Efficient Visualization of Large-scale Data Tables through Reordering and Entropy Minimization

Nemanja Djuric, Slobodan Vucetic Temple University, Philadelphia December 10th, 2013, in Dallas, Texas

Data visualization

- Immediate feedback that can lead to faster knowledge discovery
 - Intuitive way of interacting with unknown data
 - Practical even for non-experts
- Visualizing large data matrices
 - Data given in a form of a large 2-D table
 - Long history, however novel methods required to tackle emerging Big Data problems

Visualizing data tables

Existing approaches

0.0111	0.2100	UTUEL	0.113	0.0113	0.0001	0.0330	0.0010	VITEL	0.5100
0.9058	0.6797	0.7943	0.0497	0.3786	0.5468	0.6820	0.7011	0.0942	0.0012
0.1270	0.6551	0.3112	0.9027	0.8116	0.5211	0.0424	0.6663	0.5985	0.4624
0.9134	0.1626	0.5285	0.9448	0.5328	0.2316	0.0714	0.5391	0.4709	0.4243
0.6324	0.1190	0.1656	0.4909	0.3507	0.4889	0.5216	0.6981	0.6959	0.4609
0.0975	0.4984	0.6020	0.4893	0.9390	0.6241	0.0967	0.6665	0.6999	0.7702
0.2785	0.9597	0.2630	0.3377	0.8759	0.6791	0.8181	0.1781	0.6385	0.3225
0.5469	0.3404	0.6541	0.9001	0.5502	0.3955	0.8175	0.1280	0.0336	0.7847
0.9575	0.5853	0.6892	0.3692	0.6225	0.3674	0.7224	0.9991	0.0688	0.4714
0.9649	0.2238	0.7482	0.1112	0.5870	0.9880	0.1499	0.1711	0.3196	0.0358
0.1576	0.7513	0.4505	0.7803	0.2077	0.0377	0.6596	0.0326	0.5309	0.1759
0.9706	0.2551	0.0838	0.3897	0.3012	0.8852	0.5186	0.5612	0.6544	0.7218
0.9572	0.5060	0.2290	0.2417	0.4709	0.9133	0.9730	0.8819	0.4076	0.4735
0.4854	0.6991	0.9133	0.4039	0.2305	0.7962	0.6490	0.6692	0.8200	0.1527
0.8003	0.8909	0.1524	0.0965	0.8443	0.0987	0.8003	0.1904	0.7184	0.3411
0.1419	0.9593	0.8258	0.1320	0.1948	0.2619	0.4538	0.3689	0.9686	0.6074
0.4218	0.5472	0.5383	0.9421	0.2259	0.3354	0.4324	0.4607	0.5313	0.1917
0.9157	0.1386	0.9961	0.9561	0.1707	0.6797	0.8253	0.9816	0.3251	0.7384
0.7922	0.1493	0.0782	0.5752	0.2277	0.1366	0.0835	0.1564	0.1056	0.2428
0.9595	0.2575	0.4427	0.0598	0.4357	0.7212	0.1332	0.8555	0.6110	0.9174
0.6557	0.8407	0.1067	0.2348	0.3111	0.1068	0.1734	0.6448	0.7788	0.2691
0.0357	0.2543	0.9619	0.3532	0.9234	0.6538	0.3909	0.3763	0.4235	0.7655
0.8491	0.8143	0.0046	0.8212	0.4302	0.4942	0.8314	0.1909	0.0908	0.1887

Data reordering

Idea: Reorder data matrix so that similar rows and columns are grouped together

Jacques Bertin, 1967.

Data reordering: Related work

- Used in bioinformatics, anthropology, archeology, ...
- Low-dimensional projection approaches
 PCA, LLE, Spectral Clustering (SC)
- Hierarchical clustering (HC) approaches
 HC with optimal leaf ordering
- Traveling salesman solvers
 Lin-Kernighan heuristic

Algorithm	Time	Space
PCA	$\mathcal{O}(n\log(n))$	$\mathcal{O}(n)$
LLE	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
SC	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
HC	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
HC-olo	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$
LK	$\mathcal{O}(n^{2.2})$	$\mathcal{O}(n)$
TSP-means	$\mathcal{O}ig(n\log(n)ig)$	$\mathcal{O}(n)$

EM-ordering

Reordering from the viewpoint of data compression

- Assume data set $D = {\mathbf{x}_i, i = 1, ..., n}$, where $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{im}]$ is an *m*-dimensional example
- **Task:** Reorder the data so that it is maximally compressible
- Differential Predictive Coding (DPC)

Use local context to code the value of \mathbf{x}_i

$$D = \{\mathbf{x}_i, i = 1, ..., n\} \rightarrow D_{DPC} = \{\mathbf{x}_1, \varepsilon_2, ..., \varepsilon_n\}$$

where $\varepsilon_i = (\mathbf{x}_i - \mathbf{x}_{i-1}), i = 2, ..., n$

EM-ordering: Intuition

Before reordering:

3	3
2	-2
-3	3
2	-2
-3	3

DPC

DPC

After reordering:

1	5
2	4
3	3
4	2
5	1

EM-ordering

- Entropy of differences used to estimate data compressibility
 - Differences independent, sampled from $N(0, \sigma_j^2), j = 1, ..., m$

$$H(\varepsilon) = \frac{n}{2} (m \cdot \log(2\pi) + \sum_{j=1}^{m} \log(\sigma_j(\varepsilon))) + 0.5 \sum_{i=2}^{n} \sum_{j=1}^{m} \frac{(\mathbf{x}_{\pi(i),j} - \mathbf{x}_{\pi(i-1),j})^2}{\sigma_j^2}$$

Solve the following optimization problem

$$(\pi^*, \{\sigma_1^*, \dots, \sigma_m^*\}) = \arg\min_{\pi, \{\sigma_1, \dots, \sigma_m\}} H(\varepsilon)$$

EM-ordering

The optimization can be split into two parts

- Fix variance of differences → Minimize the overall distance between neighbors in the ordering (equivalent to TSP)
- 2. Fix ordering \rightarrow Find variance of the differences

Or, more formally:

Algorithm 1 EM-ordering

Inputs: data set *D*; initial guess for $\{\sigma_j\}_{j=1,...,m}$ **Output:** ordered set *D*; learned $\{\sigma_j\}_{j=1,...,m}$

- 1. repeat until convergence
- 2. **run** TSP solver for current σ_i to find π
- 3. **calculate** σ_j for current ordering of D

TSP-solver

- The best TSP solvers have super-quadratic time complexity
- We propose an $O(n \log(n))$ method, called TSP-means
 - 1. Create a 2^{l} -ary tree through recursive runs of k-means (k = 2)
 - 2. Traverse the tree breath-first, and solve TSP defined on children of the current node and their immediate neighbors

Results: Synthetic data set

Synthetic 2-D data set with data points located on two concentric circles of different radii

Results: Waveform data set

Figure of Merit scores are given in the parentheses:

FOM(
$$\pi$$
) = $\frac{1}{n-1} \sum_{i=1}^{n-1} I(y(\pi(i)) \neq y(\pi(i+1)))$

1200

15

Results: Real-world applications

Minneapolis traffic data set

Original data set

Reordered data set

Locations of the sensors

Results: Real-world applications

Original data set

Reordered data set

Conclusion

- Inadequacy of standard visualization tools in large-scale setting is apparent
 - Novel methods required to address Big Data problems
- EM-ordering and TSP-means
 - Fast, efficient knowledge discovery
 - Easily parallelizable
 - Interesting results on real-world data
- Future work
 - Binary, categorical data?
 - Development of an easy-to-use visualization software

Thank you!

LK vs. TSP-means

Effect of user-set parameter *l* Global vs. local solution

