuracy and confidence intervals showing

two standard deviations on noise-free test data are shown in Figure 4.6. GAMM

shows resiliency to noisy labels and continues to strongly outperform AMM until

noise levels were very high.

To get a better insight into representational power and stability of AMM, we

ran experiments on checkerboard data set of different complexity. We changed the

number of rows and columns of the checkerboard grid from 1 to 5, and report mean

and standard deviation of classification error rate after 10 repetitions. The results

are shown in Table 4.5. We can see that AMM could not solve 2 � 4 and 3 � 3

checkerboards. On the other hand, GAMM achieved significantly higher accuracy

and was more stable than AMM in all cases.

79

Table 4.5: Error rate as a function of checkerboard pattern
Pattern AMM GAMM

1� 2 0.48� 0.33 0.42� 0.29
1� 3 1.39� 0.72 1.33� 0.62
1� 4 3.23� 0.70 2.45� 0.51
1� 5 4.90� 0.97 3.73� 0.71
2� 2 1.49� 0.57 1.08� 0.40
2� 3 2.98� 0.85 2.20� 0.52
2� 4 10.33� 6.77 3.77� 0.89
2� 5 20.79� 7.42 5.90� 1.61
3� 3 16.92� 9.72 4.17� 0.77
3� 4 24.47� 7.42 5.69� 0.93
3� 5 34.87� 4.84 7.97� 1.43
4� 4 35.87� 3.39 7.38� 1.53
4� 5 35.13� 5.26 13.11� 1.84
5� 5 43.27� 3.71 22.15� 2.08

80

CHAPTER 5

BUDGETEDSVM: A TOOLBOX FOR
SCALABLE SVM APPROXIMATIONS

5.1 Introduction

Support Vector Machines (SVMs) are among the most popular and best performing

classification algorithms. Kernel SVMs deliver state-of-the-art accuracies in non-

linear classification, but are characterized by linear growth in the number of support

vectors with data size, which may prevent learning from truly large data. In contrast,

linear SVMs cannot capture non-linear concepts, but are much more scalable and al-

low learning from large data with limited computing resources. Aimed at bridging the

representability and scalability gap between linear and non-linear SVMs, recent ad-

vances in large-scale learning resulted in several powerful algorithms that enable ac-

curate and scalable training of non-linear SVMs, such as Adaptive Multi-hyperplane

Machines (AMM) (Wang et al., 2011), Low-rank Linearization SVM (Zhang et al.,

2012), and Budgeted Stochastic Gradient Descent (BSGD) (Wang et al., 2012). With

accuracies comparable to kernel SVM, these algorithms are scalable to millions of

examples, having training and prediction times comparable to linear SVM and orders

81

of magnitude shorter than kernel SVM.

We present BudgetedSVM, an open-source C++ toolbox for scalable, non-linear,

multi-class classification. The toolbox provides an Application Programming In-

terface (API) for efficient training and testing of the aforementioned non-linear

classifiers, supported by data structures designed for handling large-scale, high-

dimensional data which cannot fit in memory. BudgetedSVM can be seen as a

missing link between the LibLinear and the LibSVM packages (Hsieh et al., 2008;

Chang and Lin, 2011), combining the efficiency of linear SVM with the accuracy of

kernel SVM models. We also provide command-line and Matlab interfaces to the

toolbox, which, influenced by the simplicity of LibSVM and LibLinear, provide users

with an efficient, easy-to-use tool for large-scale non-linear classification.

5.2 Non-linear Classifiers for Large-scale Data

Before taking a closer look at the implementation and usage details of the Bud-

getedSVM toolbox, in this section we give a brief description of the implemented

algorithms.

5.2.1 Adaptive Multi-hyperplane Machines (AMM)

Wang et al. (2011) proposed a classifier that captures non-linearity by assigning

a number of linear hyperplanes to each of C classes from a set Y . Given a D-

dimensional example x, the AMM multi-class classifier has the following form,

fpxq � arg max
iPY

gpi,xq, where gpi,xq � max
j�1,...,bi

wT
ijx, (5.1)

where the ith class is assigned bi weight vectors with the total budget B � °
i bi.

AMM is learned via Stochastic Gradient Descent (SGD). The hyper-parameters in-

clude a regularization parameter λ, the number of training epochs e, the maximum

number of non-zero weights per class Blim, bi ¤ Blim, and weight pruning parameters

82

k (pruning frequency) and c (pruning aggressiveness). As an initial guideline to the

users, we experimentally found that for most data sets the values e � 5 (or e � 1 for

very large data), Blim � 50, k � 10,000, and c � 10 are appropriate, leaving only λ

to be determined by cross-validation.

When b1, ..., bC are fixed to 1, the AMM model reduces to linear multi-class SVM

(Crammer and Singer, 2002), and the learning algorithm is equivalent to Pegasos, a

popular linear SVM solver from Shalev-Shwartz et al. (2007b). As it is a widely-used

linear SVM solver, we also provide the Pegasos algorithm directly as a shortcut in

the BudgetedSVM toolbox.

5.2.2 Low-rank Linearization SVM (LLSVM)

Zhang et al. (2012) proposed to approximate kernel SVM optimization by a linear

SVM using low-rank decomposition of the kernel matrix. The approximated opti-

mization is solved via Dual Coordinate-Descent (DCD) (Hsieh et al., 2008). The

binary classifier has the form

fpxq � sign
�
wTpM � gpxqq�,

where gpxq � rkpx, z1q, . . . , kpx, zBqsT, tziui�1,...,B is a set of landmark points of size

B, kpx, ziq is a kernel function, w defines a separating hyperplane in the linearized

kernel space (found using the DCD method), and M is a B � B mapping matrix.

The hyper-parameters include kernel parameters, regularization parameter λ, and

the number of landmark points B. Parameter B controls a trade-off between speed

and accuracy, while kernel parameters and λ are best determined by cross-validation.

5.2.3 Budgeted Stochastic Gradient Descent (BSGD)

Wang et al. (2012) proposed a budgeted algorithm which maintains a fixed number

of support vectors in the model, and incrementally updates them during the SGD

83

Table 5.1: Time and space complexities of the classification algorithms
Pegasos AMM LLSVM BSGD RBF-SVM

Training time OpNCSq OpNSBq OpNSB2 �NSBq O
�
NpC � SqB

�
OpINCSq

Prediction time OpCSq OpSBq OpSB2 � SBq O
�
pC � SqB

�
OpNCSq

Model size OpCDq OpDBq OpDB �B2q O
�
pC �DqB

�
OpNCSq

training. The multi-class BSGD classifier has the same form as (5.1), but with gpi,xq
defined as

gpi,xq �
B̧

j�1

αijkpx, zjq,

where tzjuj�1,...,B is the support vector set, and αij is a class-specific parameter as-

sociated with the jth support vector. We implemented Pegasos-style training, where

the budget is maintained through either merging (where RBF kernel is used) or ran-

dom removal of support vectors. The hyper-parameters include the number of epochs

e, kernel parameters, regularization parameter λ, and budget size B. Parameters B

and e control a speed-accuracy trade-off, while kernel parameters and λ are best

determined by cross-validation.

5.2.4 Time and space complexity

Time and space complexities of the algorithms are summarized in Table 5.1, where

N is the number of training examples, C is the number of classes, D is the data

dimensionality, data sparsity S is the average number of non-zero features, and B

is the model size for AMM, BSGD, and LLSVM. Parameter I for SVM with RBF

kernel (RBF-SVM) denotes a number of training iterations, empirically shown to be

super-linear in N (Chang and Lin, 2011).

5.3 The Software Package

BudgetedSVM can be found at http://dabi.temple.edu/budgetedSVM/. The software

package provides a C++ API, which comprises functions for training and testing

84

of non-linear models described in Section 5.2. Each model can be easily trained

and tested by calling the corresponding train/predict function, defined in mm algs.h,

bsgd.h, and llsvm.h header files. The API also provides functionalities for handling

large-scale, high-dimensional data sets, defined in budgetedSVM.h header file.

BudgetedSVM sequentially loads data chunks into memory to allow large-scale

training, storing to memory only indices and values of non-zero features as a linked

list. Furthermore, implementation of sparse vectors is optimized for high-dimensional

data, allowing faster kernel computations and faster updates of hyperplanes and

support vectors than linked list (e.g., as in LibSVM) or array implementation of

vectors (e.g., as in MSVMpack by Lauer and Guermeur, 2011) used for regular-scale

problems, where either time or memory costs can become prohibitively large during

training in a large-scale setting. In particular, vectors are split into disjoint chunks

where pointers to each chunk are stored in an array, and memory for a chunk is

allocated only if one of its elements is non-zero. While significantly reducing time

costs, we empirically found that this approach incurs very limited memory overhead

even for data with millions of features. Consequently, BudgetedSVM vector reads

and writes are performed memory-efficiently in constant time. Moreover, by storing

and incrementally updating support vector `2-norms after each training step, time

to compute popular kernels (e.g., linear, Gaussian, polynomial) scales only linearly

with sparsity S. Further implementation details can be found in a comprehensive

developer’s guide.

We also provide command-line and Matlab interfaces for easier use of the tool-

box, which follow the user-friendly format of LibSVM and LibLinear. For example,

we type budgetedsvm-train -A 1 a9a train.txt a9a model.txt in the command

prompt to train a classifier on the adult9a data set. The -A 1 option specifies

that we use the AMM algorithm, while the data is loaded from a9a train.txt

file and the trained model is stored to the a9a model.txt file. Similarly, we type

85

Table 5.2: Error rates (in %) and training times1 on benchmark data sets
Pegasos AMM LLSVM BSGD RBF-SVM

Data set err. time err. B time err. B time err. B time err. time

webspam 3.46 5e2 2.5m 2.04 5e2 2.0m
N � 280,000 7.94 0.5s 4.74 9 3s 2.60 1e3 6.1m 1.72 1e3 3.9m 0.77 4.0h
D � 254 1.99 3e3 0.5h 1.49 3e3 0.2h (#SV: 26,447)
rcv1 4.97 5e2 0.2h 3.33 5e2 0.8h
N � 677,399 2.73 1.5s 2.39 19 9s 4.23 1e3 0.5h 2.92 1e3 1.5h 2.17 20.2h
D � 47,236 3.05 3e3 2.2h 2.53 3e3 4.4h (#SV: 50,641)
mnist8m-bin 6.84 5e2 1.6h 2.23 5e2 2.3h
N � 8,000,000 22.71 1.1m 3.16 18 4m 4.59 1e3 3.8h 1.92 1e3 4.9h 0.43 N/A2

D � 784 2.59 3e3 15h 1.62 3e3 16.1h

budgetedsvm-predict a9a test.txt a9a model.txt a9a output.txt to evaluate

the trained model, which loads the testing data from a9a test.txt file, the model

from a9a model.txt file, and stores the predictions to a9a output.txt file. We also

provide a short tutorial which outlines the basic steps for using the BudgetedSVM

interfaces.

5.3.1 Performance comparison

BudgetedSVM can learn an accurate model even for data with millions of data points

and features, with training times orders of magnitude faster than RBF-SVM trained

using LibSVM. For illustration, in Table 5.2 we give comparison of error rates and

training times on binary classification tasks using several large-scale data sets (Wang

et al., 2011). On webspam and rcv1 it took LibSVM hours to train RBF-SVM, while

BudgetedSVM algorithms with much smaller budgets achieved high accuracy within

minutes, and even seconds in the case of AMM. Similarly, RBF-SVM training on

large-scale mnist8m-bin could not be completed in a reasonable time on our test

machine, while the implemented algorithms were trained within a few hours on ex-

tremely limited budgets to achieve low error rates. More detailed analysis of the

BudgetedSVM algorithms can be found in their respective papers.

1 We excluded data loading time; evaluated on Intel R© E7400 with 2.80GHz processor, 4GB RAM.

2 Listed accuracy obtained after 2 days of P-packSVM training on 512 processors (Zhu et al.,
2009).

86

CHAPTER 6

DISTRIBUTED LEARNING OF
CLASSIFICATION MODELS

6.1 Introduction

Recent advent of high-throughput applications which generate data sets that can

easily reach terabytes in size, such as remote sensing, crowd-sourcing, high-energy

physics, social networks, or computational advertising, has brought forward a clear

need for computational approaches that can efficiently learn from Big Data problems

(Bizer et al., 2012; Labrinidis and Jagadish, 2012; Lohr, 2012). Emerging conferences

that specifically address the Big Data issues, as well as the number of recent publi-

cations related to large-scale tasks, underline the significance of the Big Data field.

Moreover, recently introduced ”Big Data Research and Development Initiative” by

the United States government, aimed at providing support for these efforts, clearly

indicates globally-recognized, strategic importance, as well as future potential and

impact of Big Data-related research (Mervis, 2012).

With the emergence of extremely large-scale data sets, researchers in machine

learning and data mining communities are faced with numerous challenges related

87

to the sheer size of the problems at hand, as many well-established classification and

regression approaches were not designed and are not suitable for such memory- and

time-intensive tasks. The inadequacy of standard machine learning tools in this new

setting has led to investment of significant research efforts into the development of

novel methods that can address such challenges. Classification tasks are of particular

interest, as the problem of classifying input data examples into one of finite number

of classes can be found in many areas of machine learning. However, state-of-the-art

non-linear classification methods, such as Support Vector Machines (SVMs) (Cortes

and Vapnik, 1995), are not applicable to truly big data due to very high time and

memory overhead, which are in general super-linear and linear in the data size N , re-

spectively, significantly limiting their use when solving large-scale problems. Several

methods have been proposed to make SVMs more scalable, ranging from algorithmic

speed-ups (Platt, 1998; Kivinen et al., 2002; Vishwanathan et al., 2003; Severyn and

Moschitti, 2010; Tsang et al., 2005; Rai et al., 2009), to parallelization approaches

(Graf et al., 2004; Chang et al., 2007; Zhu et al., 2009). However, scalability of SVM

training is inherently limited as non-linear SVMs are characterized by linear growth

of model size with training data size N (Steinwart, 2003a). This led to an increased

interest in linear SVM models (Gentile, 2002; Li et al., 2002; Shalev-Shwartz et al.,

2007a; Fan et al., 2008; Yu et al., 2012), which have constant memory and OpNq
training time. These linear models provide a scalable alternative to non-linear SVMs,

albeit with a certain drop in prediction accuracy.

Unfortunately, even linear time complexity may not be sufficiently efficient for

modern data sets stored across petabytes of memory space, requiring researchers

to develop and adopt new machine learning approaches in order to address ex-

tremely large-scale classification tasks. Significant research efforts culminated in

several highly-influential frameworks for solving parallelizable problems that involve

data sets which can not be loaded on a single machine. These frameworks for paral-

88

lel computations include MapReduce (Dean and Ghemawat, 2008, 2010), AllReduce

(Agarwal et al., 2011), GraphLab (Low et al., 2010, 2012), Pregel (Malewicz et al.,

2010), and others. MapReduce in particular has become very popular framework in

industry, with major companies such as Yahoo!, Google, and Facebook spearheading

its use in large-scale commercial systems (Borthakur et al., 2011; Shvachko et al.,

2010).

Unlike other distributed frameworks that assume frequent communication and

shared memory between the computation nodes (e.g., Agarwal et al., 2011; Low et al.,

2010), MapReduce framework, and its open-source implementation called Hadoop,

allows limited communication overhead between the nodes, which results in very

strong fault-tolerance and guaranteed consistency. These favorable properties of

MapReduce led to development of parallelizable variants of popular machine learning

algorithms, such as k-means, perceptron, logistic regression, PCA, and others (Böse

et al., 2010; Lin et al., 2011; Gesmundo and Tomeh, 2012; Chu et al., 2007). However,

the proposed classification methods mostly rely on iterative training and two-way

communication between the computation nodes (Gesmundo and Tomeh, 2012; Chu

et al., 2007). This may impose significant costs during training as it does not closely

follow the computational paradigm of MapReduce, which derives its reliability from

the high level of autonomy of computation nodes.

In this paper we describe an efficient linear SVM learner with sub-linear training

time, capable of fully employing the MapReduce framework to significantly speed

up the training. The algorithm uses recently proposed Confidence-Weighted (CW)

linear classifiers (Dredze et al., 2008; Crammer et al., 2009) to train a number of

SVM models on each of the mappers. Following completion of the map step, the

local CW models are sent to the reducer that optimally combines local classifiers to

obtain a single model, more accurate than any of the individual ones. Compared

to the CW algorithms, the proposed method, named AROW-MapReduce (AROW-

89

MR), allows significantly more efficient training of accurate SVMs on extremely large

data sets due to the distributed training. We validate our approach on real-world,

large-scale problem of Ad Latency prediction with nearly one billion data examples,

where AROW-MR achieved higher accuracy and faster training than the baseline

approaches.

6.2 Confidence-Weighted Classification

In this section we review the recently proposed confidence-weighted classifiers. We

first detail the CW algorithm, proposed in Dredze et al. (2008), followed by the

description of Adaptive Regularization of Weights (AROW) algorithm from Crammer

et al. (2009), an improved CW method shown to significantly outperform the original

CW algorithm.

First described in Dredze et al. (2008), the CW algorithm is a linear classifier

that, in addition to the prediction margin for the new data example, also outputs

probability of the correct classification. This is achieved by maintaining a multivari-

ate Gaussian distribution over the separating hyperplanes, and during the training

procedure both mean µ and covariance matrix Σ of the distribution are learned.

In this way a more expressive and informative model is found, giving us informa-

tion about noise in each of the individual features, as well as about the relationship

between features.

Let us assume that a trained CW model, with known mean vector µ and covari-

ance matrix Σ, is given. Then, for an example px, yq from data set D, described by

feature vector x and binary label y P t�1, 1u, this induces a Gaussian distribution

over the prediction margin ŷ as follows,

ŷ � N �ypµTxq,xTΣx
�
. (6.1)

Following (6.1), we can compute the probability of correct classification by using the

90

equation for the normal cumulative distribution function, to obtain the expression

PpsignpµTxq � yq � 1

2

�
1� erfp ypµ

Txq?
2xTΣx

q�. (6.2)

The CW classifier is learned online, and the current model is updated each round

after observing a training example. During training, our belief about the classifier

before the tth training iteration, expressed through the current mean µt and the

current covariance matrix Σt, is updated so that the new example (xt, yt) is correctly

classified with probability larger than some user-set parameter η. In addition, we

impose an additional constraint that our new belief before iteration t� 1 is not too

far from our belief at the previous iteration t. More formally, the stated requirements

yield the following optimization problem,

pµt�1,Σt�1q � arg min
µ,Σ

DKL

�
N pµ,Σq}N pµt,Σtq

�

subject to P
�
ytpµTxt ¥ 0q� ¥ η,

(6.3)

where DKL is the Kullback-Leibler (KL) divergence. Since the problem (6.3) is non-

convex, the authors of Dredze et al. (2008) solve an approximate convex problem,

and derive closed-form updates for the parameters of the Gaussian distribution.

As formulated in (6.3), we seek such an update of the classification model so

that the new training example is correctly classified with certain probability η. In

Crammer et al. (2009), the authors point out that this may be suboptimal for noisy

data sets. More specifically, once the learning algorithm observes a noisy example,

the update would modify the current model so that the noise is correctly classified,

which could have an adverse effect on the generalization performance of the classifier.

To address this issue, a new CW formulation is proposed in Crammer et al. (2009),

called Adaptive Regularization of Weights (AROW). In this approach, the following

91

problem is solved,

pµt�1,Σt�1q � arg min
µ,Σ

DKL

�
N pµ,Σq}N pµt,Σtq

��
λ1

�
maxp0, 1� ytµ

Txtq
�2 � λ2pxT

t Σxtq.
(6.4)

We can see that at each training step the old and the new belief are still constrained

to be close, as measured by the KL-divergence. However, unlike in the CW algo-

rithm which aggresively updates the model in order to accomodate new examples, in

AROW formulation the aggresiveness of maximization of margin and minimization

of uncertainty for the new example are controlled by the regularization parameters λ1

and λ2, respectively. As shown in Crammer et al. (2009), after finding the derivative

of the objective function with respect to the parameters, update equations for µ and

Σ in the case of misclassification of the tth example (i.e., when signpµT
t xtq � yt), can

be written in closed-form,

µt�1 � µt � αtytΣtxt,

Σt�1 � Σt � βtΣtxtx
T
t Σt,

(6.5)

where αt and βt are computed as

αt � βt maxp0, 1� ytµ
Txtq,

βt � pxT
t Σxt � rq�1,

(6.6)

and r � 1{p2λ1q, for λ1 � λ2. Online AROW training is initiated with a zero-vector

µ0 and an identity matrix Σ0, and it further proceeds to observe training examples

and to update the parameters using equations (6.5) and (6.6).

6.3 MapReduce framework

With the recent explosive growth of data set sizes, analysis and knowledge extraction

from modern data sets using a single machine is becoming increasingly intractable.

92

In particular, training time of popular classification and regression methods (e.g.,

SVM, classification trees) is at best linear in training set size, which may be too

expensive for problems with billions of examples. To address this pressing issue,

a number of frameworks for distributed learning on clusters of computation nodes

has been introduced, offering different levels of parallelization, node independence,

and reliability (Dean and Ghemawat, 2008, 2010; Agarwal et al., 2011; Low et al.,

2010, 2012; Malewicz et al., 2010). In this section, we describe one such framework

which has become very popular in industry, called MapReduce. We also discuss

AllReduce distributed framework, which is utilized in Vowpall Wabbit, a state-of-

the-art distributed machine learning package.

MapReduce framework (Dean and Ghemawat, 2008, 2010), implemented as an

open-source platform Hadoop1, consists of two distinct phases called map and reduce,

which constitute one MapReduce job. In the map phase, mappers read parts of

the dataset (possibly stored on multiple computers) and perform some action (e.g.,

filtering, grouping, counting, sorting) with final results being sent to reducer in a

form of ordered (key, value) pairs. In the reduce phase, reducer performs a summary

operation on the data received from the mappers, where the received data is sorted by

their key values. There may be multiple mappers and reducers, and the framework

guarantees that all values associated with a specific key will appear in one and only

one reducer. Note that the limited communication between computation nodes in

MapReduce framework, which is allowed only from mappers to reducers, ensures high

independence of mappers and significant fault-tolerance of the framework. Even in

the case of mapper failure, the entire job is not significantly affected as remaining

mappers are not aware of the failure, which can be fixed with a simple restart of the

failed node.

We illustrate MapReduce abstraction on a simple example. Given a dataset D
1 http://hadoop.apache.org/, accessed November 2013

93

with D features, we may want to find how many times each feature has a non-zero

value, which can be achieved using several mappers and a single reducer. Each

mapper reads a part of the dataset, and for each example outputs (k, 1) if the kth

feature was non-zero. When the mappers finish outputing (key, value) pairs, the

reducer starts reading these pairs sorted by their key. Then, on the reducer side, we

initialize the count variable to 0, and add all values associated with the same key as

the ordered pairs are received. Once a key that is different from the one associated

with the current count is read, reducer outputs the total count and resets the variable

to compute the non-zero count for the following feature. In this way there is no need

to store the individual counts, which lowers memory cost of the reducer.

There are several ways of utilizing MapReduce for distributed learning: 1) read

the data using multiple mappers, and learn the model on a reducer in an online

learning manner; 2) maintain a global model that is used by all mappers to compute

partial updates, which are aggregated on reducer to update the global model (requires

running multiple MapReduce jobs for convergence); and 3) learn several local models

on mappers, and combine them into a global one on a reducer. For the first option,

distributed learning takes the same amount of time as learning on a single machine,

with the benefit that there is no need to store the data on a single disk. The second

option is typically used for batch learning (Lin et al., 2011; Gesmundo and Tomeh,

2012; Chu et al., 2007), where each mapper computes partial gradient using the

current model, while the reducer sums the partial gradients and updates the model.

A new MapReduce job is then instantiated, with the updated model used by all

mappers for the next round of gradient calculation. Thus, one job is analogous to

one gradient descent step. Since learning may require several iterations to converge,

multiple MapReduce jobs need to be ran one after another, which may be ineffective

and time costly. In contrast, the third approach ensures more robust learning and

small communication overhead as only a single job is run, and we utilize this approach

94

to propose an efficient and accurate classifier in Section 6.4.

6.3.1 AllReduce framework

MapReduce abstraction allows very limited interaction between the computation

nodes to ensure high fault-tolerance. In the following we introduce significantly less-

constrained framework called AllReduce (Agarwal et al., 2011), which is utilized by

the popular Vowpal Wabbit (VW) software package2 (Langford et al., 2009). Un-

like MapReduce, AllReduce framework assumes communication between mappers as

well, while the reducers are not used. In particular, when computing the update step

for the current global model, partial update step computed on one mapper is com-

municated to all other mappers. Then, once every mapper receives a message from

all other mappers, the aggregated update step is performed on all computation nodes

simultaneously. A typical implementation of AllReduce is done by imposing a tree

structure on the computation nodes, such that the partial messages are aggregated

up the tree and then broadcasted down to all mappers.

Disadvantage of AllReduce framework is that the mappers need to run truly

concurrently. However, it is common for large clusters to run many independent jobs

requiring different amount of resources on the computation nodes, and for higher

number of mappers there may be no guarantee that all of them will be available for

concurrent execution. Furthermore, as we have observed in practice, due to the fact

that all nodes are required to send their updates before the next learning iteration

starts, AllReduce learning will stall if any individual mapper fails once the job has

started.

2 https://github.com/JohnLangford/vowpal wabbit, accessed November 2013

95

6.4 Confidence-Weighted Classification using MapReduce Framework

In this section we present a distributed AROW algorithm, which can be used to

efficiently train very accurate linear classifiers on large-scale data. Let us assume

that we have M mappers, and on each mapper an AROW model is trained using

only a subset of the whole data set D, by running the algorithm described in Section

6.2. More specifically, on the mth mapper an AROW model is trained using a data

set Dm � D, such that
�
m�1,...,M Dm � D and Di X Dj � ∅, i � j. We denote

the trained AROW parameters for the mth mapper as µm and Σm, which are sent

to the reducer after the completion of the map stage. During the reduce stage, we

learn the final, aggregated parameters µ� and Σ� such that the multivariate Gaus-

sian distribution N pµ�,Σ�q is an optimal combination of M multivariate Gaussian

distributions learned on mappers.

More formally, let us define objective function L to be minimized on the reducer,

L � EN pµ,ΣqrDS
KL

�
N pµ�,Σ�q}N pµ,Σq

�s, (6.7)

where the expectation is taken over the distributions over hyperplanes that separate

the data set D, and DS
KL is the symmetric KL-divergence, defined as

DS
KLpA}Bq �

1

2

�
DKLpA}Bq �DKLpB}Aq

�
. (6.8)

As can be seen from (6.7), the reducer computes aggregated parameters µ� and Σ�

such that the expected symmetric KL-divergence between the aggregated Gaussian

distribution and hyperplane distributions, drawn from the probability distribution

over separating hyperplane distributions for the data set D, is minimized. We note

that the proposed method can be viewed as a generalization of the averaging CW

model used for large-scale data sets, briefly discussed in Dredze et al. (2008). Given

the mapper-specific parameters µm and Σm,m � 1, . . . ,M , empirical estimate of the

96

Algorithm 7 AROW-MapReduce (AROW-MR)

Inputs: Data set D; number of mappers M
Output: Parameters of AROW-MR µ� and Σ�

1. Map: Train the mth AROW classifier on subset Dm of the data set D using
equations (6.5) and (6.6), one AROW classifier for each mapper, to
obtain µm and Σm, where m � 1, . . . ,M

2. Reduce: Combine the local AROW classifiers into an aggregated AROW
classifier using equations (6.10), (6.11) and (6.12)

3. Output aggregated AROW parameters µ� and Σ�

objective function L can be expressed as follows,

L �
M̧

m�1

P
�
N pµm,Σmq

�
DS
KL

�
N pµ�,Σ�q}N pµm,Σmq

�
, (6.9)

where we define P
�
N pµm,Σmq

�
, or probability of the mth distribution over the sep-

arating hyperplanes, as the fraction of the training set used to train the mth AROW

classifier. We refer to the final CW classification model as AROW-MR.

6.4.1 Reducer optimization of AROW-MR

The optimization function (6.9) is convex, thus there exists a unique set of pµ�,Σ�q
parameters that minimize L. In this section we derive update equations for AROW-

MR parameters, the mean and the covariance matrix of the aggregated Gaussian

distribution over the separating hyperplanes.

In order to solve (6.9), we compute the first derivatives of the objecive function

L with respect to the parameters of the aggregated Gaussian distribution. After

finding the derivative of L with respect to µ� and equating the resulting expression

97

with 0, we obtain the following update rule for mean µ�,

µ� �
� M̧

m�1

P
�
N pµm,Σmq

� pΣ�1
� �Σ�1

m q
	�1

� M̧

m�1

P
�
N pµm,Σmq

� pΣ�1
� �Σ�1

m qµm
	
.

(6.10)

In order to compute the update rule for covariance matrix, we find the derivative of

L with respect to Σ� and equate the resulting equation with 0. After derivation, we

obtain the following expression,

Σ�

� M̧

m�1

P
�
N pµm,Σmq

�
Σ�1
m

	
Σ� �

M̧

m�1

P
�
N pµm,Σmq

� �
Σm � pµ� � µmqpµ� � µmqT

�
.

(6.11)

Equation (6.11) is a Riccati equation of the form XAX � B, solved with respect to

matrix X with matrices A and B given. After finding the decomposition of matrix

A as A � UTU (e.g., using the Cholesky decomposition), we can compute X in a

closed-form using the following steps,

XAX � B

XUTUX � B

UXUTUXUT � UBUT

pUXUTq2 � UBUT

UXUT � U0.5B0.5pUTq0.5

X � U�0.5B0.5pUTq�0.5.

(6.12)

By matching the elements of equation (6.12) with the elements of equation (6.11),

we can find the closed-form solution for the covariance matrix Σ�. Then, in order

98

to find the optimal parameters µ� and Σ�, equations (6.10) and (6.11) are solved

iteratively until convergence (we empirically found that only a few iterations are

sufficient for the optimization procedure to converge). The pseudocode given in

Algorithm 7 summarizes the steps of the AROW-MR algorithm.

Let us discuss the time complexity of AROW and its distributed version AROW-

MR. Given a D-dimensional data set D of size N , complexity of AROW training

amounts to OpND2q. On the other hand, complexity of AROW-MR is OpND2{M�
MD2�D3q, where the first term is due to local AROW training on mappers, and the

second and the third term are due to reducer optimization, which involves summation

over M matrices of size D�D and Cholesky decomposition of the result, respectively.

For large-scale data sets, for which it holds N " M , we can conclude that AROW-

MR offers efficient training with significantly lower time overhead when compared to

AROW algorithm.

6.5 Experiments

In this section we present the results of empirical evaluation of the AROW-MR

algorithm. We first validated our method on a synthetic data set, then explored its

performance on a real-world, large-scale task of Ad Latency prediction.

6.5.1 Validation on synthetic data

In order to better characterize the proposed distributed algorithm, in the first set

of experiments we compared AROW and AROW-MR algorithms on synthetic data.

We used the waveform data set generator, available from the UCI Repository, where

we labeled the first and the second class as being positive and the third class as being

negative. We generated 50,000 training examples and 5,000 test examples, and set

λ1 � λ2 � 0.1 through cross-validation. We split the training set into M disjoint

subsets of equal sizes and used one subset to train a local AROW on one mapper,

99

20 40 60 80 100
88

88.1

88.2

88.3

88.4

88.5

88.6

88.7

88.8

88.9

Number of mappers

A
cc

u
ra

cy
 [

%
]

AROW−total

AROW−single

AROW−MR

(a) Classification accuracy

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Number of mappers

T
im

e
 [
se

c]

AROW−total

AROW−single

AROW−MR

(b) Training time

Figure 6.1: Results on the synthetic waveform data set (with 50,000 training ex-
amples)

where we increased the number of mappers M from 2 to 100 to evaluate the effect of

higher levels of parallelization. We report the results of the original AROW which

used the entire training data set (denoted by AROW-total, which was not affected

by the number of mappers), the results of AROW-MR, as well as the results of a

local AROW model trained on a single mapper, denoted by AROW-single, for which

the number of training examples decreased as the number of mappers was increased

(i.e., number of training examples for each local model was 50,000{M). We included

AROW-single results to illustrate the performance of local AROW models that are

eventually combined on the reducer to obtain AROW-MR model. Experiments on

synthetic data were run in Matlab, on MacBook Pro with 2GHz Intel Core i7 with

8GB of DDR3 memory.

Mean accuracy and training time after 10 repetitions are shown in Figures 6.1a

and 6.1b, respectively, where the error bars in Figure 6.1a represent intervals of two

standard deviations (we omitted error bars for AROW-single as the standard devia-

tion was around 0.5 and error bars would clutter the figure). We can see in Figure

6.1a that the accuracy of AROW-MR initially increased as the number of mappers in-

creased, statistically significantly outperforming AROW-total. The accuracy of local

100

AROW models trained on each mapper (shown as AROW-single) dropped steadily

with the increase of the number of mappers, which was expected as less training

examples were used. Nevertheless, even though the accuracy of local models de-

creased, AROW-MR consistently outperformed AROW-total. Interestingly, as the

number of mappers further increased, we can see that the accuracy of AROW-MR

started decreasing when M surpassed 40, until it decreased to reach the accuracy of

AROW for M � 100. This decrease is due to the fact that there are too few training

examples on mappers for the local models to be close to convergence, which in turn

affected accuracy of the aggregated model.

As illustrated in Figure 6.1b, distributed training also resulted in a significant

speed-up in training time. We can see that AROW-MR training is order of magni-

tude faster than training of AROW-total, while at the same time achieving higher

accuracy. Similarly to the accuracy results, the training time did not decrease fur-

ther as we increased the number of mappers beyond a certain point. Although the

mapper time continued to drop (shown by the dashed line), this was countered by

longer time spent to solve the optimization problem (6.9) in the reduce phase due

to larger M . This validates the known result that for certain problems ”too much

parallelization or distribution can have negative consequences” (Hughes and Hughes,

2004), and that the level of parallelization should be determined after deeper analy-

sis of the problem being solved. Having said that, we can conclude that distributed

training of AROW model resulted in significant accuracy and training time gains

over the original AROW.

6.5.2 Ad Latency problem description

In the following section we compare the performance of AROW-MR and the baseline

methods on large-scale, industrial task of Ad Latency prediction. However, before

moving on to the discussion of empirical results, we first introduce this important

101

problem in online advertising, as well as the large-scale data set used in the experi-

ments.

Over the previous decade, income generated by internet companies through on-

line advertising has been growing steadily at amazing rates, with the total revenue

reaching a record $36.6 billion in the US in 2012 alone3. This burgeoning, highly

competitive market consists of several key players: 1) advertisers, companies that

want to advertise their products; 2) publishers, websites that host advertisements;

and 3) intermediate players that connect advertisers to publishers. In some cases

such clear segmentation is not possible, and certain companies can be found in more

than one role (e.g., Yahoo! or Google may provide both the products and the ad-

vertising space). Typically, advertiser designs an image of the advertisement, called

a creative, specifying size and dimension requirements of the image to be shown on

websites. This is then sent to the intermediate companies which have contracts with

publishers, and which decide when and to whom the ads will be shown in order to

maximize profits.

In order to retain existing and attract new users, publishers aim at improving user

experience by minimizing page load times. In addition, equally important task for

publishers is to ensure that the ads are delivered on time. Considering that ad latency

time accounts for a significant percentage of the overall load time, improving ad load

times would directly benefit both the user experience and the website revenue. Thus,

correctly predicting ad latency time, and using this information to decide which ad

should be shown to a user, is an extremely important problem in online advertising

where an additional latency of several milliseconds could result in a significant loss

of revenue. In this paper, we considered Ad Latency dataset consisting of nearly 1.3

billon ad impressions, for which 21 features were measured at serve time, along with

ad latency given in milliseconds. Features can be divided into several groups:

3 news.yahoo.com/us-internet-ad-revenue-grows-15-percent-2012-153752947, accessed Nov. 2013

102

• User-specific features include user’s device type, operating system, and browser.

We also used user’s geographic location (i.e., state and city), user’s physical

distance from the colocation center serving the ad, user’s connection speed

(e.g., broadband, dial-up), as well as internet service provider used by the user.

• Advertiser-specific features include the advertiser’s account ID, size of the ad-

vertisement (2-D dimensions of the creative, and its size in kilobytes), as well

as the creative ID of a specific image used by the advertiser.

• Publisher’s website can be partitioned into several regions, where each region

has several spaces on which the ad can be shown. Further, ad can be placed

at several different positions in the space (e.g., top, bottom). Thus, publisher-

specific features include region ID, space ID, position, ad network used to serve

the ad, serve type, hostname, as well as colocation center used to serve the ad.

• Lastly, we use time-stamp of ad impression, using time of day and day of the

week.

In Table 6.1 we give the data set features, as well as the cardinalities for discrete

features (we omitted sensitive information, which is marked with the ’�’ symbol).

We can represent the problem as a binary classification by thresholding the value

of ad latency. An ad is considered late (i.e., y � 1) if the time period from the

moment when the webpage loads to the moment when the ad renders is longer than

k milliseconds, and not late otherwise (i.e., y � �1). Value of k can be selected

depending on a product or ad campaign requirements, and we omit the specific

value used in the experiments as it represents a sensitive information.

6.5.3 Validation on Ad Latency data

In order to evaluate performance of the classification algorithms, we randomly split

the Ad Latency data set into training set, consisting of 997,055,154 examples, and

103

Table 6.1: Features from the Ad Latency data set

Feature name Cardinality

Device 15
Operating system 22
Browser 100
Connection speed 10
State 50
City 574
ISP �
Distance to colocation center continuous

Account ID �
Creative ID �
Ad size (dimensions) 33
Ad size (size in KB) continuous

Region ID �
Space ID (location on the page) �
Ad position 28
Hostname �
Ad network �
Serve type �
Colocation center �

Hour of the day 24
Day of the week 7

non-overlapping testing set with 279,026,428 labeled examples. For the Ad Latency

prediction task, the publishers prefer low False Positive Rate (FPR), ensuring that

very few ads are wrongly classified as late, thus minimally hurting revenue. At the

same time, the publisher prefer high True Positive Rate (TPR), which improves user

experience and increases profit. As these two goals are often conflicting, the optimal

strategy is to maximize the area under the Receiver Operating Characteristic (ROC)

curve, referred to as the AUC (Fawcett, 2004). Thus, unlike in the experiments with

the synthetic data, we report AUC as a measure of performance. Given a predicted

margin for the nth example, ŷn P R, a binary classification prediction is found as

signpŷn � θq, where different values of threshold θ result in different predictions and

different TPR and FPR values. We can obtain an ROC curve by sliding the threshold

θ from �8 to 8, and plotting the resulting TPR and FPR in a 2-D plot.

104

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

False Positive Rate [%]
T
r
u
e

p
o
s
i
t
i
v
e

r
a
t
e

[
%
]

1 mapper

100 mappers

500 mappers

1,000 mappers

10,000 mappers

Figure 6.2: ROC curve for AROW-MR and AROW

Table 6.2: Performance comparison of AROW and AROW-MapReduce on Ad La-
tency task in terms of the AUC

mappers # reducers Avg. map time Reduce time AUC

1 0 408h n/a 0.8442
100 1 30.5h 1 min 0.8552
500 1 34 min 4 min 0.8577

1,000 1 17.5 min 7 min 0.8662
10,000 1 2 min 1h 0.8621

The experiments were conducted using MapReduce on Apache Hadoop, with

AROW-MR mapper and reducer implemented in Perl. Performance of AROW-MR

was compared to AROW algorithm which was run on a single machine, as well as to

the logistic regression implemented in highly-scalable Vowpal Wabbit package, run

both on a single machine and in a distributed manner using AllReduce on Hadoop.

We ensured that Hadoop scheduled exactly M mappers by storing the data in M

gzip-compressed part files.

We first compared the performance of AROW learned on a single machine with

AROW-MR learned in a distributed manner. Similarly to experiments presented in

Section 6.5.1, we increased the number of mappers to evaluate the effects of different

levels of parallelization. The results are given in Table 6.2. We can see that the

105

Table 6.3: Performance of distributed logistic regression

mappers # reducers Avg. map time Reduce time AUC

1 0 7h n/a 0.8506
100 0 1h n/a 0.8508
500 0 8 min n/a 0.8501

1,000 0 6 min n/a 0.8498

running time of AROW-MR drastically improved over the non-distributed AROW

(trained using a single mapper). While it took 17 days for AROW to train, we were

able to train accurate AROW-MR models in less than an hour. Expectedly, average

mapper time decreased and reducer time increased as the number of mappers was

increased, as each mapper was trained on smaller partition of the data and reducer

was required to combine higher number of local models. Interestingly, we can also see

that the results in Table 6.2 validate the results obtained on synthetic data regarding

performance gains with increasing levels of parallelization. In particular, both the

accuracy and training time improved until we reached M � 1,000, and dropped

slightly for higher number of mappers. The detailed results are presented in Figure

6.2, where we plotted ROC curves of the confidence-weighted models trained using

different number of mappers. We can see that the curve for non-distributed AROW,

denoted by ”1 mapper”, results in the smallest AUC, while the level of parallelization

achieved with 1,000 mappers represents the best choice for the Ad Latency prediction

task.

Next, in Table 6.3 we show the performance of logistic regression (LR) model

trained using VW package in both distributed mode (using AllReduce) and non-

distributed manner (on a single machine). We can see that AROW-MR achieved

higher accuracy than LR, which is a very popular approach using in large-scale

classification. While AROW-MR obtained AUC of 0.8662, the best AUC achieved

by LR was 0.8508; this increase in accuracy may result in significant increase of

106

revenue in computational advertising domain. Interestingly, the results also indicate

that more distributed training of LR actually hurt its generalization performance,

which slightly dropped as the number of mappers was increased. Further, we can

see that LR was trained in 8 minutes, while it took 25 minutes to train AROW-MR

model. However, although LR training is seemingly faster than training of AROW-

MR, it is important to emphasize that VW package implements logistic regression

in C language while, for technical reasons, AROW-MR was implemented in Perl.

Considering that Perl is not an optimal choice for mathematical computations, we

expect AROW-MR training time to improve significantly once implemented in C.

It is also worth noting that we were not able to run the LR experiment for

more than one thousand mappers. The LR implementation in VW package uses

AllReduce framework, which requires that all mappers run concurrently without

any node failures, otherwise the training might fail. However, this is usually hard to

guarantee in practice even for larger clusters, and it further exemplifies the advantage

of the proposed algorithm over the competition. We can conclude that AROW-MR

offers robust, highly efficient training of accurate classifiers, outperfoming the existing

state-of-the-art for extremely large-scale, industrial-size problems.

107

CHAPTER 7

CONCLUSION

With the emergence of extremely large-scale data sets, researchers in machine learn-

ing and data mining communities are faced with numerous challenges related to the

sheer size of the problems at hand. Many well-established supervised and unsu-

pervised tools were not designed and are not suitable for such memory- and time-

intensive tasks, warranting the development of novel, scalable methods capable of

addressing the emerging big data problems. In this thesis, we recognized this prob-

lem and proposed novel tools suitable for handling of large-scale data. First, we

considered unsupervised approaches to data analysis, and explored and described

new visualization methods for fast knowledge extraction. We introduced data visu-

alization problem using method based on efficient data reordering, and also described

method for smaller-scale data based on object matching. Next, we considered super-

vised setting and proposed algorithms, as well as highly-optimized software, for fast

training of accurate classification models on large data, capable of learning state-of-

the-art classifiers on data sets with millions of examples and features within minutes.

We have provided both theoretical and empirical evidence validating the benefits and

usefulness of the proposed methods when working with big data.

108

For future work we plan to further extend these ideas, and also make them more

accessible to non-expert users. Regarding the proposed unsupervised, visualization

approaches, an interesting open question is how to extend the Convex Kernelized

Sorting algorithm to larger scales and different-cardinality matching sets, as well

as to semi-supervised setting. In addition, developing an easy-to-use EM-ordering

software would help bring large-scale visualization outside academic setting, and al-

low for easy, intuitive, fast data exploration and knowledge extraction to the broader

community. Furthermore, there are several avenues we want to explore for further de-

velopment of the proposed supervised approaches. We plan to extend BudgetedSVM

with existing methods, such as Tighter Perceptron (Wang and Vucetic, 2009) and

BPA (Wang and Vucetic, 2010a), as well as state-of-the-art classification algorithms

that are yet to be published, in order to make the software package a more inclu-

sive toolbox of budgeted SVM approximations. We also plan to further explore a

novel GAMM algorithm briefly discussed in Section 4.5, as the preliminary results

strongly indicate the advantage over the competing approaches. However, more

extensive experiments are required to better characterize this promising research di-

rection. In addition, it is interesting to see how MapReduce, Pregel, GraphLab, and

other distributed frameworks could be better utilized to develop faster, more efficient

algorithms, as the results presented in Chapter 6 strongly suggest the benefits of the

distributed approach when considering time and space complexity, as well as the

accuracy of the learned models.

To conclude, size and complexity of the modern data sets is continuing to grow,

and there are many challenges awaiting data mining and machine learning researchers

in the years to come. The methods and the ideas discussed in this thesis help pave

the road for addressing and solving these problems, bringing us a step closer to finally

converting an overwhelming information overload into our competitive advantage.

109

BIBLIOGRAPHY

Agarwal, A., Chapelle, O., Dud́ık, M., and Langford, J. (2011), “A reliable effective
terascale linear learning system,” arXiv preprint arXiv:1110.4198.

Aiolli, F. and Sperduti, A. (2005), “Multi-Class Classification with Multi-Prototype
Support Vector Machines,” Journal of Machine Learning Research.

Applegate, D., Bixby, R. E., Chvátal, V., Cook, W., Espinoza, D. G., Goycoolea, M.,
and Helsgaun, K. (2009), “Certification of an optimal TSP tour through 85,900
cities,” Operations Research Letters, 37, 11–15.

Artero, A. O., de Oliveira, M. C. F., and Levkowitz, H. (2004), “Uncovering clusters
in crowded parallel coordinates visualizations,” in IEEE Symposium on Informa-
tion Visualization, pp. 81–88, IEEE.

Bacon, D. J. and Anderson, W. F. (1986), “Multiple sequence alignment,” Journal
of Molecular Biology, 191, 153–161.

Bar-Joseph, Z., Demaine, E. D., Gifford, D. K., Hamel, A. M., Jaakkola, T., and Sre-
bro, N. (2002), “K-ary Clustering with Optimal Leaf Ordering for Gene Expression
Data,” WABI ’02, pp. 506–520.

Belkin, M. and Niyogi, P. (2003), “Laplacian Eigenmaps for dimensionality reduction
and data representation,” Neural Computation, 15, 1373–1396.

Bertin, J. and Barbut, M. (1967), Sémiologie graphique: les diagrammes, les réseaux,
les cartes, Mouton Paris.

Biedl, T., Brejova, B., Demaine, E. D., Hamel, A. M., and Vinar, T. (2001), “Optimal
Arrangement of Leaves in the Tree Representing Hierarchical Clustering of Gene
Expression Data,” Tech. Rep. CS-2001-14.

Bizer, C., Boncz, P., Brodie, M. L., and Erling, O. (2012), “The meaningful use of
big data: four perspectives–four challenges,” ACM SIGMOD Record, 40, 56–60.

Blandford, D. and Blelloch, G. (2002), “Index Compression through Document Re-
ordering,” DCC ’02.

110

Bordes, A., Ertekin, S., Weston, J., and Bottou, L. (2005), “Fast kernel classifiers
for online and active learning,” Journal of Machine Learning Research.

Bordes, A., Bottou, L., and Gallinari, P. (2009), “SGD-QN: careful quasi-newton
stochastic gradient descent,” Journal of Machine Learning Research.

Borthakur, D., Gray, J., Sarma, J. S., Muthukkaruppan, K., Spiegelberg, N., Kuang,
H., Ranganathan, K., Molkov, D., Menon, A., Rash, S., et al. (2011), “Apache
Hadoop goes realtime at Facebook,” in International Conference on Management
of Data, pp. 1071–1080, ACM.

Böse, J.-H., Andrzejak, A., and Högqvist, M. (2010), “Beyond online aggregation:
Parallel and incremental data mining with online map-reduce,” in Proceedings of
the 2010 Workshop on Massive Data Analytics on the Cloud, p. 3, ACM.

Boyd, S. and Vandenberghe, L. (2004), Convex Optimization, Cambridge University
Press, New York, NY, USA.

Chang, C.-C. and Lin, C.-J. (2011), “LIBSVM: A library for support vector ma-
chines,” ACM Transactions on Intelligent Systems and Technology, 2, 27:1–27:27,
Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Chang, E., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., and Cui, H. (2007), “Psvm:
Parallelizing support vector machines on distributed computers,” Advances in Neu-
ral Information Processing Systems, 20, 16.

Chang, Y.-W., C.-J. Hsie and, K.-W. C., Ringgaard, M., and Lin, C.-J. (2010),
“Training and testing low-degree polynomial data mappings via linear svm,” Jour-
nal of Machine Learning Research.

Christofides, N. (1976), “Worst-case analysis of a new heuristic for the traveling
salesman problem,” SIAM Journal on Computing, 6, 563–563.

Chu, C., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G., Ng, A. Y., and Olukotun,
K. (2007), “Map-reduce for machine learning on multicore,” Advances in Neural
Information Processing Systems, 19, 281.

Climer, S. and Zhang, W. (2004), “Take a walk and cluster genes: a TSP-based
approach to optimal rearrangement clustering,” in International Conference on
Machine Learning, ACM.

Coleman, T. F. and Li, Y. (1996), “An Interior Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, 6, 418–445.

Collobert, R., Sinz, F., Weston, J., and Bottou, L. (2006), “Trading convexity for
scalability,” in International Conference on Machine Learning.

111

Cortes, C. and Vapnik, V. (1995), “Support-vector networks,” Machine Learning,
20, 273–297.

Crammer, K. and Singer, Y. (2002), “On the algorithmic implementation of mul-
ticlass kernel-based vector machines,” Journal of Machine Learning Research, 2,
265–292.

Crammer, K., Gilad-Bachrach, R., Navot, A., and Tishby, N. (2002), “Margin anal-
ysis of the LVQ algorithm,” Advances in Neural Information Processing Systems,
15, 462–469.

Crammer, K., Kulesza, A., and Dredze, M. (2009), “Adaptive Regularization of
Weight Vectors,” Advances in Neural Information Processing Systems, 22, 414–
422.

Czekanowski, J. (1909), “Zur differential Diagnose der Neandertalgruppe,” in
Korrespondenz-blatt der Deutsche Gesellschaft für Anthropologie, Ethnologie und
Urgeschichte, vol. XL(6/7), pp. 44–47.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954), “Solution of a large-scale
traveling-salesman problem,” Oper. Research, 2, 393–410.

Dean, J. and Ghemawat, S. (2008), “MapReduce: simplified data processing on large
clusters,” Communications of the ACM, 51, 107–113.

Dean, J. and Ghemawat, S. (2010), “MapReduce: a flexible data processing tool,”
Communications of the ACM, 53, 72–77.

Del Corso, G. M. and Manzini, G. (1999), “Finding exact solutions to the bandwidth
minimization problem,” Computing, 62, 189–203.

DiMaggio, P. A., McAllister, S. R., Floudas, C. A., Feng, X.-J., Rabinowitz, J. D.,
and Rabitz, H. A. (2008), “Biclustering via optimal re-ordering of data matrices
in systems biology: rigorous methods and comparative studies,” BMC Bioinfor-
matics, 9, 458.

Ding, C. and He, X. (2004), “Linearized cluster assignment via spectral ordering,”
in International Conference on Machine learning, pp. 30–37, ACM.

Djuric, N. and Vucetic, S. (2013), “Efficient Visualization of Large-scale Data Ta-
bles through Reordering and Entropy Minimization,” in Proceedings of the IEEE
International Conference on Data Mining.

Djuric, N., Grbovic, M., and Vucetic, S. (2012), “Convex Kernelized Sorting,” in
Proceedings of the AAAI Conference on Artificial Intelligence.

112

Djuric, N., Lan, L., Vucetic, S., and Wang, Z. (2013a), “BudgetedSVM: A Toolbox
for Scalable SVM Approximations,” Journal of Machine Learning Research.

Djuric, N., Grbovic, M., and Vucetic, S. (2013b), “Distributed Confidence-Weighted
Classification on MapReduce,” in Proceedings of the IEEE International Confer-
ence on Big Data.

Dredze, M., Crammer, K., and Pereira, F. (2008), “Confidence-Weighted Linear Clas-
sification,” in Proceedings of the International Conference on Machine Learning,
pp. 264–271, ACM.

Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998), “Cluster
analysis and display of genome-wide expression patterns,” PNAS USA, 95, 14863–
14868.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008), “LIB-
LINEAR: A library for large linear classification,” Journal of Machine Learning
Research, 9, 1871–1874.

Fawcett, T. (2004), “ROC graphs: Notes and practical considerations for re-
searchers,” Machine Learning, 31, 1–38.

Friendly, M. (2002), “Corrgrams: Exploratory displays for correlation matrices,” The
American Statistician, 56, 316–324.

Friendly, M. (2006), “A Brief History of Data Visualization,” in Handbook of Com-
putational Statistics: Data Visualization, eds. C. Chen, W. Härdle, and A. Unwin,
vol. III, pp. 15–56, Springer-Verlag.

Friendly, M. and Kwan, E. (2003), “Effect ordering for data displays,” Computational
Statistics & Data Analysis, 43, 509–539.

Fritzke, B. (1994), “Growing cell structures - A self-organizing network for unsuper-
vised and supervised learning,” Neural Networks, 7, 1441–1460.

Fritzke, B. (1995), “A growing neural gas network learns topologies,” Advances in
Neural Information Processing Systems, 7, 625–632.

Fua, Y.-H., Ward, M. O., and Rundensteiner, E. A. (1999), “Hierarchical parallel co-
ordinates for exploration of large datasets,” in IEEE Conference on Visualization,
pp. 43–50, IEEE Computer Society Press.

Gentile, C. (2002), “A new approximate maximal margin classification algorithm,”
Journal of Machine Learning Research, 2, 213–242.

113

Gesmundo, A. and Tomeh, N. (2012), “HadoopPerceptron: a toolkit for dis-
tributed perceptron training and prediction with MapReduce,” in Proceedings of
the Demonstrations at the 13th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pp. 97–101, Association for Computational
Linguistics.

Gomory, R. E. (1958), “Outline of an algorithm for integer solutions to linear pro-
grams,” Bulletin of the American Mathematical Society, 64, 275–278.

Graf, H., Cosatto, E., Bottou, L., Dourdanovic, I., and Vapnik, V. (2004), “Parallel
Support Vector Machines: The cascade SVM,” Advances in Neural Information
Processing Systems, 17, 521–528.

Guo, D. (2007), “Visual analytics of spatial interaction patterns for pandemic de-
cision support,” International Journal of Geographical Information Science, 21,
859–877.

Gutin, G. and Punnen, A. P. (2002), The traveling salesman problem and its varia-
tions, vol. 12, Springer.

Haghighi, A., Liang, P., Berg-Kirkpatrick, T., and Klein, D. (2008), “Learning Bilin-
gual Lexicons from Monolingual Corpora,” in Proceedings of ACL-08: HLT, pp.
771–779, Association for Computational Linguistics.

Hahsler, M., Hornik, K., and Buchta, C. (2007), “Getting Things in Order: An
introduction to the R package seriation,” .

Hastie, T., Simard, P., and Säckinger, E. (1995), “Learning prototype models for
tangent distance,” Advances in Neural Information Processing Systems, pp. 999–
1006.

Helsgaun, K. (2000), “An Effective Implementation of the Lin-Kernighan Traveling
Salesman Heuristic,” European Journal of Operational Research, 126, 106–130.

Hinton, G. and Roweis, S. (2002), “Stochastic neighbor embedding,” Advances in
Neural Information Processing Systems, 15, 833–840.

Hornik, K., Stinchcombe, M., and White, H. (1989), “Multilayer feedforward net-
works are universal approximators,” Neural Networks, 2, 359–366.

Hotelling, H. (1936), “Relation between two sets of variables,” Biometrica, 28, 322–
377.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sundararajan, S. (2008),
“A dual coordinate descent method for large-scale linear SVM,” in International
Conference on Machine Learning, pp. 408–415.

114

Hughes, C. and Hughes, T. (2004)Parallel and distributed programming using C++,
pp. 31–32.

Inselberg, A. (1985), “The plane with parallel coordinates,” The Visual Computer,
1, 69–91.

Inselberg, A. and Dimsdale, B. (1991), “Parallel Coordinates,” in Human-Machine
Interactive Systems, pp. 199–233, Springer.

Jagarlamudi, J., Juarez, S., and Daumé III, H. (2010), “Kernelized Sorting for Nat-
ural Language Processing,” in AAAI Conference on Artificial Intelligence, pp.
1020–1025, AAAI Press.

Joachims, T. (2006), “Training linear svms in linear time,” in ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining.

Jonker, R. and Volgenant, A. (1987), “A shortest augmenting path algorithm for
dense and sparse linear assignment problems,” Computing, 38, 325–340.

Karp, R. M. (1972), “Reducibility Among Combinatorial Problems,” in Complexity
of Computer Computations, eds. R. E. Miller and J. W. Thatcher, pp. 85–103,
Plenum Press.

Keim, D. A. (2001), “Visual exploration of large data sets,” Communications of the
ACM, 44, 38–44.

Keim, D. A. (2002), “Information visualization and visual data mining,” IEEE Trans.
on Visualization and Computer Graphics, 8, 1–8.

Keim, D. A., Mansmann, F., Schneidewind, J., and Ziegler, H. (2006), “Challenges
in visual data analysis,” in International Conference on Information Visualization,
pp. 9–16, IEEE.

Kivinen, J., Smola, A. J., and Williamson, R. C. (2002), “Online learning with
kernels,” IEEE Transactions on Signal Processing, 52, 2165–2176.

Koehn, P. (2005), “Europarl: A Parallel Corpus for Statistical Machine Translation,”
in Machine Translation Summit X, pp. 79–86.

Kohonen, T. (2001), Learning vector quantization, Springer.

Kuhn, H. W. (1955), “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, 2, 83–97.

Labrinidis, A. and Jagadish, H. (2012), “Challenges and opportunities with big data,”
Proceedings of the VLDB Endowment, 5, 2032–2033.

115

Langford, J., Li, L., and Zhang, T. (2009), “Sparse online learning via truncated
gradient,” The Journal of Machine Learning Research, 10, 777–801.

Lauer, F. and Guermeur, Y. (2011), “MSVMpack: A Multi-Class Support Vector
Machine Package,” Journal of Machine Learning Research, 12, 2293–2296.

Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., and Kandola, J. (2002), “The
perceptron algorithm with uneven margins,” in International Conference on Ma-
chine Learning, pp. 379–386.

Liiv, I. (2010), “Seriation and matrix reordering methods: An historical overview,”
Statistical Analysis and Data Mining, 3, 70–91.

Lin, S. and Kernighan, B. W. (1973), “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, 21, 498–516.

Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L., and Huang, T. (2011),
“Large-scale Image Classification: Fast Feature Extraction and SVM Training,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1689–1696, IEEE.

Lohr, S. (2012), “The age of big data,” New York Times, 11.

Loosli, G., Canu, S., and Bottou, L. (2007), “Training invariant support vector
machines using selective sampling,” Large Scale Kernel Machines, Cam-bridge,
MA, MIT Press.

Loua, T. (1873), Atlas statistique de la population de Paris, J. Dejey & Cie.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M.
(2010), “GraphLab: A new parallel framework for machine learning,” in Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence, pp. 340–349.

Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., and Hellerstein, J. M.
(2012), “Distributed GraphLab: A framework for machine learning and data min-
ing in the cloud,” Proceedings of the VLDB Endowment, 5, 716–727.

Luo, B. and Hancock, E. R. (2001), “Structural Graph Matching Using the EM
Algorithm and Singular Value Decomposition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23, 1120–1136.

Ma, J., Saul, L. K., Savage, S., and Voelker, G. M. (2009), “Identifying Suspicious
URLs: An Application of Large-Scale Online Learning,” in International Confer-
ence on Machine Learning.

Mäkinen, E. and Siirtola, H. (2000), “Reordering the reorderable matrix as an algo-
rithmic problem,” in Theory and Application of Diagrams, pp. 453–468, Springer.

116

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and
Czajkowski, G. (2010), “Pregel: a system for large-scale graph processing,” in
Proceedings of the ACM SIGMOD International Conference on Management of
data, pp. 135–146, ACM.

McCormick, W. T., Schweitzer, P. J., and White, T. W. (1972), “Problem decom-
position and data reorganization by a clustering technique,” Operations Research,
20, 993–1009.

Mervis, J. (2012), “Agencies Rally to Tackle Big Data,” Science, 336, 22–22.

Parlett, B. N. and Landis, T. L. (1982), “Methods for Scaling to Doubly Stochastic
Form,” Linear Algebra and its Applications, 48, 53–79.

Petrie, W. M. F. (1899), Sequences in prehistoric remains, Reprint series in the social
sciences, Bobbs-Merrill.

Pinar, A., Tao, T., and Ferhatosmanoglu, H. (2005), “Compressing Bitmap Indices
by Data Reorganization,” ICDE05, pp. 310–321.

Platt, J. (1998), “Fast training of Support Vector Machines using Sequential Minimal
Optimization,” Advances in kernel methods - support vector learning, MIT Press.

Platt, J., Cristianini, N., and Taylor, J. S. (2000), “Large margin DAGs for multiclass
classification,” in Advance in Nueral Information Processing Systems.

Quadrianto, N., Smola, A. J., Song, L., and Tuytelaars, T. (2010), “Kernelized
Sorting,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 32,
1809–1821.

Rahimi, A. and Recht, B. (2007), “Random features for large-scale kernel machines,”
in Advances in neural information processing systems, pp. 1177–1184.

Rai, P., Daumé III, H., and Venkatasubramanian, S. (2009), “Streamed learning:
one-pass SVMs,” in Proceedings of the 21st International Joint Conference on
Artificial Intelligence, pp. 1211–1216, Morgan Kaufmann Publishers Inc.

Rosenkrantz, D. J., Stearns, R. E., and Lewis II, P. M. (1977), “An Analysis of Sev-
eral Heuristics for the Traveling Salesman Problem,” SIAM Journal on Computing,
6, 563–581.

Roweis, S. (1998), “EM algorithms for PCA and SPCA,” NIPS ’97, pp. 626–632,
MIT Press.

Roweis, S. T. and Saul, L. K. (2000), “Nonlinear Dimensionality Reduction by Lo-
cally Linear Embedding,” Science, 290, 2323–2326.

117

Severyn, A. and Moschitti, A. (2010), “Large-scale support vector learning with
structural kernels,” in Machine Learning and Knowledge Discovery in Databases,
pp. 229–244, Springer.

Shalev-Shwartz, S. and Singer, Y. (2007), “Logarithmic regret algorithms for strongly
convex repeated games (Technical Report),” The Hebrew University.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007a), “Pegasos: Primal estimated
sub-gradient solver for SVM,” in Proceedings of the 24th international conference
on Machine learning, pp. 807–814, ACM.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007b), “Pegasos: primal estimated
sub-gradient solver for svm,” in International Conference on Machine Learning,
pp. 807–814.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010), “The hadoop dis-
tributed file system,” in IEEE Symposium on Mass Storage Systems and Tech-
nologies (MSST), pp. 1–10, IEEE.

Sinkhorn, R. and Knopp, P. (1967), “Concerning nonnegative matrices and doubly
stochastic matrices,” Pacific Journal of Mathematics, 21, 343–348.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007), “A Hilbert Space Em-
bedding for Distributions,” Algorithmic Learning Theory, 4754, 1–20.

Sonnenburg, S. and Franc, V. (2010), “COFFIN : a computational framework for
linear svms,” in International Conference on Machine Learning.

Steinwart, I. (2003a), “Sparseness of support vector machines,” Journal of Machine
Learning Research, 4, 1071–1105.

Steinwart, I. (2003b), “Sparseness of support vector machines,” Journal of Machine
Learning Research.

Tatu, A., Maass, F., Färber, I., Bertini, E., Schreck, T., Seidl, T., and Keim, D. A.
(2012), “Subspace Search and Visualization to Make Sense of Alternative Cluster-
ings in High-Dimensional Data,” in IEEE Symposium on Visual Analytics Science
and Technology, pp. 63–72, IEEE CS Press.

Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000), “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science, 290, 2319–2323.

Teo, C., Vishwanathan, S. V. N., Smola, A. J., and Le, Q. V. (2010), “Bundle Meth-
ods for Regularized Risk Minimization,” Journal of Machine Learning Research.

Tripathi, A., Klami, A., Orešič, M., and Kaski, S. (2011), “Matching samples of
multiple views,” Data Mining and Knowledge Discovery, 23, 300–321.

118

Tsang, I. W., Kwok, J. T., and Cheung, P.-M. (2005), “Core vector machines: Fast
SVM training on very large data sets,” Journal of Machine Learning Research, 6,
363.

Vadapalli, S. and Karlapalem, K. (2009), “Heidi matrix: Nearest neighbor driven
high dimensional data visualization,” in ACM SIGKDD Workshop on Visual An-
alytics and Knowledge Discovery, pp. 83–92, ACM.

Van der Maaten, L. and Hinton, G. (2008), “Visualizing data using t-SNE,” Journal
of Machine Learning Research, 9, 2579–2605.

Vempala, S. S. (2012), “Modeling high-dimensional data: Technical perspective,”
Comm. of the ACM, 55, 112–112.

Verleysen, M., François, D., Simon, G., and Wertz, V. (2003), “On the effects of
dimensionality on data analysis with neural networks,” in Artificial Neural Nets
Problem solving methods, pp. 105–112, Springer.

Vishwanathan, S. V. N., Smola, A. J., and Murty, M. N. (2003), “SimpleSVM,” in
International Conference on Machine Learning.

Walter, J., Ontrup, J., Wessling, D., and Ritter, H. (2003), “Interactive visualization
and navigation in large data collections using the hyperbolic space,” in Interna-
tional Conference on Data Mining, pp. 355–362, IEEE.

Wang, C. and Mahadevan, S. (2009), “Manifold Alignment without Correspon-
dence,” in Proceedings of the 21st International Joint Conference on Artificial
Intelligence, IJCAI’09, pp. 1273–1278, Morgan Kaufmann Publishers Inc.

Wang, H.-Y. and Yang, Q. (2011), “Transfer Learning by Structural Analogy,” in
AAAI Conference on Artificial Intelligence, eds. W. Burgard and D. Roth, AAAI
Press.

Wang, Z. and Vucetic, S. (2009), “Tighter Perceptron with Improved Dual Use of
Cached Data for Model Representation and Validation,” in International Joint
Conference on Neural Networks, pp. 3297–3302.

Wang, Z. and Vucetic, S. (2010a), “Online passive-aggressive algorithms on a bud-
get,” in International Conference on Artificial Intelligence and Statistics, pp. 908–
915.

Wang, Z. and Vucetic, S. (2010b), “Online training on a budget of support vector
machines using twin prototypes,” .

Wang, Z., Crammer, K., and Vucetic, S. (2010), “Multi-class pegasos on a budget,”
in Proceedings of the 27th International Conference on Machine Learning (ICML-
10), pp. 1143–1150.

119

Wang, Z., Djuric, N., Crammer, K., and Vucetic, S. (2011), “Trading representability
for scalability: Adaptive multi-hyperplane machine for nonlinear classification,” in
ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

Wang, Z., Crammer, K., and Vucetic, S. (2012), “Breaking the Curse of Kernel-
ization: Budgeted Stochastic Gradient Descent for Large-Scale SVM Training,”
Journal of Machine Learning Research, 13, 3103–3131.

Wilkinson, L. and Friendly, M. (2009), “The history of the cluster heat map,” The
American Statistician, 63.

Williams, G. J., Christen, P., et al. (2008), “ReDSOM: relative density visualization
of temporal changes in cluster structures using self-organizing maps,” in Interna-
tional Conference on Data Mining, pp. 173–182, IEEE.

Yamada, M. and Sugiyama, M. (2011), “Cross-Domain Object Matching with Model
Selection,” Journal of Machine Learning Research - Proceedings Track, 15, 807–
815.

Yeung, K. Y., Haynor, D. R., and Ruzzo, W. L. (2001), “Validating clustering for
gene expression data,” Bioinformatics, 17, 309–318.

Yu, H.-F., Hsieh, C.-J., Chang, K.-W., and Lin, C.-J. (2010), “Large linear classifica-
tion when data cannot fit in memory,” in ACM SIGKDD Conference on Knowledge
Discovery and Data Mining.

Yu, H.-F., Hsieh, C.-J., Chang, K.-W., and Lin, C.-J. (2012), “Large linear classifica-
tion when data cannot fit in memory,” ACM Transactions on Knowledge Discovery
from Data, 5, 23.

Zhang, K., Lan, L., Wang, Z., and Moerchen, F. (2012), “Scaling up Kernel SVM on
Limited Resources: A Low-rank Linearization Approach,” in International Con-
ference on Artificial Intelligence and Statistics.

Zhang, T. (2004), “Solving large scale linear prediction problems using stochastic
gradient descent,” in International Conference on Machine Learning.

Zhu, Z. A., Chen, W., Wang, G., Zhu, C., and Chen, Z. (2009), “P-packSVM: Parallel
primal gradient descent kernel SVM,” in IEEE International Conference on Data
Mining.

120

