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Data partitioning using latent variables and the EM algorithm 
We consider partitioning the data points into R groups, called regimes, where 
each regime is governed by a different multivariate Gaussian. We assume 
that we have available feature vector xi for the ith data point that can be used 
to assign it to an appropriate regime. Then, 
 
 
Probability of observing the ith labeled and unlabeled data point equals 
 
 
It is not easy to maximize log-likelihood due to sum in the above equations. 
To facilitate optimization, we introduce R latent binary variables zir indicating 
whether the ith data point was generated by the rth regime, and write 
 
 
 

where we introduced per-regime parameters, prototype qr and scaling 
matrix    . We can maximize log-likelihood using the EM algorithm. In the E-
step, we fix model parameters and compute hir, the expectation of latent 
variable zir. In the M-step, we fix hir and update the model parameters. 

We generated data by sampling ground-truth yi from zero-mean Gaussian 
with unit-variance, then sampling K expert predictions from the 
multivariate Gaussian N(yi 1,   ). We removed each expert with probability 
0.5 to simulate missing experts. 

We first set R = 1, K = 5, and     = diag([0.1, 0.2, 0.3, 0.4, 0.5]). For R = 2 
we set     = diag([0.1, 0.2, 0.3, 0.4, 0.5]),     = diag([0.5, 0.4, 0.3, 0.2, 0.1]) 
and q1 = [1, 1], q2 = [-1, -1]. The results for different training data sizes 
and fractions of labeled data points for R = 1 and R = 2 after 100 
repetitions are shown in Figures 6a and 6b, respectively. The performance 
of unsupervised method is already better than simple averaging. 
Moreover, as we increase the number of labeled points, the semi-
supervised method further improves the accuracy, approaching the lower 
bound on RMSE achieved by the optimal combination of experts. 
 
 
 
 
 

 
 
 
 
 
 
We considered AERONET data from 33 sites within the USA, and 
collocated data from 5 satellite instruments (Terra MODIS, MISR, Aqua 
MODIS, OMI, SeaWiFS) spanning years 2006 to 2010. This resulted in    
N = 6,913 data points, with 58% of missing expert predictions. We used 
this data set for two sets of experiments: (1) evaluating usefulness of 
partitioning; and (2) evaluating usefulness of unlabeled data. We used 
longitude and latitude of the AERONET site as features xi for the ith data 
point, and performed leave-one-site-out cross-validation (see Table 2). 
 

 For (1), from each site we randomly sampled 100 points, and 
assumed that 50 are labeled and 50 unlabeled. For baseline we computed 
average of available experts. By increasing number of clusters from 1 to 2, 
there was a drop in RMSE of nearly 5%. In Figure 7 we see that clustering 
roughly corresponds to partitioning proposed by domain scientists. 
 

 For (2), we randomly selected 2, 4, and 6 sites and took 100 points 
from each as labeled data. Then, we selected 100 points from remaining 
sites and treated them as unlabeled. We trained one model which used 
only labeled data, and one using both labeled and unlabeled. We see 
unlabeled data were helpful and led to significant reductions in RMSE. 
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Abstract 

Assumptions 
We are given a training data set D with N data points sampled IID, each 
consisting of a ground truth and K experts’ opinions, 
 
We assumed that the true labels yi are sampled from a Gaussian distribution, 
and that the expert predictions, represented as a vector     , are sampled from 
a conditional multivariate Gaussian distribution, 
 
 
For example, in the aerosol domain that we study, the experts are satellite 
instruments and the predictions are their individual AOD estimates, while the 
ground truth is measurement given by AERONET. We assume there are Nu 
unlabeled and Nl labeled training data points, with N = Nu + Nl.  
Then, the training task is to find the parameters                            . Once the 
training is complete, aggregated prediction is found as mean of the posterior, 
 
 

where the mean can be found as follows, 
 
 
 

Semi-supervised learning without missing experts 
First, we derive equations when all experts are assumed available. The 
parameters can be learned by maximizing log-likelihood of the training data. 
We start by writing training data probability, 
The probability of unlabeled data set can be written as 
 
 
and the probability of labeled data set as follows 
 
 
To simplify equations, in the remainder we assume             , which amounts 
to an uninformative prior over target variable. Finding derivative of data log-
likelihood with respect to       and equating to 0, we obtain update expression, 

Missing experts and incorporation of prior knowledge 
Assume that the ith data point has q missing experts, and we reorganize 
vector     and precision matrix (using the permutation function     ) so the first 
a elements are from available experts, and the last q elements are missing, 
 
 
Given the learned parameters and available experts’ predictions, it follows, 
 
 
Before maximizing log-likelihood, we rewrite probability of unlabeled data as 
 
 
and the probability of labeled data as                                . 
If we have prior knowledge about the relationship between experts, we can 
impose a prior over the precision matrix in a form of Wishart distribution. 

Global estimation of Aerosol Optical Depth (AOD) – Problem overview 

Aerosols are small particles suspended in atmosphere. Aerosol scattering 
of sunlight can reduce visibility and redden sunrises and sunsets, and 
they affect cooling of surface by absorbing and reflecting Solar radiation.  
 
 
 
 
 
 
 
 
 
One of the biggest challenges in climate research is to characterize and 
quantify the distribution of aerosols. This can be done by measuring the 
Aerosol Optical Depth (AOD), which indicates the amount of depletion 
that light undergoes as it passes through the atmosphere. 
There are two approaches to measure AOD: 
•  ground-based, using AERONET network of sensor instruments (Fig. 3); 
•  satellite-based, using sensor instruments aboard satellites such as 

Terra, Aqua, Aura, SeaWiFS, and others (Figure 4). 
 
 
 
 
 
 

Satellite observations offer the potential of achieving continuous global 
coverage, necessary to understand effect of aerosols more completely. 

In order to provide global coverage of AOD, the 
question is how to combine AOD predictions from 
satellites considering they have different temporal 
and spatial coverage, as well as different 
measurement quality. Satellite measurements with 
collocated ground-based AERONET estimates are 
called labeled data (points A and B in Fig. 5), 
otherwise the data is unlabeled (points C and D). 
In this work we tackle this task by finding an 
optimal linear combination of available satellite 
sensor AOD measurements. 

Figure 1. High concentration of aerosols 
in downtown Philadelphia, USA 

Figure 2. Distribution of aerosols varies significantly 
across different locations and time intervals 

Sensor type Ground-based Satellite-based 
Temporal coverage HIGH  
Spatial coverage EXTREMELY LOW HIGH 
Accuracy HIGH LOW 
Cost HIGH LOW 

Figure 3. Locations of AERONET sensors                      Figure 4. Satellites provide global coverage 

Table 1. Comparison of 
different AOD sensors 

ŷi

Open issues inherent to remote sensing domain: 
•  Noisy experts’ estimates may be correlated; 
•  Some expert predictions may be missing (due to 

lack of coverage: points B and D do not have MISR 
predictions available; or due to presence of clouds); 

•  Large parts of training data may be unlabeled (i.e., 
missing AERONET measurements); 

•  Experts should be combined differently for different 
subsets of the data (e.g., MISR does not maintain 
same quality of AOD estimates across the globe). 

Figure 5. Daily coverage of AOD sensors 

Experiments on synthetic data 

ŷi

Figure 6. Results on 
the synthetic data 

Table 2. Performance of aggregation methods Figure 7. Found clustering of AERONET sites for R = 2 
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zir

r=1

R

∑ ,    where   π ir =
exp(−(xi −qr )

TΛr (xi −qr ))
exp(−(xi −qm )TΛm (xi −qm ))

m=1

R
∑

,

Λr

Method # clusters RMSE 

Averaging -- 0.0818 

All sites, semi-super. 1 0.0677 

All sites, semi-super 2 0.0648 

2 sites, supervised 2 0.0795 

2 sites, semi-super. 2 0.0752 

4 sites, supervised 2 0.0728 

4 sites, semi-super. 2 0.0704 

6 sites, supervised 2 0.0694 

6 sites, semi-super. 2 0.0688 

Experiments on aerosol data 


