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Intfroduction

O Big Datal

O Big Data is pervasive; data sets with millions of examples and
features are now a rule rather than an exception

O Crowdsourcing, remote sensing, social networks, etc.
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Intfroduction

O “Big dafais high volume, high velocity, and/or high
variety information assets that require new forms of
processing to enable enhanced decision making,
insight discovery and process optimization.”

O Many challenges to machine b e
. . e COMING ALoNG,
learning and data mining researchers Hoskinsy [

O Standard tools and frameworks are not
capable of addressing new tasks

O Even linear time and space
complexity may no longer be fractable
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Outline of the presentation

O Large data visualization
O EM-ordering and TSP-means

O Large-scale learning
O Adaptive Multi-hyperplane Machines
O BudgetedSVM: A C++ toolbox for large-scale learning
O Distributed confidence-weighted learning on MapReduce

O Unsupervised object matching
O ConvexKernelized Sorting

O Combination of experts
O Semi-supervised aggregation of noisy experts
O Using Gaussian CRF to improve aerosol retrieval and traffic estimation



Data visualization

O Immediate feedback that can lead to faster knowledge
discovery

O Infuitive way of interacting with unknown data

O Long history of visualization tools, characterized by slow
progress in recent years

O New visudlization approaches are required in order to tackle
modern large-scale problems

O Our task: Visualizing large data matrices



How to visudlize a data matrix?e
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How to visudlize a data matrix?e

O Classical approaches

O Heat maps

O |dea: Data reordering
O Reorder matrix so similar rows/columns are grouped together
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The proposed method: Example

O Waveform benchmark data set

O Please click here: EM-ordering example



http://astro.temple.edu/~tuc17157/em_ordering/basic_v2_wave_classes.html

EM-ordering

O Datareordering can be considered from the viewpoint of
data compression

O Reorder the data so that it is maximally compressible

O Assume dataset D= {x,i=1,.,n} is given, where x; = [x;, X,5, .., X;, ]
are m-dimensional examples

O Differential Predictive Coding (DPC)
O Use local context fo code the value of x;

D={x,i=1,...,n} > Dypr ={X,&,5,...,&, }

where g, =(X, —X, |),i=2,...,n

* Djuric, N., Vucetic, S., Efficient Visualization of Large-scale Data Tables through Reordering
and Entropy Minimization, ICDM 2013



EM-ordering

O Enfropy of the prediction errors used to estimate compressibility

2
Xﬂ(l —-1),j )

H(cc,') = —(m 10g(27l') -+ Zlog(g (g))) +0. SZZ ”(1) J

i=2 j=I Gj

O The optimization problem becomes

(7'40) s 0,}) =arg_ min  H(e)
O The EM-ordering algorithm

1. Fix variance of prediction errors, then minimize the overall distance
between neighbors in the ordering (equivalent to TSP)

2. Fix ordering, then find variance of the prediction errors



TSP-solver

O Super-quadratic time complexity of the best TSP solvers is
prohibitive on large data

O We propose an O(n log(n)) method, called TSP-means

O After creating 2-tree through recursive runs of k-means, solve TSP
defined on each node while traversing the tree breath-first




Real-world applications

O Minneapolis traffic data set
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Large-scale learning

O Classification is one of the fundamental machine
learning tasks

O Big data brings new challenges

O What to do when faced with data sets with millions data
points and/or features?

O Traditional non-linear classifiers such as kernel SVM are
inefficient in this setfing, unlike linear models

O Can we combine accuracy of kernel SVMs with efficiency
of linear modelse



Large-scale learning: Multi-class SVM

O Assume adatasetD={(x,y,),n=1, ..., N}, where x,is
a feature vector, and y, is one of M class labels

O Mulfi-class SVM (Crammer et al., JMLR 2001)

O Modelis parameterized by M weight vectors w;,
O Predictionis given as

f(x) = arg 111;33{9(-5, x), where g(i.x) = Wa:TX
ic

O By concatenating all weights w,, we can write

W = [w; wa ... W]



Large-scale learning: Multi-class SVM

O Multfi-class SVM training

O We find the weights by minimizing the following problem

1

A N
§HWH§? N anl (W (Xn, yn))

where 1(W;(Xn,yn)) = max (0._ 1+ 1131;51\.)( g(i,Xp) — g(yn,xn))
€YV \Yn

O This model was extended (Aiolli et al., JMLR 2005) by
assigning a fixed number of weights to each class
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Large-scale learning: Multi-class SVM

O The resulting Multi-hyperplane Machine (MM) loss function
Is non-convex, and the authors propose to solve the
modified loss function

lewe (W (Xp, Un ) 2n) = IMax ((]. 1 + max;ey\y, 9(i.X,) — wl Xn)

Un:%n

where z is a preset index of a true-class weight

1. We fix a single true-class hyperplane to each training data
point at the beginning of a fraining epoch

2. After the whole data set is seen, compute and fix new
assignments z, and repeat the optimization



Adapftive Multi-hyperplane Machines

O We proposed Adaptive MM (AMM), which adapfively learns
an appropriate number of weights for each class

O In a nutshell

O Assign to each class an infinite number of zero-weights

O Use Stochastic Gradient Descent (SGD) to solve the MM
optimization problem

O During training, the algorithm finds an appropriate number of
weights suitable for the problem complexity

O Provided theoretical guarantees of convergence and
generalization

*Wang, Z., Djuric, N., Crammer, K., Vucetic, S. Trading Representability for Scalability:
Adaptive Multi-Hyperplane Machine for Nonlinear Classification, KDD 2011



Adaptive MM

O At the /M training iteration, minimize the instantaneous
objective function

A
PY(W|z) = §||W||2 + leve (W3 (X, 40): 210)

O SGD optimization

O If data point misclassified, true-class weight pushed towards the
point and winning other-class weight pushed away

O Points are reassigned to weights after each epoch is
completed = zero weights get assigned to points and will
be updated to non-zero in the next epoch (adaptability)



Adaptive MM

O Theorem |
If we denote by W the optimal MM solution, it holds

8(In(T) + 1)
() () () oin{4)+ 1)
TZP (WH|z) — ZP (W*|z) < i

O Theorem 2

Assume we are able to correctly classify an IID-sampled training
set of size N, then we can upper bound generalization error with
probability greater than 1-6 as

130 (IIWH Blog(4eN) log(4N) “O%(Q(Qg) ))

B = Z b; + 1+bn1ax — bimax _bnlin, K = % Z ¥ Z bj; bmin — mini:l ..... ]\/f{bi} and bmax = maxi=1,..., ]\/f{b’i}
i=1 i=1  j#d



Extensions: Online group lasso

O Enforce group-level sparsity of the weight matrix W
O Online fruncated gradient (Langford et al., JMLR 2009)

O Let w, be a vectorrepresenting a g group of elements
from the weight matrix W, with g=1, ..., G, then

wo — iy w9l > my

w,, < sparsify (wy, 1777) = { 0 w9 <y

O Theoretical guarantees of convergence
O Analogous to online variant of group lasso
O Straightforward implementation



Extensions: Growing AMM

O SGD fails to learn good weights for highly non-linear patterns
O Idea: “Clone” existing non-zero weights when misclassification

O Results on 4x4 checkerboard data set

(a) AMM (27.95% err. 1.) (b) GAMM (7.38% err. 1.)

O Robust to noise, significantly outperforms AMM



BudgetedSVM

O LIbSVM, LibLinear, and Vowpal Wabbit are popular
software packages for classification

O LibSVM implements state-of-the-art, yet inefficient kernel
SVMs

O LiblLinear and Vowpal Wabbit implement very efficient
linear classifiers, however the performance is acceptable
only on nearly-linearly-separable data sets

O Is there an easy-to-use software out there that allows
efficient, non-linear learning in large-scale setting?



BudgetedSVM

O We developed a software package that combines
accuracy of kernel SVMs with efficiency of linear SVMs

O Implements 3 large-scale, multi-class, non-linear classifiers
in C++ (AMM, LLSVM, BSGD classifiers)

O Budgeted, accurate, non-linear models trained within
minutes on data sets with millions of examples/features

O Highly-optimized routfines and data structures
O Provides an API for handling large-scale data

* Djuric, N., Lan, L., Vucetic, S, Wang, Z. BudgetedSVM: A Toolbox for Scalable SVM
Approximations, JMLR 2013



BudgetedSVM

O Comparison with the state-of-the-art classifiers

Pegasos AMM LLSVM BSGD RBF-SVM
Data set err. time err. B time err. B time err. B time err. time
webspam 3.46 be2 2.5m | 2.04 5e2 2.0m
N = 280,000 7.94 0.5s 4.74 9 3s 260 1le3 6.1m | 1.72 1le3 3.9m 0.77 4.0h
M = 254 1.99 3e3 0.5h 1.49  3e3 0.2h (#SV: 26,447)
rcvl 497 be2 0.2h 8.70 be2 5.1m
N = 677,399 2.73 1.5s 2.39 19 Os 4.23 1le3 0.5h 8.64 1le3d 10.5m | 2.17 20.2h
M = 47,236 3.05 3e3 2.2h 6.87 3e3 0.8h (#SV: 50,641)
mnist8m-bin 6.84 5e2 1.6h 2.23  5e2 2.3h
N =18,000,000 | 22.71 1.1m | 3.16 18 4m 4.59 1e3 3.8h 1.92 1e3 4.9h 0.43 N/A
M = 784 2.59 3e3 15h 1.62 3e3 16.1h

O Available from SourceForge.net
O More than 300 downloads since summer, try it out!



Confidence-Weighted classification

O The taskis o train a linear binary classifier to separate
training data points

O Online Confidence-Weighted (CW) classifier, in addition

to the prediction margin, outputs our confidence in the
prediction for the incoming test data point

O Assumes a multivariate Gaussian over linear classifiers

O Given a tfrained CW model, this induces a Gaussian
distribution over the prediction margin for a new point (x,, y,)

g~ N (ye(p' %), xi Ex4)



CW classification

O Online training algorithm is derived having in mind the
following constraints (Dredze et al., ICML 2008; Crammer
et al., NIPS 2009)

O New parameter estimates should be close to those from the
previous iteration

O Margin for a new training point should be maximized, while
uncertainty minimized

O Solve the following optimization problem (AROW):

(#+1, 1) =argmin Dy, (N (e, D) [N (g, Ze)) +
i,

Al ( max (0,1 — ytuTXt))Q + )\Q(XtTEXt)



CW classification on MapReduce

O Train a single AROW classifier on each of M mappers,
aggregate them on reducer

O Onreducer, we minimize the following objective function

L= EN(M,E)[D?;’L (N’(u*? 2*)HN(”1 E))]

or its empirical estimate

M

L= PNt Em) Dip Nt ) [N (. Bin))

m=1

O We can obtain closed-form updates for mean vector
and covariance matrix

* Djuric, N., Grbovic, M., Vucetic, S. Distributed Confidence-Weighted Classification on
MapReduce, IEEE BigData 2013



CW training on MapReduce

O Finding a derivative of the objective function with
respect to mean and covariance matrix, we obtain

M M

o= (3 PW (e Z0) (BT 520)) 7 (0 (BN (e ) (551 + 520

M M
E*( Z ]P)(N(lu'm Em)) E;LI)E* - Z IP)(N(“'mT Em)) (Eer(,u* _bu'm,)(lu’* _lu’m)T)

m=1 m=1

O The second equation is an algebraic Riccati equation of
the form XAX=B, solved as

X — U*U.5BU.5 (UT)*0.5’ Wlth A = UTU



Results

O Real-world, industrial-size Ad Latency data set

1.3 billion data examples, 21 measured features

O Online advertising domain

Improve online experience through timely delivery of
relevant ads to the users

Can we detect if the ad will be late before it is served?

O Representation

user features (browser type, device type, ISP, location,
connection speed, etc.)

ad features (ad type, ad size, ad dimensions, etc.),

vendor features (where is the ad served from, hardware
used, etfc.)



Results

O We compared AROW-MR to non-distributed AROW, as well
as to the state-of-the-art Vowpall Wabbit (VW)

O Increased no. of mappers to evaluate effects of parallelization

Table 1. Increasing number of mappers
# mappers  # reducers  Avg. map time  Reduce time AUC

O AROW-MR decreased

1 0 408h n/El. 0.8442 . .

oo ! 0n Jmin 08352 training time from 17 days
1,000 1 17.5 min 7 min 0.8662 1 1
16,000 - b o I to 25 minutes, with further

Table 2. Performance of VW

accuracy gains!

# mappers  # reducers  Avg. map time  Reduce time  AUC n OU-I-perfo rmed ||neOr \/W
1 0 7h n/a 0.8506 .o .
100 0 Ih n/a 0.8508 classifier with comparable
500 0 8 min n/a 0.8501 . .
1,000 0 6 min n/a 0.8498 training times




Object matching

O Giventwosets X={x,i=1,.,.m}and Y={y,i=1, .., m}, find
one-to-one matching between “similar” objects

O Problem appears in many areas (bioinformatics, computer vision,
natural language processing, ...)

O Closely related to transfer learning

O Match objects from two different domains, but without an
opftion to compare them



Kernelized Sorting

O Hilbert-Schmidt Independence Criterion (HSIC) measures
dependency between sets X and Y, empirically
estimated as

A =m™ trace(K - L)

O If the sets are independent, then HSIC is minimal and
equal to 0

O Hence, matching problem is defined as (z is @
permutation matrix: z; = 1 if x; and y, match, 0 otherwise)

maximize trace(K - 7l L T)
rell



Convex Kernelized Sorting

O Reformulate KS problem as follows:

O Given two m x m matrices K and L, value of trace(K L) is
maximized if rows of K and columns of L are permuted such
that rows of K and corresponding columns of L are identical
up to a constant multiplier

O To obtain convex problem, we allow 7 to be doubly-
stochastic, and KS becomes:

maximize tmceﬁlﬁniﬂnTiZ@CH K- — (L- 7T)T ||%7

well,

KS CKS

* Djuric, N., Grbovic, M., Vucetic, S., Convex Kernelized Sorting, AAAI 2012



Results

O Match English documents to documents in other languages
O Baseline matches the documents simply by length

O Average no. of correct matches after 5 runs reported below (best
result given in parentheses)

O CKS consistently outperforms the competing state-of-the-art

Language  Corpussize Baseline KS KS-p LSOM CKS
Danish 387 39 261 (318) 258(273) 159(173) 379
Dutch 387 50 266 (371) 237(317) 146(375) 383
Finnish 308 54 19 (32) 22 (38) 10 (10) 114
French 356 64 319 (356) 320(334) 354(354) 356
German 356 50 282 (344) 258 (283) 338 (350) 356
Italian 387 49 341(382) 349(353) 378(381) 385
Portuguese 356 46 308 (354) 3261(343) 342(356) 356
Spanish 387 48 342 (365) 351(364) 386(387) 387
Swedish 337 76 20(39) 20(33) 3(5) 97




Remote sensing - Aerosols

O Aerosols are small particles suspended in the atmosphere,
originating from natural and man-made sources

O Estimation of global aerosol distribution is one of the biggest
challenges in climate research

O Negative effect on public health
O Profound effect on Earth’s radiation budget

O Standard measure of distribution is Aerosol Optical Depth (AOD)
O Ground-based sensors (AERONET network of instruments)

O Satellite-based sensors aboard Terra, Aqua, Aura, Calipso, SeaStar,
and other Earth-observing satellites



Measuring aerosol distribution

O Ground-based sensors (Sun photometers)
O High accuracy of AOD estimates
O High cost of installment and maintenance

Latitude

O Satellite-based sensors
O Lower accuracy of AOD estimation
O Global daily coverage




Problem setffing

O OBJECTIVE: find an optfimal combination of available
satellite measurements, using scarce AERONET
measurements as a ground-truth AOD during training

O We are given fraining data set consisting of targets y.
(AERONET) and of estimates of y, by K different experts
(satellites), with N, unlabeled and N, labeled data points

O Considered approaches
O Semi-supervised combination of experts
O Gaussian Conditional Random Fields



Combination of experts: Related work

O Bates and Granger, 1969;
Granger and Ramanathan, 1984

O Supervised method, no missing data allowed

O Raykar et al., 2009; Ristovski et al., 2010

O Unsupervised methods, no missing data allowed
O Experts assumed independent

O The proposed semi-supervised method presents a
significant generalization of the two approaches

O Allows missing data, correlated experts, and finds different
data-generating regimes



Methodology

O Data points sampled IID, and target follows
normal distribution,

yiNNOI"m(ILly,O')%) y

O Denofe by y,a K-dimensional vector of expert
predictions, sampled from multivariate Gaussian,

}A’i |yi ~ Norm(yl.l, Z) N
O Training task is o find the parameters

® — {29 lLlyﬂ J}%}

* Djuric, N., Kansakar, L., Vucetic, S., Semi-Supervised Learning for Integration of Aerosol
Predictions from Multiple Satellite Instruments, 1JCAI 2013 (outstanding paper award)



Inference

O Once the training is completed, aggregated prediction
can be found as a mean of the posterior distribution
(assuming No missing experts)

Vi | S\’i ~ Norm()_/ia(sz'_l 1)_1)

where the mean can be computed as follows,

N [] L
LD L I > 0
=YiZ 2 with §=[§, d 3=l B
yz 1T 2,_1 1 Wi yz [yz /’ly] an % 0 G}% %



O Learning by maximizing likelihood of the training data

O We write probability of the training data as follows

P(D|©)=P(D, |®)P(D,|©)

O The probability of unlabeled data set is equal to

P(D,|®)=[] P(§,|®)=L] [P |y.0)P(y|0)dy

i=1 =l y

N, -1
: > |
:D (\/(27[)|K11|T2'11)eXp(—5(yi—yi1)TZ 1(yi_yi1))
i=1



O Further, the probability of labeled data can be written as

N
. 1 A o
P(D,|®)=[] P(y,|y,0)=[] —exp(=0.5(y,—y 1) ' Z7'(y, - »1))

K72 .
=1 v (270)7 | 2]

O To simplify the equations, we assume that o, =, which
amounts to an uninformative prior over the target variable

O After finding derivative of the data log-likelihood with
respect to =) we obtain an iterative update equation,

T T T NllT M 2 T T

—((Y y 1D (Y, -y1)+Y]Y, A=, @1 -yQay, +y,1'))

\ ) | =l J
| |
Bates and Granger, 1969 Ristovski et al., 2010




Further advantages

O Straightforward to account for missing experts due to the
assumption of Gaussianity

O Incorporation of domain knowledge through a Wishart
prior over the precision matrix

O We derive an approach for partitioning data info several
regimes, where expert predictions within each regime
are sampled from a different multivariate Gaussian

O Learned using the EM algorithm



O We used 5 years of aerosol data from 33 AERONET US
locations, and predictions from & experts (MISR, Terra
MODIS, Agua MODIS, OMI, SeaWiFS)

O Training data set with 6,913 labeled examples (roughly
200 examples per site)

O 58% of satellite predictions missing



Results

O Evaluating usefulness of partitioning

O From each site we randomly sampled 100 points, and
assumed that 50 are labeled and 50 unlabeled

Method

4 SILES, Supervisea
2 sites, semi-super.
4 sites, supervised
4 sites, semi-super.
6 sites, supervised
6 sites, semi-super.

# clusters

DO DO DB I

RMSE

U.U199
0.0752
0.0728
0.0704
0.0694
0.0688
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Results

O Evaluating usefulness of unlabeled data

O Randomly selected 2, 4, and 6 sites and took 100 points from
each as labeled data; then, we selected 100 points from
each remaining site and treated them as unlabeled

Method # clusters RMSE O Simulates large areas
Averaging - 0.0818 where just few AERONET
All sites, semi-super. 1 0.0677 sites are available

All si mi- I 2 .064

O Unlabeled data helpful,
although benefit
decreased when larger
amounts of labeled data
points were available




Structured Learning with GCRF

O Conditional Random Field (CRF)

O Giveninput variables x (that include measurements, location, time,
and other useful data), probability of output variable y modeled as

(YIX)_Z(){;QBGXP( Zz 1A( 7yiax>_zfé~j1(6ayivyjyx>)
Z(x,a,3) = ]exp ZAay X) ZI i Ui, X

?"Vj'

O A4 - association, I interaction potential, a and g are to be learned

O If we choose 4 and I as quadratic functions of the outputs y,
the model corresponds to a multivariate Gaussian

M

. 2
A(a,y@-,x) = Z Ctﬂléi ('yg; — Hm(X@)) ;6 Vi, Yy, X Z 7—)5(53,3 Yi — 1)’5'

m=1



GCRF for AOD estimation

O We considered 5 satellite instruments

O 2 instruments have overpass time in the morning (Terra MODIS
and MISR,10:30am local time)

O 3 instruments have a time of overpass in the afternoon (Aqua
MODIS, OMI, and SeaWiFS,1:30pm local time)

O We assume high correlation between AOD at 10:30am and
1:30pm on the same day, as well as between AOD values at
the same time between two consecutive days



GCRF Model |

O We estimate AOD at 10:30am and 1:30pm for each location

O The corresponding graphical model
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Day 1 Day 2 Day 3 Day 4



GCRF Model |l

O Model | assumes the same a parameters for each of the
instruments regardless of the availability of other instruments
O However, if we know that one of the measurements is missing, we
should be careful about the available ones as well
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Results

O Results given in terms of RMSE

O We give results for various models, used parameters, and
availability patterns

Without 3 parameters Model II with 3 parameters
Instrument No. of points Individual sensors Model 1 Model 11 Only 51 Only 52 All 3
MODIS Aqua 7,246 0.0872 0.0857 0.0840 0.0822 0.0825  0.0756
OMI 10,142 0.2390 0.2058 0.2053 0.1930 0.1482 0.0934
SeaWiFS 2,205 0.0739 0.0676 0.0658 0.0630 0.0642  0.0607
MODIS Agqua alone 2,102 0.0889 0.0889 0.0889 0.0850 0.077: 0.0741
OMI alone 4,528 0.2934 0.2934 0.2934 0.2744 0.2010 0.1114
SeaWiFS alone 237 0.0800 0.0800 0.0800 0.0771 0.0784  0.0753
MODIS + OMI 3,868 0.0893 | 0.2123 0.0918 0.0894 0.0886 0.0925  0.0827
MODIS + SeaWiFS 222 0.0982 | 0.0747 0.0694 0.0717 0.0665 0.0655 0.0634
OMI + SeaWiFS 692 0.1011 | 0.0835 0.0817 0.0799 0.0758 0.0760  0.0691
MODIS + OMI + SeaWiFS 1,054 0.0717 | 0.0715 | 0.0650  0.0523 0.0485 0.0475 0.0506 0.0495
MODIS Terra 8,725 0.0905 0.0847 0.0841 0.0826 0.0819  0.0800
MISR 2,165 0.0652 0.0684 0.0656 0.0664 0.0735 0.0725
MODIS Terra alone 7,552 0.0863 0.0863 0.0863 0.0845 0.0822 0.0806
MISR alone 992 0.0618 0.0618 0.0618 0.0636 0.0657 0.0677
MODIS + MISR 1,173 0.1142 | 0.0680 0.0736 0.0687 0.0686 0.0795 0.0763
All labeled 44445 — — — 0.1634 0.1328  0.1080
All labeled with any satellite 22,420 — 0.1516 0.1512 0.1430 0.1158  0.0843

All labeled without satellites 20,025 — — — 0.1817 0.1481 01271




Results

O Learned parameters of Model Il provide insight in the
quality of instruments

O Within-day intferaction much stronger than day-to-day
intferaction

O OMI assigned very low a, except when all satellites are
available (issue with OMI filter?)

10:30am Count  ounodis  Qmisr 1:30pm Count  Qunodis  Comi O g

+ MISR 2,334 - 183.03 + + SeaWiFS 570 - - 87.40

MODIS + 17,714 67.02 - + OMI + 11,309 - 1.15 -
MODIS + MISR 2,572 0.03 100.48 MODIS + + 5,589 97.96 - -
+ OMI + SeaWiFS 1,363 - 4.42 57.91

MODIS + + SeaWiFS 461 16.39 - 80.47

B1 B2 MODIS + OMI + 8,487 34.30 0.01 -

315.47 35.45 MODIS + OMI + SeaWiFS 2,173 20.22 8247 109.78




GCREF for traffic speed forecasting

O Problem sefting

O Predict fravel speeds on I-35W highway, Minneapolis, MN,
from April to July, 2003

O Up to Th ahead, in 10-min increments, across 11 consecutive
sensor stations
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* Djuric, N., Radosavljevic, V., Coric, V., Vucetic, S., Travel Speed Forecasting using Continuous
Conditional Random Fields, TRR: Journal of the Transportation Research Board 2011



Results

O Compared with linear regression

O Baseline predictors
O Downstream sensor speed
O Upstream sensor speed
O Historical average

TABLE 1 Prediction MAE Errors of Various Predictors Aggregated Across Time Horizons

Horizon (min)

n C U rre n -I- S p e e d +10 +20 +30 +40 +50 +60 Total

Linear Regression Models

LR Model | (two baselines) 6.096 7.634 8.755 9.821 10.605 11.136 9.008
LR Model 2 (four baselines) 5.961 7.547 8.724 9.807 10.625 11.154 8.969

Baseline Predictors Incorporated into CCRF Models

Random walk 6.130 7.667 8.789 10.033 11.072 11.947 9.273
Historical median 13.090 13.183 13.153 12.994 12.737 12.419 12.931
Current speed of upstream sensor 7.568 8.746 9.789 10.980 11.995 12.849 10.321
Current speed of downstream sensor 7.311 8.627 9.543 10.582 11.505 12.277 9.974

CCRF Models. in Increasing Level of Complexity

CCRF Model | (two baselines) 6.198 7.703 8.752 9.778 10.597 11.239 9.004
CCRF Model 2 (four baselines) 5.929 7.325 8.333 9.384 10.290 11.061 8.720
CCRF Model 3 (regime switching) 5.922 7.327 8.329 9.363 10.214 10.891 8.675

CCRF Model 4 (with correlations) 5.920 7.308 8.314 9.352 10.213 10.905 8.669




Ongoing / future work

O Semi-supervised combination of experts
O Parameterized priorse
O Structured output, non-IID datae
O GMRF priors?

O Data visualization
O Developing software for visual exploration
O Distributed implementation?e
O Binary features, user-provided constraints on orderingse

O Many-to-many object matching
O Scaling up CKS¢ Regularization? Semi-supervised?



Ongoing / future work

O Large-scale learning

O Completing characterization and implementation of group
lasso for AMM

O Extending more state-of-the-art methods to large-scale
domain (GCRF training using MapReduce, GraphlLab,
GraphChie)

O AMM-rank, evaluation of large-scale label ranking method
O Dirichlet processe

O Structured learning
O Application of GCRF to aerosol estimation (sunglint, clouds?)
O Speeding up GCREF, further assumptions on the structure



Conclusions

Inadequacy of standard machine learning tools in large-scale
setting is apparent

O Novel methods are necessary to address plethora of Big Data problems

Large-scale learning

O Efficient, non-linear AMM classifiers

O Highly-optimized BudgetedSVM C++ toolbox

O Confidence-weighted classification on MapReduce

Data visualization
O Faost, efficient knowledge discovery

Semi-supervised combination of experts
O Accounts for unlabeled data, missing data, correlations
O Useful in many areas of machine learning

Structured learning in remote sensing and traffic estimation



Thank you!
O Questionse
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