
RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

Visualization of data tables with n examples and m columns using

heatmaps provides a holistic view of the original data. As there are n! ways

to order rows and m! ways to order columns, and data tables are typically

ordered without regard to visual inspection, heatmaps of the original data

tables often appear as noisy images. However, if rows and columns of a

data table are ordered such that similar rows and similar columns are

grouped together, a heatmap may provide a deep insight into the

underlying data distribution. We propose an information-theoretic

approach to produce a well-ordered data table. In particular, we search for

ordering that minimizes entropy of residuals of predictive coding applied

on the ordered data table. This formalization leads to a novel ordering

procedure, EM-ordering, that can be applied separately on rows and

columns. For ordering of rows, EM-ordering repeats until convergence the

steps of (1) rescaling columns and (2) solving a Traveling Salesman

Problem (TSP) where rows are treated as cities. To allow fast ordering of

large data tables, we propose an efficient TSP heuristic with modest

O(n log(n)) time complexity.

Abstract

Data visualization background

Improving heatmap using data reordering

Data reordering methods are based on the following observation: any

permutation of table columns or table rows does not lead to loss of

information. Therefore, by permuting rows (columns) so that similar rows

(columns) are close, we can reveal unknown regularities and patterns in the

data without modifying the data, see Figure 5.

Existing approaches

1) One-dimensional projection by either PCA or LLE effectively induces

a linear ordering in the new 1-D space.

2) Spectral clustering (SC) finds ordering of examples by computing the

second largest eigenvector of the normalized similarity matrix.

3) Hierarchical clustering (HC) method finds binary tree representation of

the data in a bottom-up fashion, resulting in O(n2) time complexity. To

find ordering of examples, we simply read leaves of the tree from left

to right. However, as there are 2n-1 linear orderings of tree nodes that

obey the obtained tree structure, and HC algorithm finds the optimal

leaf ordering (HC-olo) for a given tree structure in O(n3) time.

4) If examples are viewed as cities, the task can be seen as a Traveling

Salesman Problem (TSP), where we need to find a path through all the

cities such that the traversal cost is minimized. The Lin-Kernighan

(LK) method has been widely accepted as the best TSP solver

providing the best trade-off between tour quality and computational

speed, however it is applicable only to moderately-sized data sets.

Data reordering and the EM-ordering algorithm

Validation of TSP-means

We generated 2-dimensional data set called circles. We uniformly at random

sampled half of the examples from a circle of radius 3, and the second half

from the circle of radius 4. We also added small noise to all examples, and

show the results in Figure 8.

To compare the execution times for HC-olo, LK and TSP-means, we

uniformly sampled 2-D and 3-D examples from a square and a cube of

width 1, and increased data size from 500 to 1,000,000 (see Figure 9).

Experiments

Real-world applications

Traffic application

We used data set of traffic volumes (no. of cars per min), reported every 10

min by 3,265 sensors on roads in Minneapolis, MN, on Dec. 23th, 2005.

From the original data set little can be seen (Fig. 11a). After reordering we

see several types of traffic patterns (Fig. 11b; heavy traffic during morning

or afternoon only, light or heavy traffic during most of the day, etc.). Upon

visual inspection we split the ordered sensors manually into 11 clusters,

and show the locations of sensors, colored according to their labels (Figure

12). We see that the sensors along the same road segments were clustered

together, and nearby road segments were assigned to similar clusters.

Stock market application

We ran EM-ordering on stocks data (see Figure 13a; 252 daily stock

returns of 89 companies from 9 sectors of industry).

After reordering (see Figure 13b), we can observe several clusters of

companies operating in industrials, health care, financials, and information

technologies sectors (clusters 1 - 4, respectively), having specific patterns

of daily returns. We also detected companies from energy and utilities

sectors in cluster 5, whose daily returns, unlike returns of the companies

from other sectors, did not fluctuate much. Lastly, after reordering the

transposed data matrix (i.e., ordering days instead of companies), bear and

bull trading days can be easily detected (clusters 6 and 7, respectively).

Conclusions
We proposed EM-ordering, an efficient reordering algorithm for data

visualization, naturally emerging from entropy-minimization framework.

In addition to finding a near-optimal ordering of the examples, the

algorithm can automatically detect noisy features and decrease their

influence on the final ordering. Moreover, our algorithm has very

favorable time and space complexity, allowing efficient visualization of

data tables with millions of examples. Experiments showed that the

algorithm outperformed existing methods while being faster.

Visualization is used for exploratory analysis prior to application of

statistical methods, as a confirmatory tool to disprove or confirm

hypotheses, while sometimes visual presentation is an ultimate goal.

However, despite its long history, there still remains a need for further

development of visualization methods. This is particularly evident when

working with large-scale data, where commonly used visualization tools

are either too simplistic to gain a deeper insight (e.g., histograms, scatter

plots, pie and bar charts), or are too cumbersome and computationally

costly in large-scale setting, such as parallel coordinates, correlation matrix

plots, and biplots and star plots. Inadequacy of standard tools has been

recognized in a number of recent papers, as summarized by Vempala: Data

in high dimension are difficult to visualize and understand. This has

always been the case and is even more apparent now with the availability

of large high-dimensional datasets and the need to make sense of them.

Temple University

Nemanja Djuric, Slobodan Vucetic

Efficient Visualization of Large-scale Data Tables
through Reordering and Entropy Minimization

 Figure 1. Historical development Figure 2. Illustration from 1897 report

Figure 3. Visualization using parallel coordinates: a) Illustration from 1883; b) Modern use

Figure 4. Visualization using heatmaps: a) Illustration from 1873; b) Modern use

 Figure 5. Idea behind data reordering Figure 6. Algorithm complexities Figure 11. Traffic data: a) original data set; b) data set after reordering using EM-ordering

Figure 12. Color-coded sensor locations in Minneapolis road network

Figure 13. Stocks data: a) original data set (dark pixels encode negative returns,

bright pixels positive returns); b) data set after reordering using EM-ordering

Data reordering through data compression

Assume that data set D is given, with

Then, the task is to reorder the data so that it is maximally compressible. We

use Differential Predictive Coding (DPC) scheme to code the data, which

transforms the data set D into DDPC as follows,

We measure data compressibility using the entropy of prediction errors εi that

are assumed Gaussian, which can be written as

where π is the current ordering of rows. The optimization problem becomes

 , solved using the EM-ordering algorithm:

However, the best TSP solvers have super-quadratic time complexity, and we

propose an O(n log(n)) method, called TSP-means:

1. Create a 2l-ary tree through recursive runs of k-means (k = 2)

2. Traverse the tree breath-first, solve TSP defined on each node’s children

.,...,2),(where

},...,,{},...,1,{

1

21

ni

DniD

iii

nDPCi

xx

xx

].,...,,[where},,...,1,{ 21 imiiii xxxniD xx

.
)(

5.0)))(log()2log((
2

)(

2 1

2

2
),1(),(

1

n

i

m

j j

jiji
m

j

jm
n

H
xx

)(minarg})...,,{,(
}...,,{,

**

1

*

1

H
m

m

Figure 7. Steps of TSP-means, an O(n log(n)) TSP solver

Figure 8. Results of reordering algorithms on circles data

 PCA LLE SC HC

 HC-olo LK TSP-mens

Figure 9. Execution times on uniform data set: (a) logarithmic scale; (b) linear scale

Validation of EM-ordering

When labeled examples are available, as a quality measure we used Figure

of Merit (FOM). Denoting label of the ith example as y(i), and using binary

indicator function I(), FOM score of ordering π is computed as

In Table 1 we report FOM of ordering methods on 11 classification sets.

Below, in Figure 10, we show heatmaps of reordered waveform data set.

.)))1(())(((
1

1
)(FOM

1

1

n

i

iyiyI
n

HC-olo (5,265) LK (4,577) TSP-mens (4,921)

 PCA (7,231) LLE (7,211) SC (7,244) HC (5,265)

Figure 10. Visualization of

waveform, last 3 columns are

class assignments averaged over

sliding window of length 20

(length of TSP tour given in the

parentheses)

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

