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Visualization of data tables with n examples and m columns using 

heatmaps provides a holistic view of the original data. As there are n! ways 

to order rows and m! ways to order columns, and data tables are typically 

ordered without regard to visual inspection, heatmaps of the original data 

tables often appear as noisy images. However, if rows and columns of a 

data table are ordered such that similar rows and similar columns are 

grouped together, a heatmap may provide a deep insight into the 

underlying data distribution. We propose an information-theoretic 

approach to produce a well-ordered data table. In particular, we search for 

ordering that minimizes entropy of residuals of predictive coding applied 

on the ordered data table. This formalization leads to a novel ordering 

procedure, EM-ordering, that can be applied separately on rows and 

columns. For ordering of rows, EM-ordering repeats until convergence the 

steps of (1) rescaling columns and (2) solving a Traveling Salesman 

Problem (TSP) where rows are treated as cities. To allow fast ordering of 

large data tables, we propose an efficient TSP heuristic with modest       

O(n log(n)) time complexity.  

Abstract 

Data visualization background 

Improving heatmap using data reordering  

Data reordering methods are based on the following observation: any 

permutation of table columns or table rows does not lead to loss of 

information. Therefore, by permuting rows (columns) so that similar rows 

(columns) are close, we can reveal unknown regularities and patterns in the 

data without modifying the data, see Figure 5. 

 

 

 

 

 

 

 

Existing approaches 

1) One-dimensional projection by either PCA or LLE effectively induces 

a linear ordering in the new 1-D space. 

2) Spectral clustering (SC) finds ordering of examples by computing the 

second largest eigenvector of the normalized similarity matrix. 

3) Hierarchical clustering (HC) method finds binary tree representation of 

the data in a bottom-up fashion, resulting in O(n2) time complexity. To 

find ordering of examples, we simply read leaves of the tree from left 

to right. However, as there are 2n-1 linear orderings of tree nodes that 

obey the obtained tree structure, and HC algorithm finds the optimal 

leaf ordering (HC-olo) for a given tree structure in O(n3) time. 

4) If examples are viewed as cities, the task can be seen as a Traveling 

Salesman Problem (TSP), where we need to find a path through all the 

cities such that the traversal cost is minimized. The Lin-Kernighan 

(LK) method has been widely accepted as the best TSP solver 

providing the best trade-off between tour quality and computational 

speed, however it is applicable only to moderately-sized data sets. 

Data reordering and the EM-ordering algorithm 

Validation of TSP-means 

We generated 2-dimensional data set called circles. We uniformly at random 

sampled half of the examples from a circle of radius 3, and the second half 

from the circle of radius 4. We also added small noise to all examples, and 

show the results in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

To compare the execution times for HC-olo, LK and TSP-means, we 

uniformly sampled 2-D and 3-D examples from a square and a cube of 

width 1, and increased data size from 500 to 1,000,000 (see Figure 9). 

Experiments 

Real-world applications 

Traffic application 

We used data set of traffic volumes (no. of cars per min), reported every 10 

min by 3,265 sensors on roads in Minneapolis, MN, on Dec. 23th, 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the original data set little can be seen (Fig. 11a). After reordering we 

see several types of traffic patterns (Fig. 11b; heavy traffic during morning 

or afternoon only, light or heavy traffic during most of the day, etc.). Upon 

visual inspection we split the ordered sensors manually into 11 clusters, 

and show the locations of sensors, colored according to their labels (Figure 

12). We see that the sensors along the same road segments were clustered 

together, and nearby road segments were assigned to similar clusters. 
 

Stock market application 

We ran EM-ordering on stocks data (see Figure 13a; 252 daily stock 

returns of 89 companies from 9 sectors of industry). 

 

 

 

 

 

 

 

 

 

After reordering (see Figure 13b), we can observe several clusters of 

companies operating in industrials, health care, financials, and information 

technologies sectors (clusters 1 - 4, respectively), having specific patterns 

of daily returns. We also detected companies from energy and utilities 

sectors in cluster 5, whose daily returns, unlike returns of the companies 

from other sectors, did not fluctuate much. Lastly, after reordering the 

transposed data matrix (i.e., ordering days instead of companies), bear and 

bull trading days can be easily detected (clusters 6 and 7, respectively). 

Conclusions 
We proposed EM-ordering, an efficient reordering algorithm for data 

visualization, naturally emerging from entropy-minimization framework. 

In addition to finding a near-optimal ordering of the examples, the 

algorithm can automatically detect noisy features and decrease their 

influence on the final ordering. Moreover, our algorithm has very 

favorable time and space complexity, allowing efficient visualization of 

data tables with millions of examples. Experiments showed that the 

algorithm outperformed existing methods while being faster. 

Visualization is used for exploratory analysis prior to application of 

statistical methods, as a confirmatory tool to disprove or confirm 

hypotheses, while sometimes visual presentation is an ultimate goal.  

 

 

 

 

 

 

 

 

 

However, despite its long history, there still remains a need for further 

development of visualization methods. This is particularly evident when 

working with large-scale data, where commonly used visualization tools 

are either too simplistic to gain a deeper insight (e.g., histograms, scatter 

plots, pie and bar charts), or are too cumbersome and computationally 

costly in large-scale setting, such as parallel coordinates, correlation matrix 

plots, and biplots and star plots. Inadequacy of standard tools has been 

recognized in a number of recent papers, as summarized by Vempala: Data 

in high dimension are difficult to visualize and understand. This has 

always been the case and is even more apparent now with the availability 

of large high-dimensional datasets and the need to make sense of them. 
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           Figure 1. Historical development                 Figure 2. Illustration from 1897 report 

Figure 3. Visualization using parallel coordinates: a)  Illustration from 1883; b) Modern use 

Figure 4. Visualization using heatmaps: a)  Illustration from 1873; b) Modern use 

          Figure 5. Idea behind data reordering                    Figure 6. Algorithm complexities Figure 11. Traffic data: a) original data set; b) data set after reordering using EM-ordering 

Figure 12. Color-coded sensor locations in Minneapolis road network 

Figure 13. Stocks data: a) original data set (dark pixels encode negative returns,               

bright pixels positive returns); b) data set after reordering using EM-ordering 

Data reordering through data compression 

Assume that data set D is given, with 

Then, the task is to reorder the data so that it is maximally compressible. We 

use Differential Predictive Coding (DPC) scheme to code the data, which 

transforms the data set D into DDPC as follows, 

 

 

We measure data compressibility using the entropy of prediction errors εi that 

are assumed Gaussian, which can be written as 

 

 

where π is the current ordering of rows. The optimization problem becomes                           

                                                 , solved using the EM-ordering algorithm:  

 

 

 

 

 

However, the best TSP solvers have super-quadratic time complexity, and we 

propose an O(n log(n)) method, called TSP-means: 

1. Create a 2l-ary tree through recursive runs of k-means (k = 2)  

2. Traverse the tree breath-first, solve TSP defined on each node’s children 
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Figure 7. Steps of TSP-means, an O(n log(n)) TSP solver 

Figure 8. Results of reordering algorithms on circles data 
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Figure 9. Execution times on uniform data set: (a) logarithmic scale; (b) linear scale 

Validation of EM-ordering 

When labeled examples are available, as a quality measure we used Figure 

of Merit (FOM). Denoting label of the ith example as y(i), and using binary 

indicator function I(), FOM score of ordering  π is computed as 

 

 

In Table 1 we report FOM of ordering methods on 11 classification sets. 

 

 

 

 

 

 

Below, in Figure 10, we show heatmaps of reordered waveform data set. 
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HC-olo (5,265)        LK (4,577)      TSP-mens (4,921) 

    PCA (7,231)         LLE (7,211)          SC (7,244)           HC (5,265) 

Figure 10. Visualization of 

waveform, last 3 columns are 

class assignments averaged over 

sliding window of length 20 

(length of TSP tour given in the 

parentheses) 
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