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Data visualization

 Immediate feedback that can lead to faster     

knowledge discovery

 Intuitive way of interacting with unknown data

 Practical even for non-experts

 Visualizing large data matrices

 Data given in a form of a large 2-D table

 Long history, however novel methods required to 

tackle emerging Big Data problems



Visualizing data tables

 Existing approaches



Data reordering

 Idea: Reorder data matrix so that similar rows and 

columns are grouped together

Jacques Bertin, 1967.



Data reordering: Related work

 Used in bioinformatics, anthropology, archeology, …

 Low-dimensional projection approaches

 PCA, LLE, Spectral Clustering (SC)

 Hierarchical clustering (HC) approaches

 HC with optimal leaf ordering

 Traveling salesman solvers

 Lin-Kernighan heuristic



EM-ordering

 Reordering from the viewpoint of data compression

 Assume data set D = {xi, i = 1, .., n}, where xi = [xi1, xi2, .., xim] is 

an m-dimensional example

 Task: Reorder the data so that it is maximally compressible

 Differential Predictive Coding (DPC)

 Use local context to code the value of xi
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EM-ordering: Intuition

 Before reordering:

 After reordering:
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EM-ordering

 Entropy of differences used to estimate data compressibility

 Differences independent, sampled from N(0, σj
2), j = 1, …, m

 Solve the following optimization problem
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EM-ordering

 The optimization can be split into two parts

1. Fix variance of differences → Minimize the overall distance 

between neighbors in the ordering (equivalent to TSP)

2. Fix ordering → Find variance of the differences

 Or, more formally:



TSP-solver

 The best TSP solvers have super-quadratic time complexity

 We propose an O(n log(n)) method, called TSP-means

1. Create a 2l-ary tree through recursive runs of k-means (k = 2) 

2. Traverse the tree breath-first, and solve TSP defined on children of 

the current node and their immediate neighbors



Results: Synthetic data set

 Synthetic 2-D data set with data points located on two 

concentric circles of different radii

Original                     PCA                           LLE                             SC

HC                        HC-olo LK                       TSP-means



Results: Waveform data set

PCA (0.462)        LLE (0.461)            SC (0.461)

HC (0.266)       HC-olo (0.250)       LK (0.249)      TSP-means (0.239)

Figure of Merit scores are 
given in the parentheses:
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Results: Real-world applications

 Minneapolis traffic data set

Original data set Reordered data set Locations of the sensors



Results: Real-world applications

 Stocks data set

Original data set Reordered data set



Conclusion

 Inadequacy of standard visualization tools in large-scale 

setting is apparent

 Novel methods required to address Big Data problems

 EM-ordering and TSP-means

 Fast, efficient knowledge discovery

 Easily parallelizable

 Interesting results on real-world data

 Future work

 Binary, categorical data?

 Development of an easy-to-use visualization software



Thank you!

 Questions?



LK vs. TSP-means

 Effect of user-set parameter l

 Global vs. local solution

LK solution TSP-means solution


