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Aerosols 

¤  Aerosols are small particles suspended in the atmosphere, 
originating from natural and man-made sources 
¤  Smoke, sea salt, dust, volcano ash, fossil fuel burning 

¤  Negative effect on public health 
¤  Lung cancer, asthma, birth defects 

¤  Profound effect on Earth’s       
radiation budget 
¤  Absorb and reflect sunlight 

¤  Can have either cooling or           
heating effect on the Earth 



Aerosols 

¤  Estimation of global aerosol distribution is one of the 
biggest challenges in climate research 
¤  United Nations Intergovernmental Panel on Climate 

Change: Aerosols are one of the major sources of 
uncertainty in climate models 

¤  Standard measure of aerosol distribution              
is Aerosol Optical Depth (AOD) 
¤  AOD measures extinction of Solar       

radiation within the atmosphere 

¤  Higher AOD è higher aerosol       
concentration 



Measurement of AOD 

¤  Ground-based sensors (Sun photometers) 
¤  High cost of installment and maintenance 

¤  High accuracy of AOD estimates 

¤  AERONET network of instruments 

¤  sparse and uneven distribution 



Measurement of AOD 

¤  Satellite-based sensors 
¤  Instruments aboard Terra, Aqua, Aura, Calipso, SeaStar, and 

other satellites 

¤  Lower accuracy of AOD estimation 

¤  Global daily coverage 



Satellite-based AOD measurement 

¤  Different satellite sensors have different: 
¤  Spatial coverage 

¤  Accuracy 

¤  Sensitivity to atmospheric and ground conditions 

¤  Climate scientists typically choose one of the satellites for 
their climate models 

¤  Combining different satellite measurements into a single, 
more accurate aggregated estimate possibly the best 
path towards high-quality, global AOD estimation 



Problem setting 

¤  We are given training data set consisting of targets yi 
(AERONET) and of estimates of yi by K different experts 
(satellites), with Nu unlabeled and Nl labeled data points 

¤  OBJECTIVE: find an optimal linear combination of available 
satellite measurements, using scarce AERONET 
measurements as a ground-truth AOD during training 

D = Du Dl = {{ŷik}k=1,...,K}i=1,...,Nu
   {yi,{ŷik}k=1,...,K}i=Nu+1,...,Nu+Nl



Issues inherent to remote sensing 

1.  Satellite prediction errors are correlated 
2.  Satellite predictions may be missing (due to lack of 

coverage or due to presence of clouds) 

3.  Number of labeled data points is small and orders of 
magnitude less than number of unlabeled data points 

4.  Satellites should be combined differently for different parts 
of the world (e.g., MISR does not maintain the same 
quality of AOD estimates across the globe) 



Related work: Combination of experts 

¤  Bates and Granger, 1969;                                         
Granger and Ramanathan, 1984 
¤  Supervised method, no missing data allowed 

¤  Raykar et al., 2009; Ristovski et al., 2010 
¤  Unsupervised methods, no missing data allowed 

¤  Experts assumed independent 

¤  The proposed semi-supervised method presents a 
significant generalization of the two approaches  
¤  Allows missing data, correlated experts, and finds different 

data-generating regimes 



Assumptions 

¤  Data points sampled IID, and target follows                             
normal distribution, 

¤  Denote by     a K-dimensional vector of expert       
predictions, sampled from multivariate Gaussian, 

¤  Training task is to find the parameters 

ŷ

yi ~ Norm(µy,σ y
2 )

ŷi | yi ~ Norm(yi1,Σ) K 

ŷi
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Θ = {Σ,µy,σ y
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Inference 

¤  Once the training is completed, aggregated prediction 
can be found as a mean of the posterior distribution 

     where the mean can be computed as follows, 
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Training – No missing experts 

¤  We write probability of the training data as follows 

¤  Learning by maximizing likelihood of the training data 
¤  Before considering more general setting, we first derive 

equations for the case where all experts are available 

¤  The probability of unlabeled data set is equal to 

P(D |Θ) = P(Du |Θ) ⋅P(Dl |Θ)

P(Du |Θ) = P(ŷi |Θ)
i=1

Nu

∏ = P(ŷi | y,Θ)P(y |Θ)dy
y
∫

i=1

Nu
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Training – No missing experts 

¤  Further, the probability of labeled data can be written as 

 

¤  To simplify the equations, in the following we assume 
that             , which amounts to an uninformative prior 
over the target variable 

¤  After finding derivative of the data log-likelihood with 
respect to     , we obtain the iterative update equation, 

σ y
2 →∞

P(Dl |Θ) = P(ŷi | yi,Θ)
i=Nu+1

N
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T ))
i=1

Nu

∑ )

Σ−1

Bates and Granger, 1969 Ristovski et al., 2010 



Inference – Missing experts 

¤  Assume that the ith data point has q out of K experts missing 

¤  We reorganize vector     so the first a elements are from 
available experts, and the last q elements are missing 

¤  We similarly reorganize precision matrix, so that the first a 
rows/columns correspond to available experts 

¤  Given the learned covariance matrix and      , it follows 

ŷi = [ŷai
T , ŷqi

T ]T

yi | ŷai ~ Norm(yi, (1
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Training – Missing experts 

¤  We again derive the equations for probabilities of unlabeled   
and labeled parts of the training set 

¤  Probability of the ith unlabeled data point can be found as 

¤  Probability of the ith labeled data point can be found as 

                                                           , resulting in  P(ŷai | yi,Θ) = P([ŷai
T , ŷqi

T ]T | yi,Θ)ŷqi
∫ dŷqi
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Training – Missing experts 

¤  We find the derivative of data log-likelihood with respect 
to precision matrix       to obtain the update equation, 

     where 

Σ =
1
N
( Πi

−1(Ψ i )i=1

N
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Including prior knowledge 

¤  Assume we have prior knowledge about experts’ correlation, 
we can write the joint probability of data and parameters as 

¤  For the prior on precision matrix, we assume Wishart distribution 

¤  This results in the following update rule (after setting n = K + 2) 

Σ =
1

N +1
(S−1 + Πi

−1(Ψ i )i=1

N
∑ + (ŷai − yi1)(ŷai − yi1)

T
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                 ( ŷaiŷai
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P(D,Θ) = P(D | Σ−1)P(Σ−1)

P(Σ−1) = | Σ
−1 |0.5(n−K−1) exp(−0.5Tr(S−1Σ−1))
20.5nK |S |0.5n ΓK (0.5n)



Mixture of regimes 

¤  Let us assume that the experts do not maintain the same 
level of accuracy across all data points 

¤  We derive an approach for partitioning data into several 
regimes, where expert predictions within each regime 
are sampled from a different multivariate Gaussian 

¤  We assume existence of feature vectors xi, which can be 
used to assign examples to different regimes (e.g., time 
and/or location information in AOD estimation task) 



Inference – Mixture of regimes 

¤  Assuming a mixture of R regimes, probability of expert 
predictions for the ith labeled data point can be written as 

¤  Similarly, probability of the unlabeled data point is 

¤  Then, given a trained model, the aggregated prediction 
can be found as 

yi = E[yi | ŷai,xi,Θ]= π ir (xi )
ŷai
TU 'ir 1
1TU 'ir 1r=1
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∑

P(ŷai | xi,Θ) = π ir (xi )Pr (ŷai )
r=1

R
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r=1
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∑



Training – Mixture of regimes 
¤  However, not easy to maximize log-likelihood due to the sum  

¤  To address this issue, we introduce R latent binary variables 
zir, indicating whether or not the ith data point was 
generated by the rth regime, resulting in 

¤  We define prior probability over regimes using softmax 

¤  The log-likelihood is now much easier to maximize, equaling 

π ir =
exp(−(xi −qr )

TΛr (xi −qr ))
exp(−(xi −qm )

TΛm (xi −qm ))m=1

R
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Mixture of regimes – EM algorithm 

¤  E-step: 

¤  M-step: 
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Experiments – Synthetic data 

¤  Ground truth was sampled from zero mean, unit variance 
Gaussian, and we assumed K = 5 experts, each missing 
with 50% probability 
¤  For R = 1, we set Σ = diag([0.1, 0.2, 0.3, 0.4, 0.5]) 

¤  We compared to 
averaging and optimal 
aggregation methods 

¤  More unlabeled data 
leads to improved 
performance 

¤  Small number of labeled 
data suffices 



Experiments – Synthetic data 

¤  For R = 2, we set q1=[1, 1], q2=[-1, -1], and Σ1 = diag([0.1, 0.2, 0.3, 
0.4, 0.5]), Σ2 = diag([0.5, 0.4, 0.3, 0.2, 0.1])  

¤  Wrong number of regimes 
leads to even worse 
performance 

¤  EM-algorithm successfully 
found per-regime 
parameters 



Experiments – Aerosol data 

¤  We used 5 years of aerosol data from 33 AERONET US 
locations, and predictions from 5 experts (MISR, Terra 
MODIS, Aqua MODIS, OMI, SeaWiFS) 

¤  Training data set with 6,913 examples (roughly 200 
examples per site)  
¤  58% of satellite predictions missing 

¤  Longitude and latitude used as xi feature vectors 



Experiments – Aerosol data 

¤  Evaluating usefulness of partitioning 
¤  From each site we randomly sampled 100 points, and 

assumed that 50 are labeled and 50 unlabeled 



Experiments – Aerosol data 

¤  Evaluating usefulness of unlabeled data 
¤  Randomly selected 2, 4, and 6 sites and took 100 points from 

each as labeled data; then, we selected 100 points from 
each remaining site and treated them as unlabeled 

¤  Simulates large areas 
where just few AERONET 
sites are available 

¤  Unlabeled data helpful, 
although benefit 
decreased when larger 
amounts of labeled data 
points available 



Conclusion 

¤  The proposed semi-supervised method combines noisy 
expert predictions 
¤  Accounts for correlations between expert predictions 

¤  Accounts for unlabeled data, as well as for missing expert 
predictions 

¤  Separates training data into clusters, and finds different linear 
combinations for each cluster 

¤  Future work 
¤  Model AERONET measurements as noisy observations 

¤  Allow prior parameters on target variable to be functions of xi 

¤  Extend the model to account for spatio-temporal correlations 



Thank you! 

¤  Questions? 


