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Introduction

 Big Data!

 Big Data is pervasive; data sets with millions of examples and 

features are now a rule rather than an exception

 Crowdsourcing, remote sensing, social networks, etc.

 Globally-recognized, strategic 

importance of Big Data

 Focus of major internet companies

 “Big Data Research and Development 

Initiative” by the US government



Introduction

 “Big data is high volume, high velocity, and/or high 

variety information assets that require new forms of 

processing to enable enhanced decision making, 

insight discovery and process optimization.”

 Many challenges to machine 

learning and data mining researchers

 Standard tools and frameworks are not 

capable of addressing new tasks

 Even linear time and space 

complexity may no longer be tractable



Outline of the presentation

 Large data visualization

 EM-ordering and TSP-means

 Large-scale learning

 Adaptive Multi-hyperplane Machines

 BudgetedSVM: A C++ toolbox for large-scale learning

 Distributed confidence-weighted learning on MapReduce

 Unsupervised object matching

 Convex Kernelized Sorting

 Combination of experts

 Semi-supervised aggregation of noisy experts

 Using Gaussian CRF to improve aerosol retrieval and traffic estimation



Data visualization

 Immediate feedback that can lead to faster knowledge 

discovery

 Intuitive way of interacting with unknown data

 Long history of visualization tools, characterized by slow 

progress in recent years

 New visualization approaches are required in order to tackle 

modern large-scale problems

 Our task: Visualizing large data matrices



How to visualize a data matrix?

 Classical approaches

 Pie and bar charts, histograms

 Parallel coordinates 

1897.

1883. 2005.



How to visualize a data matrix?

 Classical approaches

 Heat maps

 Idea: Data reordering

 Reorder matrix so similar rows/columns are grouped together

1873. 1995.

1963.



The proposed method: Example

 Waveform benchmark data set

 Please click here: EM-ordering example

http://astro.temple.edu/~tuc17157/em_ordering/basic_v2_wave_classes.html


EM-ordering

 Data reordering can be considered from the viewpoint of 

data compression

 Reorder the data so that it is maximally compressible

 Assume data set D = {xi, i = 1, .., n} is given, where xi = [xi1, xi2, .., xim] 

are m-dimensional examples

 Differential Predictive Coding (DPC)

 Use local context to code the value of xi
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* Djuric, N., Vucetic, S., Efficient Visualization of Large-scale Data Tables through Reordering 
and Entropy Minimization,  ICDM 2013



EM-ordering

 Entropy of the prediction errors used to estimate compressibility

 The optimization problem becomes

 The EM-ordering algorithm

1. Fix variance of prediction errors, then minimize the overall distance 

between neighbors in the ordering (equivalent to TSP)

2. Fix ordering, then find variance of the prediction errors
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TSP-solver

 Super-quadratic time complexity of the best TSP solvers is 

prohibitive on large data

 We propose an O(n log(n)) method, called TSP-means

 After creating 2l-tree through recursive runs of k-means, solve TSP 

defined on each node while traversing the tree breath-first



Real-world applications

 Minneapolis traffic data set

Original data set Reordered data set Locations of the sensors



Large-scale learning

 Classification is one of the fundamental machine 

learning tasks

 Big data brings new challenges

 What to do when faced with data sets with millions data 

points and/or features?

 Traditional non-linear classifiers such as kernel SVM are 

inefficient in this setting, unlike linear models

 Can we combine accuracy of kernel SVMs with efficiency 

of linear models?



Large-scale learning: Multi-class SVM

 Assume a data set D = {(xn, yn), n = 1, …, N}, where xn is 

a feature vector, and yn is one of M class labels

 Multi-class SVM (Crammer et al., JMLR 2001)

 Model is parameterized by M weight vectors wi

 Prediction is given as

, where

 By concatenating all weights wi, we can write



Large-scale learning: Multi-class SVM

 Multi-class SVM training

 We find the weights by minimizing the following problem

where

 This model was extended (Aiolli et al., JMLR 2005) by 

assigning a fixed number of weights to each class

, with



Large-scale learning: Multi-class SVM

 The resulting Multi-hyperplane Machine (MM) loss function 

is non-convex, and the authors propose to solve the 
modified loss function 

where zn is a preset index of a true-class weight

1. We fix a single true-class hyperplane to each training data 

point at the beginning of a training epoch

2. After the whole data set is seen, compute and fix new 
assignments zn and repeat the optimization



Adaptive Multi-hyperplane Machines

 We proposed Adaptive MM (AMM), which adaptively learns

an appropriate number of weights for each class

 In a nutshell

 Assign to each class an infinite number of zero-weights

 Use Stochastic Gradient Descent (SGD) to solve the MM 

optimization problem

 During training, the algorithm finds an appropriate number of 

weights suitable for the problem complexity

 Provided theoretical guarantees of convergence and 

generalization

* Wang, Z., Djuric, N., Crammer, K., Vucetic, S. Trading Representability for Scalability: 
Adaptive Multi-Hyperplane Machine for Nonlinear Classification, KDD 2011



Adaptive MM

 At the tth training iteration, minimize the instantaneous   

objective function

 SGD optimization

 If data point misclassified, true-class weight pushed towards the 

point and winning other-class weight pushed away

 Points are reassigned to weights after each epoch is 
completed  zero weights get assigned to points and will 

be updated to non-zero in the next epoch (adaptability)



Adaptive MM

 Theorem 1

If we denote by W* the optimal MM solution, it holds

 Theorem 2

Assume we are able to correctly classify an IID-sampled training 
set of size N, then we can upper bound generalization error with 

probability greater than 1−δ as



Extensions: Online group lasso

 Enforce group-level sparsity of the weight matrix W

 Online truncated gradient (Langford et al., JMLR 2009)

 Let wg be a vector representing a gth group of elements 

from the weight matrix W, with g = 1, …, G, then

 Theoretical guarantees of convergence

 Analogous to online variant of group lasso

 Straightforward implementation 



Extensions: Growing AMM

 SGD fails to learn good weights for highly non-linear patterns

 Idea: “Clone” existing non-zero weights when misclassification

 Results on 4×4 checkerboard data set

 Robust to noise, significantly outperforms AMM



BudgetedSVM

 LibSVM, LibLinear, and Vowpal Wabbit are popular 

software packages for classification

 LibSVM implements state-of-the-art, yet inefficient kernel 

SVMs

 LibLinear and Vowpal Wabbit implement very efficient 

linear classifiers, however the performance is acceptable 

only on nearly-linearly-separable data sets

 Is there an easy-to-use software out there that allows 

efficient, non-linear learning in large-scale setting?



BudgetedSVM

 We developed a software package that combines 

accuracy of kernel SVMs with efficiency of linear SVMs

 Implements 3 large-scale, multi-class, non-linear classifiers     

in C++ (AMM, LLSVM, BSGD classifiers)

 Budgeted, accurate, non-linear models trained within 

minutes on data sets with millions of examples/features

 Highly-optimized routines and data structures

 Provides an API for handling large-scale data

* Djuric, N., Lan, L., Vucetic, S, Wang, Z. BudgetedSVM: A Toolbox for Scalable SVM 
Approximations, JMLR 2013



BudgetedSVM

 Comparison with the state-of-the-art classifiers

 Available from SourceForge.net

 More than 300 downloads since summer, try it out!

BB



Confidence-Weighted classification

 The task is to train a linear binary classifier to separate 

training data points

 Online Confidence-Weighted (CW) classifier, in addition 

to the prediction margin, outputs our confidence in the 

prediction for the incoming test data point

 Assumes a multivariate Gaussian over linear classifiers

 Given a trained CW model, this induces a Gaussian 
distribution over the prediction margin for a new point (xt, yt)



CW classification

 Online training algorithm is derived having in mind the 

following constraints (Dredze et al., ICML 2008; Crammer 

et al., NIPS 2009)

 New parameter estimates should be close to those from the 

previous iteration

 Margin for a new training point should be maximized, while 

uncertainty minimized

 Solve the following optimization problem (AROW):



CW classification on MapReduce

 Train a single AROW classifier on each of M mappers, 
aggregate them on reducer

 On reducer, we minimize the following objective function

or its empirical estimate

 We can obtain closed-form updates for mean vector 
and covariance matrix

* Djuric, N., Grbovic, M., Vucetic, S. Distributed Confidence-Weighted Classification on 
MapReduce, IEEE BigData 2013



CW training on MapReduce

 Finding a derivative of the objective function with 

respect to mean and covariance matrix, we obtain

 The second equation is an algebraic Riccati equation of 

the form XAX=B, solved as

, with



Results

 Real-world, industrial-size Ad Latency data set

 1.3 billion data examples, 21 measured features

 Online advertising domain

 Improve online experience through timely delivery of 
relevant ads to the users

 Can we detect if the ad will be late before it is served?

 Representation

 user features (browser type, device type, ISP, location, 
connection speed, etc.)

 ad features (ad type, ad size, ad dimensions, etc.), 

 vendor features (where is the ad served from, hardware 
used, etc.)



Results

 AROW-MR decreased 
training time from 17 days 

to 25 minutes, with further 

accuracy gains!

 Outperformed linear VW 
classifier with comparable 

training times

Table 1. Increasing number of mappers

Table 2. Performance of VW

 We compared AROW-MR to non-distributed AROW, as well 

as to the state-of-the-art Vowpall Wabbit (VW)

 Increased no. of mappers to evaluate effects of parallelization



Object matching

 Given two sets X = {xi, i = 1, .., m} and Y = {yi, i = 1, .., m}, find 

one-to-one matching between “similar” objects 

 Problem appears in many areas (bioinformatics, computer vision, 

natural language processing, …)

 Closely related to transfer learning

 Match objects from two different domains, but without an 

option to compare them



Kernelized Sorting

 Hilbert-Schmidt Independence Criterion (HSIC) measures 
dependency between sets X and Y, empirically 

estimated as

 If the sets are independent, then HSIC is minimal and 
equal to 0

 Hence, matching problem is defined as (π is a 

permutation matrix: πij = 1 if xi and yj match, 0 otherwise)
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Convex Kernelized Sorting

 Reformulate KS problem as follows:

 Given two m × m matrices K and L, value of trace(K L) is 

maximized if rows of K and columns of L are permuted such 

that rows of K and corresponding columns of L are identical 

up to a constant multiplier

 To obtain convex problem, we allow π to be doubly-

stochastic, and KS becomes:
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* Djuric, N., Grbovic, M., Vucetic, S., Convex Kernelized Sorting,  AAAI 2012



Results

 Match English documents to documents in other languages

 Baseline matches the documents simply by length

 Average no. of correct matches after 5 runs reported below (best 

result given in parentheses)

 CKS consistently outperforms the competing state-of-the-art



Remote sensing - Aerosols

 Aerosols are small particles suspended in the atmosphere, 

originating from natural and man-made sources

 Estimation of global aerosol distribution is one of the biggest 

challenges in climate research

 Negative effect on public health

 Profound effect on Earth’s radiation budget

 Standard measure of distribution is Aerosol Optical Depth (AOD)

 Ground-based sensors (AERONET network of instruments)

 Satellite-based sensors aboard Terra, Aqua, Aura, Calipso, SeaStar, 

and other Earth-observing satellites



Measuring aerosol distribution

 Ground-based sensors (Sun photometers)

 High accuracy of AOD estimates

 High cost of installment and maintenance

 Satellite-based sensors

 Lower accuracy of AOD estimation

 Global daily coverage



Problem setting

 OBJECTIVE: find an optimal combination of available 

satellite measurements, using scarce AERONET 

measurements as a ground-truth AOD during training

 We are given training data set consisting of targets yi

(AERONET) and of estimates of yi by K different experts 

(satellites), with Nu unlabeled and Nl labeled data points

 Considered approaches

 Semi-supervised combination of experts

 Gaussian Conditional Random Fields



Combination of experts: Related work

 Bates and Granger, 1969;                                         

Granger and Ramanathan, 1984

 Supervised method, no missing data allowed

 Raykar et al., 2009; Ristovski et al., 2010

 Unsupervised methods, no missing data allowed

 Experts assumed independent

 The proposed semi-supervised method presents a 

significant generalization of the two approaches 

 Allows missing data, correlated experts, and finds different 

data-generating regimes



Methodology

 Data points sampled IID, and target follows                             

normal distribution,

 Denote by     a K-dimensional vector of expert       

predictions, sampled from multivariate Gaussian,

 Training task is to find the parameters

ŷ

yi ~ Norm(my,s y

2 )
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* Djuric, N., Kansakar, L., Vucetic, S., Semi-Supervised Learning for Integration of Aerosol 
Predictions from Multiple Satellite Instruments,  IJCAI 2013 (outstanding paper award)



Inference

 Once the training is completed, aggregated prediction 

can be found as a mean of the posterior distribution 

(assuming no missing experts)

where the mean can be computed as follows,
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ŷ 'i

T S '-1
1

1
TS '-1

1
,   with  ŷi
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T,my ]

T   and  S'=
S 0

0 s y

2

é

ë

ê
ê

ù

û

ú
ú
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Training

 Learning by maximizing likelihood of the training data

 We write probability of the training data as follows

 The probability of unlabeled data set is equal to

P(D |Q)= P(Du |Q)×P(Dl |Q)

P(Du |Q) = P(ŷi |Q)
i=1

Nu

Õ = P(ŷi | y,Q)P(y |Q)dy
y

ò
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(ŷ 'i- yi1)
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Training

 Further, the probability of labeled data can be written as

 To simplify the equations, we assume that             , which 

amounts to an uninformative prior over the target variable

 After finding derivative of the data log-likelihood with 
respect to     , we obtain an iterative update equation,

s y

2 ®¥
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T + ŷi1
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Bates and Granger, 1969 Ristovski et al., 2010



Further advantages

 Straightforward to account for missing experts due to the 

assumption of Gaussianity

 Incorporation of domain knowledge through a Wishart
prior over the precision matrix

 We derive an approach for partitioning data into several 

regimes, where expert predictions within each regime 
are sampled from a different multivariate Gaussian

 Learned using the EM algorithm



Results

 We used 5 years of aerosol data from 33 AERONET US 

locations, and predictions from 5 experts (MISR, Terra 

MODIS, Aqua MODIS, OMI, SeaWiFS)

 Training data set with 6,913 labeled examples (roughly 
200 examples per site) 

 58% of satellite predictions missing



Results

 Evaluating usefulness of partitioning

 From each site we randomly sampled 100 points, and 

assumed that 50 are labeled and 50 unlabeled



Results

 Evaluating usefulness of unlabeled data

 Randomly selected 2, 4, and 6 sites and took 100 points from 

each as labeled data; then, we selected 100 points from 

each remaining site and treated them as unlabeled

 Simulates large areas 
where just few AERONET 
sites are available

 Unlabeled data helpful, 
although benefit 
decreased when larger 
amounts of labeled data 
points were available



Structured Learning with GCRF

 Conditional Random Field (CRF)

 Given input variables x (that include measurements, location, time, 

and other useful data), probability of output variable y modeled as

 A - association, I - interaction potential, α and β are to be learned

 If we choose A and I as quadratic functions of the outputs y, 

the model corresponds to a multivariate Gaussian



GCRF for AOD estimation

 We considered 5 satellite instruments

 2 instruments have overpass time in the morning (Terra MODIS 

and MISR,10:30am local time)

 3 instruments have a time of overpass in the afternoon (Aqua 

MODIS, OMI, and SeaWiFS,1:30pm local time)

 We assume high correlation between AOD at 10:30am and 

1:30pm on the same day, as well as between AOD values at 

the same time between two consecutive days



GCRF Model I

 We estimate AOD at 10:30am and 1:30pm for each location

 The corresponding graphical model



GCRF Model II

 Model I assumes the same α parameters for each of the 

instruments regardless of the availability of other instruments

 However, if we know that one of the measurements is missing, we 

should be careful about the available ones as well



Results

 Results given in terms of RMSE

 We give results for various models, used parameters, and 

availability patterns



Results

 Learned parameters of Model II provide insight in the 

quality of instruments

 Within-day interaction much stronger than day-to-day 

interaction

 OMI assigned very low α, except when all satellites are 

available (issue with OMI filter?)



GCRF for traffic speed forecasting

 Problem setting

 Predict travel speeds on I-35W highway, Minneapolis, MN, 

from April to July, 2003

 Up to 1h ahead, in 10-min increments, across 11 consecutive 

sensor stations

* Djuric, N., Radosavljevic, V., Coric, V., Vucetic, S., Travel Speed Forecasting using Continuous 

Conditional Random Fields, TRR: Journal of the Transportation Research Board 2011



Results

 Compared with linear regression

 Baseline predictors

 Downstream sensor speed

 Upstream sensor speed 

 Historical average

 Current speed



Ongoing / future work

 Semi-supervised combination of experts

 Parameterized priors?

 Structured output, non-IID data?

 GMRF priors?

 Data visualization

 Developing software for visual exploration

 Distributed implementation?

 Binary features, user-provided constraints on orderings?

 Many-to-many object matching

 Scaling up CKS? Regularization? Semi-supervised?



Ongoing / future work

 Large-scale learning

 Completing characterization and implementation of group 

lasso for AMM

 Extending more state-of-the-art methods to large-scale 

domain (GCRF training using MapReduce, GraphLab, 

GraphChi?)

 AMM-rank, evaluation of large-scale label ranking method

 Dirichlet process?

 Structured learning

 Application of GCRF to aerosol estimation (sunglint, clouds?)

 Speeding up GCRF, further assumptions on the structure



Conclusions

 Inadequacy of standard machine learning tools in large-scale 
setting is apparent

 Novel methods are necessary to address plethora of Big Data problems

 Large-scale learning

 Efficient, non-linear AMM classifiers

 Highly-optimized BudgetedSVM C++ toolbox

 Confidence-weighted classification on MapReduce

 Data visualization

 Fast, efficient knowledge discovery

 Semi-supervised combination of experts

 Accounts for unlabeled data, missing data, correlations

 Useful in many areas of machine learning

 Structured learning in remote sensing and traffic estimation



Thank you!

 Questions?


