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Introduction

 Big Data!

 Big Data is pervasive; data sets with millions of examples and 

features are now a rule rather than an exception

 Crowdsourcing, remote sensing, social networks, etc.

 Globally-recognized, strategic 

importance of Big Data

 Focus of major internet companies

 “Big Data Research and Development 

Initiative” by the US government



Introduction

 “Big data is high volume, high velocity, and/or high 

variety information assets that require new forms of 

processing to enable enhanced decision making, 

insight discovery and process optimization.”

 Many challenges to machine 

learning and data mining researchers

 Standard tools and frameworks are not 

capable of addressing new tasks

 Even linear time and space 

complexity may no longer be tractable



Outline of the presentation

 Large data visualization

 EM-ordering and TSP-means

 Large-scale learning

 Adaptive Multi-hyperplane Machines

 BudgetedSVM: A C++ toolbox for large-scale learning

 Distributed confidence-weighted learning on MapReduce

 Unsupervised object matching

 Convex Kernelized Sorting

 Combination of experts

 Semi-supervised aggregation of noisy experts

 Using Gaussian CRF to improve aerosol retrieval and traffic estimation



Data visualization

 Immediate feedback that can lead to faster knowledge 

discovery

 Intuitive way of interacting with unknown data

 Long history of visualization tools, characterized by slow 

progress in recent years

 New visualization approaches are required in order to tackle 

modern large-scale problems

 Our task: Visualizing large data matrices



How to visualize a data matrix?

 Classical approaches

 Pie and bar charts, histograms

 Parallel coordinates 

1897.

1883. 2005.



How to visualize a data matrix?

 Classical approaches

 Heat maps

 Idea: Data reordering

 Reorder matrix so similar rows/columns are grouped together

1873. 1995.

1963.



The proposed method: Example

 Waveform benchmark data set

 Please click here: EM-ordering example

http://astro.temple.edu/~tuc17157/em_ordering/basic_v2_wave_classes.html


EM-ordering

 Data reordering can be considered from the viewpoint of 

data compression

 Reorder the data so that it is maximally compressible

 Assume data set D = {xi, i = 1, .., n} is given, where xi = [xi1, xi2, .., xim] 

are m-dimensional examples

 Differential Predictive Coding (DPC)

 Use local context to code the value of xi
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* Djuric, N., Vucetic, S., Efficient Visualization of Large-scale Data Tables through Reordering 
and Entropy Minimization,  ICDM 2013



EM-ordering

 Entropy of the prediction errors used to estimate compressibility

 The optimization problem becomes

 The EM-ordering algorithm

1. Fix variance of prediction errors, then minimize the overall distance 

between neighbors in the ordering (equivalent to TSP)

2. Fix ordering, then find variance of the prediction errors
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TSP-solver

 Super-quadratic time complexity of the best TSP solvers is 

prohibitive on large data

 We propose an O(n log(n)) method, called TSP-means

 After creating 2l-tree through recursive runs of k-means, solve TSP 

defined on each node while traversing the tree breath-first



Real-world applications

 Minneapolis traffic data set

Original data set Reordered data set Locations of the sensors



Large-scale learning

 Classification is one of the fundamental machine 

learning tasks

 Big data brings new challenges

 What to do when faced with data sets with millions data 

points and/or features?

 Traditional non-linear classifiers such as kernel SVM are 

inefficient in this setting, unlike linear models

 Can we combine accuracy of kernel SVMs with efficiency 

of linear models?



Large-scale learning: Multi-class SVM

 Assume a data set D = {(xn, yn), n = 1, …, N}, where xn is 

a feature vector, and yn is one of M class labels

 Multi-class SVM (Crammer et al., JMLR 2001)

 Model is parameterized by M weight vectors wi

 Prediction is given as

, where

 By concatenating all weights wi, we can write



Large-scale learning: Multi-class SVM

 Multi-class SVM training

 We find the weights by minimizing the following problem

where

 This model was extended (Aiolli et al., JMLR 2005) by 

assigning a fixed number of weights to each class

, with



Large-scale learning: Multi-class SVM

 The resulting Multi-hyperplane Machine (MM) loss function 

is non-convex, and the authors propose to solve the 
modified loss function 

where zn is a preset index of a true-class weight

1. We fix a single true-class hyperplane to each training data 

point at the beginning of a training epoch

2. After the whole data set is seen, compute and fix new 
assignments zn and repeat the optimization



Adaptive Multi-hyperplane Machines

 We proposed Adaptive MM (AMM), which adaptively learns

an appropriate number of weights for each class

 In a nutshell

 Assign to each class an infinite number of zero-weights

 Use Stochastic Gradient Descent (SGD) to solve the MM 

optimization problem

 During training, the algorithm finds an appropriate number of 

weights suitable for the problem complexity

 Provided theoretical guarantees of convergence and 

generalization

* Wang, Z., Djuric, N., Crammer, K., Vucetic, S. Trading Representability for Scalability: 
Adaptive Multi-Hyperplane Machine for Nonlinear Classification, KDD 2011



Adaptive MM

 At the tth training iteration, minimize the instantaneous   

objective function

 SGD optimization

 If data point misclassified, true-class weight pushed towards the 

point and winning other-class weight pushed away

 Points are reassigned to weights after each epoch is 
completed  zero weights get assigned to points and will 

be updated to non-zero in the next epoch (adaptability)



Adaptive MM

 Theorem 1

If we denote by W* the optimal MM solution, it holds

 Theorem 2

Assume we are able to correctly classify an IID-sampled training 
set of size N, then we can upper bound generalization error with 

probability greater than 1−δ as



Extensions: Online group lasso

 Enforce group-level sparsity of the weight matrix W

 Online truncated gradient (Langford et al., JMLR 2009)

 Let wg be a vector representing a gth group of elements 

from the weight matrix W, with g = 1, …, G, then

 Theoretical guarantees of convergence

 Analogous to online variant of group lasso

 Straightforward implementation 



Extensions: Growing AMM

 SGD fails to learn good weights for highly non-linear patterns

 Idea: “Clone” existing non-zero weights when misclassification

 Results on 4×4 checkerboard data set

 Robust to noise, significantly outperforms AMM



BudgetedSVM

 LibSVM, LibLinear, and Vowpal Wabbit are popular 

software packages for classification

 LibSVM implements state-of-the-art, yet inefficient kernel 

SVMs

 LibLinear and Vowpal Wabbit implement very efficient 

linear classifiers, however the performance is acceptable 

only on nearly-linearly-separable data sets

 Is there an easy-to-use software out there that allows 

efficient, non-linear learning in large-scale setting?



BudgetedSVM

 We developed a software package that combines 

accuracy of kernel SVMs with efficiency of linear SVMs

 Implements 3 large-scale, multi-class, non-linear classifiers     

in C++ (AMM, LLSVM, BSGD classifiers)

 Budgeted, accurate, non-linear models trained within 

minutes on data sets with millions of examples/features

 Highly-optimized routines and data structures

 Provides an API for handling large-scale data

* Djuric, N., Lan, L., Vucetic, S, Wang, Z. BudgetedSVM: A Toolbox for Scalable SVM 
Approximations, JMLR 2013



BudgetedSVM

 Comparison with the state-of-the-art classifiers

 Available from SourceForge.net

 More than 300 downloads since summer, try it out!

BB



Confidence-Weighted classification

 The task is to train a linear binary classifier to separate 

training data points

 Online Confidence-Weighted (CW) classifier, in addition 

to the prediction margin, outputs our confidence in the 

prediction for the incoming test data point

 Assumes a multivariate Gaussian over linear classifiers

 Given a trained CW model, this induces a Gaussian 
distribution over the prediction margin for a new point (xt, yt)



CW classification

 Online training algorithm is derived having in mind the 

following constraints (Dredze et al., ICML 2008; Crammer 

et al., NIPS 2009)

 New parameter estimates should be close to those from the 

previous iteration

 Margin for a new training point should be maximized, while 

uncertainty minimized

 Solve the following optimization problem (AROW):



CW classification on MapReduce

 Train a single AROW classifier on each of M mappers, 
aggregate them on reducer

 On reducer, we minimize the following objective function

or its empirical estimate

 We can obtain closed-form updates for mean vector 
and covariance matrix

* Djuric, N., Grbovic, M., Vucetic, S. Distributed Confidence-Weighted Classification on 
MapReduce, IEEE BigData 2013



CW training on MapReduce

 Finding a derivative of the objective function with 

respect to mean and covariance matrix, we obtain

 The second equation is an algebraic Riccati equation of 

the form XAX=B, solved as

, with



Results

 Real-world, industrial-size Ad Latency data set

 1.3 billion data examples, 21 measured features

 Online advertising domain

 Improve online experience through timely delivery of 
relevant ads to the users

 Can we detect if the ad will be late before it is served?

 Representation

 user features (browser type, device type, ISP, location, 
connection speed, etc.)

 ad features (ad type, ad size, ad dimensions, etc.), 

 vendor features (where is the ad served from, hardware 
used, etc.)



Results

 AROW-MR decreased 
training time from 17 days 

to 25 minutes, with further 

accuracy gains!

 Outperformed linear VW 
classifier with comparable 

training times

Table 1. Increasing number of mappers

Table 2. Performance of VW

 We compared AROW-MR to non-distributed AROW, as well 

as to the state-of-the-art Vowpall Wabbit (VW)

 Increased no. of mappers to evaluate effects of parallelization



Object matching

 Given two sets X = {xi, i = 1, .., m} and Y = {yi, i = 1, .., m}, find 

one-to-one matching between “similar” objects 

 Problem appears in many areas (bioinformatics, computer vision, 

natural language processing, …)

 Closely related to transfer learning

 Match objects from two different domains, but without an 

option to compare them



Kernelized Sorting

 Hilbert-Schmidt Independence Criterion (HSIC) measures 
dependency between sets X and Y, empirically 

estimated as

 If the sets are independent, then HSIC is minimal and 
equal to 0

 Hence, matching problem is defined as (π is a 

permutation matrix: πij = 1 if xi and yj match, 0 otherwise)

)( maximize T

m
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Convex Kernelized Sorting

 Reformulate KS problem as follows:

 Given two m × m matrices K and L, value of trace(K L) is 

maximized if rows of K and columns of L are permuted such 

that rows of K and corresponding columns of L are identical 

up to a constant multiplier

 To obtain convex problem, we allow π to be doubly-

stochastic, and KS becomes:

2TT ||)(|| minimize FLK  )( maximize T

m
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* Djuric, N., Grbovic, M., Vucetic, S., Convex Kernelized Sorting,  AAAI 2012



Results

 Match English documents to documents in other languages

 Baseline matches the documents simply by length

 Average no. of correct matches after 5 runs reported below (best 

result given in parentheses)

 CKS consistently outperforms the competing state-of-the-art



Remote sensing - Aerosols

 Aerosols are small particles suspended in the atmosphere, 

originating from natural and man-made sources

 Estimation of global aerosol distribution is one of the biggest 

challenges in climate research

 Negative effect on public health

 Profound effect on Earth’s radiation budget

 Standard measure of distribution is Aerosol Optical Depth (AOD)

 Ground-based sensors (AERONET network of instruments)

 Satellite-based sensors aboard Terra, Aqua, Aura, Calipso, SeaStar, 

and other Earth-observing satellites



Measuring aerosol distribution

 Ground-based sensors (Sun photometers)

 High accuracy of AOD estimates

 High cost of installment and maintenance

 Satellite-based sensors

 Lower accuracy of AOD estimation

 Global daily coverage



Problem setting

 OBJECTIVE: find an optimal combination of available 

satellite measurements, using scarce AERONET 

measurements as a ground-truth AOD during training

 We are given training data set consisting of targets yi

(AERONET) and of estimates of yi by K different experts 

(satellites), with Nu unlabeled and Nl labeled data points

 Considered approaches

 Semi-supervised combination of experts

 Gaussian Conditional Random Fields



Combination of experts: Related work

 Bates and Granger, 1969;                                         

Granger and Ramanathan, 1984

 Supervised method, no missing data allowed

 Raykar et al., 2009; Ristovski et al., 2010

 Unsupervised methods, no missing data allowed

 Experts assumed independent

 The proposed semi-supervised method presents a 

significant generalization of the two approaches 

 Allows missing data, correlated experts, and finds different 

data-generating regimes



Methodology

 Data points sampled IID, and target follows                             

normal distribution,

 Denote by     a K-dimensional vector of expert       

predictions, sampled from multivariate Gaussian,

 Training task is to find the parameters

ŷ

yi ~ Norm(my,s y

2 )

ŷi | yi ~ Norm(yi1,S) K

ŷi

N

Q= {S,my,s y

2}

y

* Djuric, N., Kansakar, L., Vucetic, S., Semi-Supervised Learning for Integration of Aerosol 
Predictions from Multiple Satellite Instruments,  IJCAI 2013 (outstanding paper award)



Inference

 Once the training is completed, aggregated prediction 

can be found as a mean of the posterior distribution 

(assuming no missing experts)

where the mean can be computed as follows,
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Training

 Learning by maximizing likelihood of the training data

 We write probability of the training data as follows

 The probability of unlabeled data set is equal to

P(D |Q)= P(Du |Q)×P(Dl |Q)

P(Du |Q) = P(ŷi |Q)
i=1

Nu

Õ = P(ŷi | y,Q)P(y |Q)dy
y

ò
i=1

Nu

Õ

                = (
| S ' |-1

(2p )K-11TS '-1
1

)exp(-
1

2
(ŷ 'i- yi1)

TS '-1(ŷ 'i- yi1))
i=1

Nu

Õ



Training

 Further, the probability of labeled data can be written as

 To simplify the equations, we assume that             , which 

amounts to an uninformative prior over the target variable

 After finding derivative of the data log-likelihood with 
respect to     , we obtain an iterative update equation,

s y

2 ®¥
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Further advantages

 Straightforward to account for missing experts due to the 

assumption of Gaussianity

 Incorporation of domain knowledge through a Wishart
prior over the precision matrix

 We derive an approach for partitioning data into several 

regimes, where expert predictions within each regime 
are sampled from a different multivariate Gaussian

 Learned using the EM algorithm



Results

 We used 5 years of aerosol data from 33 AERONET US 

locations, and predictions from 5 experts (MISR, Terra 

MODIS, Aqua MODIS, OMI, SeaWiFS)

 Training data set with 6,913 labeled examples (roughly 
200 examples per site) 

 58% of satellite predictions missing



Results

 Evaluating usefulness of partitioning

 From each site we randomly sampled 100 points, and 

assumed that 50 are labeled and 50 unlabeled



Results

 Evaluating usefulness of unlabeled data

 Randomly selected 2, 4, and 6 sites and took 100 points from 

each as labeled data; then, we selected 100 points from 

each remaining site and treated them as unlabeled

 Simulates large areas 
where just few AERONET 
sites are available

 Unlabeled data helpful, 
although benefit 
decreased when larger 
amounts of labeled data 
points were available



Structured Learning with GCRF

 Conditional Random Field (CRF)

 Given input variables x (that include measurements, location, time, 

and other useful data), probability of output variable y modeled as

 A - association, I - interaction potential, α and β are to be learned

 If we choose A and I as quadratic functions of the outputs y, 

the model corresponds to a multivariate Gaussian



GCRF for AOD estimation

 We considered 5 satellite instruments

 2 instruments have overpass time in the morning (Terra MODIS 

and MISR,10:30am local time)

 3 instruments have a time of overpass in the afternoon (Aqua 

MODIS, OMI, and SeaWiFS,1:30pm local time)

 We assume high correlation between AOD at 10:30am and 

1:30pm on the same day, as well as between AOD values at 

the same time between two consecutive days



GCRF Model I

 We estimate AOD at 10:30am and 1:30pm for each location

 The corresponding graphical model



GCRF Model II

 Model I assumes the same α parameters for each of the 

instruments regardless of the availability of other instruments

 However, if we know that one of the measurements is missing, we 

should be careful about the available ones as well



Results

 Results given in terms of RMSE

 We give results for various models, used parameters, and 

availability patterns



Results

 Learned parameters of Model II provide insight in the 

quality of instruments

 Within-day interaction much stronger than day-to-day 

interaction

 OMI assigned very low α, except when all satellites are 

available (issue with OMI filter?)



GCRF for traffic speed forecasting

 Problem setting

 Predict travel speeds on I-35W highway, Minneapolis, MN, 

from April to July, 2003

 Up to 1h ahead, in 10-min increments, across 11 consecutive 

sensor stations

* Djuric, N., Radosavljevic, V., Coric, V., Vucetic, S., Travel Speed Forecasting using Continuous 

Conditional Random Fields, TRR: Journal of the Transportation Research Board 2011



Results

 Compared with linear regression

 Baseline predictors

 Downstream sensor speed

 Upstream sensor speed 

 Historical average

 Current speed



Ongoing / future work

 Semi-supervised combination of experts

 Parameterized priors?

 Structured output, non-IID data?

 GMRF priors?

 Data visualization

 Developing software for visual exploration

 Distributed implementation?

 Binary features, user-provided constraints on orderings?

 Many-to-many object matching

 Scaling up CKS? Regularization? Semi-supervised?



Ongoing / future work

 Large-scale learning

 Completing characterization and implementation of group 

lasso for AMM

 Extending more state-of-the-art methods to large-scale 

domain (GCRF training using MapReduce, GraphLab, 

GraphChi?)

 AMM-rank, evaluation of large-scale label ranking method

 Dirichlet process?

 Structured learning

 Application of GCRF to aerosol estimation (sunglint, clouds?)

 Speeding up GCRF, further assumptions on the structure



Conclusions

 Inadequacy of standard machine learning tools in large-scale 
setting is apparent

 Novel methods are necessary to address plethora of Big Data problems

 Large-scale learning

 Efficient, non-linear AMM classifiers

 Highly-optimized BudgetedSVM C++ toolbox

 Confidence-weighted classification on MapReduce

 Data visualization

 Fast, efficient knowledge discovery

 Semi-supervised combination of experts

 Accounts for unlabeled data, missing data, correlations

 Useful in many areas of machine learning

 Structured learning in remote sensing and traffic estimation



Thank you!

 Questions?


