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Abstract—Estimating a user’s propensity to click on a display
ad or purchase a particular item is a critical task in targeted
advertising, a burgeoning online industry worth billions of
dollars. Better and more accurate estimation methods result in
improved online user experience, as only relevant and interesting
ads are shown, and may also lead to large benefits for advertisers,
as targeted users are more likely to click or make a purchase. In
this paper we address this important problem, and propose an
approach for improved estimation of ad click or conversion prob-
ability based on a sequence of user’s online actions, modeled using
Hidden Conditional Random Fields (HCRF) model. In addition,
in order to address the sparsity issue at the input side of the
HCRF model, we propose to learn distributed, low-dimensional
representations of user actions through a directed skip-gram, a
neural architecture suitable for sequential data. Experimental
results on a real-world data set comprising thousands of user
sessions collected at Yahoo servers clearly indicate the benefits
and the potential of the proposed approach, which outperformed
competing state-of-the-art algorithms and obtained significant
improvements in terms of retrieval measures.

I. INTRODUCTION

Over the previous decade, income generated by the leading
internet companies through online advertising has been grow-
ing steadily at the amazing rates, with the total annual revenue
reaching tens of billions of dollars in the US alone [1]. This
burgeoning, highly-competitive, multi-billion industry consists
of several key players: 1) advertisers, companies that want to
promote their products or services (e.g., Nike, Travelocity) and
seek to maximize the response to their advertising campaigns
in terms of number of clicks or purchases (referred to as
conversions); 2) publishers, websites that host the advertise-
ments and choose when and to whom to show them (such
as Google, Yahoo, or Facebook); and 3) online users that are
being targeted by the publishers. As both publishers and ad-
vertisers work on limited budgets (in terms of monetary funds
and available ad space, respectively), focusing the advertising
campaigns only on a subset of users who are most likely to
click or convert helps attain high response rates while reducing
costs to both advertisers and publishers (in terms of poor
online experience to their users and missed opportunities). This
task is commonly referred to as targeted advertising.

Typically, the publishers offer several types of contracts to
the advertisers when setting up the advertising campaigns. In
the cost-per-click (CPC) pricing model the advertisers pay only
when users click on their ads. Another common pricing model
is the cost-per-mille (CPM) model, where the advertisers

pay for a certain number of ad impression regardless of
the subsequent number of user clicks, commonly used in
brand awareness campaigns. Under the both pricing models,
success of an online campaign is often quantified through a
click-through rate (CTR), defined as a number of ad clicks
per hundred ad impressions [2]. Popularity of CTR towards
measuring how well the campaign performs is due to several
reasons: (a) clicks are a reasonable proxy to user interest and
engagement that advertisers can reliably log and measure [3];
and (b) an ad click, unlike a hover or a follow-up search,
takes the user directly to advertiser’s landing page and thereby
closer to the user action that the advertiser wants. Therefore,
identifying when and which ads would interest a user enough
to entice a click can help publishers maximize their revenue,
while at the same time improving online experience for the
users as only interesting and relevant ads are displayed.

Due to these reasons and many open research questions
related to the large scale and the complexity of targeted
advertising problems, the task of increasing the CTR measure
through better matching of users with relevant ads has received
a lot of attention by the data mining and machine learning
communities [4], [5]. Most existing algorithms formulate the
problem as a classification or a ranking task, and learn a model
based on users’ declared or inferred demographic information,
their behavioral history (e.g., pages visited, issued queries),
meta information of the ads, as well as the context information
such as timestamp, publisher, or search queries in the case of
sponsored search ads. Then, for each online user, the trained
model is evaluated on a pool of available ads and the ones
that result in the highest matching score are displayed.

However, using the information aggregated over large peri-
ods of time or using only the immediate context information
such as current search query might be suboptimal, as more
delicate, short-term signals that are useful for estimation of
ad click probability may be lost [6]. In particular, actual
sequence of user actions can be a strong indicator of their ad
click propensity (e.g., user-generated query ”toyota corolla”
followed by the query ”front headlight” indicates that the user
is much more likely to make an auto part purchase at that
very moment than query ”toyota corolla” followed by ”speed
racing”), which models that do not explicitly consider a short-
term sequence of user actions (referred to as sessions) might
not detect. Then, once such a sequence of actions that signals
that the user is very likely to click on an ad is found, we can



use this information to improve the ad targeting performance.
In particular, by detecting the user intent in such a manner,
we increase the value, and consequently the revenue, of each
shown ad (as the ads that are more likely to be clicked on
will be shown to users) and can also reduce the number of
shown ads (i.e., by not showing ads to non-interested users,
thus directly improving user online experience).

To this end, we explore the benefits of modeling user online
sessions using Hidden Conditional Random Fields (HCRF)
[7], a powerful and very flexible supervised sequence modeling
method, to predict when a user is in the ”click” mode. More-
over, we address a common problem in the ad click prediction
tasks: sparsity of the input space due to large cardinality
of a set of possible user actions. To address this issue, we
propose to learn distributed low-dimensional representations
of user actions using directed skip-gram model, an extension
of recently proposed word2vec learning framework [8]. We
compared a number of state-of-the-art ad click approaches on a
real-world data set comprising hundreds of thousands of online
sessions collected at Yahoo servers, with the empirical results
strongly indicating benefits of the proposed methodology.

II. BACKGROUND

A. Ad targeting of online users

A central problem in the online targeting industry is a task of
predicting whether or not an online user would click or convert
on a displayed ad. Despite this simple definition, the task is far
from being naı̈ve, having many challenging issues related to
large scale, in addition to extreme diversity and complexity of
the problem at hand [5]. Nevertheless, it has been shown that
computational targeting, and in particular behavioral targeting,
can result in statistically significant improvements in CTR [6],
which directly translates into increased revenue for both the
advertisers and the publishers. For these reasons, the task has
garnered significant attention from the research community,
as witnessed by a large number of recently proposed methods
tackling this problem [9], [10], [11].

In most previously proposed approaches, e.g., as in [4], the
authors use a common feature vector representation for both
users and ads, derived from the historical browsing behavior
or the immediate context, such as the words of the current
web page or the issued query to a search engine for the
users, and the text description for the ads. Then, a classifier
is trained to estimate the probability of a user clicking on
a particular ad, output of which is used to match users to
ads that will be shown and that are most likely to be clicked
on. Furthermore, more detailed user-specific features, such as
geolocation or demographic information, have been shown to
lead to improved performance [10].

However, aggregation of historical user-specific information
at low resolutions [11] may be suboptimal, as short-term,
highly granular feature representations could lead to signif-
icant performance improvements in the targeting tasks [6].
Further, modeling only the immediate context to estimate click
propensity [9], while not explicitly modeling a sequence of
actions that led to a desired outcome for the publisher, may

also lead to unsatisfactory results. This is due to a fact that,
quite intuitively, user’s browsing path carries a strong signal
related to user’s intent and their future behavior [12]. In this
work we consider an approach that accounts for this issues,
and uses a short-term, user-generated path of actions to detect
likely converting users with high accuracy.

B. Sequence modeling approaches

In order to make the sequence modeling problem tractable
and the resulting models easily interpretable, a modeler usually
introduces an assumption that the current state of the sequence
depend only on the previous states, known as the Markov
assumption. One approach to sequence modeling involves
directly modeling the short-term transitions between observa-
tions using Markov chains [13]. However, these methods may
be too simplistic for many real-world applications. To address
these issues, one approach is to introduce hidden nodes to
the model, where we assume that there exists a latent layer of
nodes which affects the observation sequence. Hidden Markov
Model (HMM) [14] is a particularly popular framework due to
its efficiency as well as effectiveness. The HMMs are directly
applicable to the task of modeling of online behavior, as can be
seen from [15] where the authors show that low-order Markov
models perform well when modeling actions of online users.

In addition to generative sequence modeling, there exist
many popular and effective discriminative models, such as
Conditional Random Fields (CRFs) [16] and their variants [7],
[17], [18]. In the context of modeling of online behavior, there
have been earlier attempts at employing CRFs to user under-
standing [17], [19]. However, unlike these approaches which
aim at labeling each action within a session sequence with a
label, in this paper we consider the problem of determining if
a user is likely to click on an ad at a session-level, while still
tracking the propensity of a click at the action-level. To this
end, we propose to use HCRF [7], as detailed in the following
section. Moreover, as the space of user actions is very large
and thus prohibitive of the direct application of the considered
sequence models, we address the sparsity issue by proposing
to use a framework for distributed modeling of user actions.
In particular, we extend the undirected architecture from [8] to
model time dependency of user actions, mapping the actions
to a compact lower-dimensional space, which resulted in a
significant performance gains over the competing algorithms.

III. DISTRIBUTED MODELING OF USER ACTIONS

For a user u, we define a session s to be an uninterrupted
sequence of actions s = [x1, x2, . . . xT ] ∈ S, where an action
xt represents online action at timestamp t (e.g., page visited,
search performed), and S is the set of all sessions. We consider
the sequence s to be uninterrupted if the duration between any
two consecutive actions is less than a predefined threshold; in
this work we used a threshold of 30 minutes [20]. To avoid
sparsity issues due to a large cardinality of the action set X , we
represent each action xt as a low-dimensional vector Φ(xt) ∈
RD, discussed in more detail in Section III-A.



Clicker session Clicker sessionBrowser session

Fig. 1. Illustration of sessions: inactivity of more than half an hour defines boundary between sessions, and the entire session is labeled clicker if any of
the user actions within that session is either an ad click or a purchase

Let Y be a set of possible user intent labels for a session.
As we are interested in modeling a short-term sequence of
user actions with respect to receptiveness to advertising, we
define Y as a binary set Y = {clicker, browser}, where
clicker represents a user session for which user receptiveness
to advertising is high, and, conversely, browser denotes a
session for which user receptiveness is low. As a proxy of
user intent and receptiveness to advertising within a session
s, we use the observed click information within the session.
More formally, given a session s, if any action within session
s is an ad click or a purchase, we label the entire session as
clicker, otherwise as browser. As stated earlier, our setup is
such that the entire session gets assigned a single label, which
is different from sequence modeling approaches discussed in
Section II-B that consider different label for each action within
a session. Our setup corresponds to real-world applications
more realistically, since it is most often impractical or even
impossible to acquire labels for every single action of a user.
This is illustrated in Figure 1, where ad click and purchase
actions are shown in green and other actions in red. If any
of actions within a session is colored green then the entire
session is labeled as clicker, otherwise as browser.

At the training time, given a training set D of N labeled
sessions from different users D = {(si, yi), i = 1 . . . N} with
yi ∈ Y , a learning objective is to find a mapping function
f : S → Y . At the prediction time, we use learned mapping
f(·) to predict whether a new user session s is in a clicker or a
browser state. In the remainder of this section we present the
two main components of our proposed approach, the directed
skip-gram model used to learn action representation Φ(·), and
the HCRF model used to estimate the prediction function f(·).

A. User action representation

Let us assume that the original dimensionality of the action
space is Dh, and the desired low-dimensional space is D-
dimensional, where typically Dh � D. Then, we can use
recently proposed skip-gram model [8] to find a mapping
from the input space to a D-dimensional embedding space.
It was shown that this method can be successfully applied to
find word representation in low-dimensional space such that
semantically similar words appear as neighbors with respect to
the cosine distance [8]. Motivated by these results, we propose
a modification of the skip-gram suitable for finding distributed
representation of user actions in the ad targeting tasks. Note

that, as the skip-gram was originally developed for Natural
Language Processing (NLP) tasks, in the following section we
will use terms ’word’ and ’action’ interchangeably, keeping in
mind that the approach is not limited to the NLP domain.

Directed skip-gram for temporal sequences The skip-gram
model formulates representation learning as an unsupervised
learning problem, and learns word embeddings such that in the
embedding space the words that co-occur or occur in similar
contexts are nearby. In NLP tasks it makes intuitive sense
to exploit both the words before and after the central word
when learning the embedding. However, in ad targeting the
notion of time is of critical importance. For example, finding
correlations between an ad click and search queries that occur
after it is not as important as finding the correlations between
an ad click and queries that precede it, since in the first case
we have an opportunity to use the inferred correlations to steer
the users towards a favorable action (e.g., ad click).

Following this reasoning, we propose a modification to
the skip-gram model that considers past and future actions
differently. In particular, given a sequence of user actions s and
some central word xt belonging to this sequence, the directed
skip-gram model considers only l words that precede xt. This
yields the following optimization problem,

maximize
1

T

T∑
t=1

∑
1≤i≤l

logP(xt+i|xt), (1)

solved using stochastic gradient descent [8]. The directed
skip-gram maximizes log-probabilities of word xt given its
preceding words, thus forcing the model to focus on predicting
subsequent words instead of both past and future contexts.

B. Hidden CRF with distributed action embeddings

Given a user session s of lenght T , the HCRF models a
conditional distribution of the session label y. However, in
contrast to a standard CRF which assumes that each action
is associated with its own label, HCRF [7] assigns a single
label y to the entire session sequence, and introduces T latent
variables h = [h1, h2, . . . , hT ] that are not observed in the
training data, where each ht corresponds to one user action
xt. Each ht takes values from H, a user-specified finite set
of possible hidden states in the model. Intuitively, each latent
variable ht corresponds to a labeling of action xt with one
member of set H, and can be used to discover dynamic hidden



user intent within the session. Given these definitions of hidden
states, HCRF models the following conditional distribution,

P(y,h|s,w) =
1

Z(h, s,w)
exp

(
Ψ(y,h, s,w)

)
, (2)

where w represents parameters of the HCRF model, Ψ(·) is the
so-called potential function that defines relationships between
the actions s, latent variables h, and the label y, and Z(·) is
a normalization function, computed as

Z(s,w) =
∑
y′,h

exp
(
Ψ(y′,h, s,w)

)
. (3)

Then, it follows that

P(y|s,w) =
∑
h

P(y,h|s,w) =

∑
h exp

(
Ψ(y,h, s,w)

)∑
y′,h exp

(
Ψ(y′,h, s,w)

) .
(4)

The HCRF potential is defined as a linear combination of
feature functions, similarly to the standard CRFs,

Ψ(h, y, s,w) =

T∑
t=1

|H|∑
k=1

D∑
d=1

w
(1)
kd f

(1)
kd (xt, ht) +

T∑
t=1

|H|∑
k=1

|Y|∑
r=1

w
(2)
kr f

(2)
kr (y, ht) +

T∑
t=2

|H|∑
k1,k2=1

|Y|∑
r=1

w
(3)
k1k2r

f
(3)
k1k2r

(y, ht−1, ht).

(5)

The first feature function models compatibility of action
representations and hidden action labels through

f
(1)
kd (xt, ht) = Φd(xt) · I(ht = k), (6)

where Φd(xt) ∈ R is the dth component of a D-dimensional
action representation Φ(x), and I(·) is an indicator function
that equals 1 if the argument is true and 0 otherwise. The
compatibility of each component of action representation with
each hidden state will be determined by the corresponding
parameter w(1)

kd in (5). There are D · |H| such parameters.
Note that in the naı̈ve one-hot representation approach the
parameter space would grow prohibitively large, resulting in
serious sparsity problems. By using the proposed distributed
embedding of user actions such issues are mitigated [21].

The second type of feature functions model compatibility
between hidden state ht and session-level label y as follows,

f
(2)
kr (y, ht) = I

(
(ht = k) ∧ (y = r)

)
, (7)

with |Y| · |H| corresponding parameters w(2)
kr from (5).

Finally, the last type of feature function models the com-
patibility between neighboring hidden states and the label,

f
(3)
k1k2r

(y, ht−1, ht) = I
(
(ht−1 = k1) ∧ (ht = k2) ∧ (y = r)

)
,

(8)
with |Y| · |H|2 corresponding parameters w(3)

k1k2r
from (5).

Training of HCRF comprises maximizing log-likelihood
over the training data given by the following equation,

logP(y|s,w) =

N∑
i=1

logP(yi|si,w)− λwTw. (9)

Due to a linear-chain structure of the model, exact methods
exist for parameter estimation. We follow [7] and use a
conjugate-gradient optimization method to find parameters w
that maximize the log-likelihood from (9), where we set λ = 1.
Lastly, in the inference phase we use the following expression,

ŷ = argmax
y

(∑
h

P(y,h|s,w)
)
. (10)

IV. EXPERIMENTS

The considered data set was generated using anonymized
information about users’ online actions collected at Yahoo
servers. The actions are temporal sequences of raw events
extracted from server logs and are represented as tuples
(ui, ai, ti), i = 1, . . . , Nlogs, where ui is an ID of a user that
generated the ith tuple, ai is an activity log, ti is a timestamp,
and Nlogs is a total number of tuples. We collected logs
belonging to one of the five types over a one-month period:
• page views (”pv”) - website pages that the user visited;
• search queries (”sq”) - user-generated search queries;
• sponsored link clicks (”slc”) - user clicks on search-

advertising links that appear next to search links;
• ad clicks (”adc”) - display ads that the user clicked on;
• receipts (”prch”) - e-mail purchase receipts.

The logs belonging to the ”pv” and ”sq” groups were used
to generate user actions x. In particular, for ”pv” we used
entities found on a webpage as words1, while for ”sq” we
used tokens in a query as words, which were chronologically
ordered and sent as an input to the directed skip-gram model.
We used publicly available code for the skip-gram2 which we
modified to implement the directed version, where we set the
D = 100. Furthermore, we used ”slc” and ”adc” actions to
find the ad click labels for sessions, and ”prch” actions to find
conversion labels, and did not use these actions as inputs to the
directed skip-gram. Note that the two types of labels were used
separately for two sets of experiments, ad click and purchase
prediction. We removed sessions shorter than 5 actions, and in
the experiments used a balanced data set with 478,861 online
sessions generated by 215,417 users.

For illustration, in Figure 2 we give examples of clicker and
browser sessions. We can see that the browser session was not
as focused on the subject matter as the clicker session (i.e.,
jumping between ”baby” and ”iphone” queries), and the user
was only interested in satisfying their immediate information
need (i.e., ”how to”). On the other hand, the clicker session
started with general terms which got refined with the follow-up
queries (i.e., from ”halloween” to ”star trek officers uniform”),
eventually resulting in an ad click. This is a pattern which we
aim to capture with the proposed sequence modeling approach.

1nlp.stanford.edu/software/CRF-NER.shtml, accessed October 2014
2code.google.com/p/word2vec/, accessed October 2014



Queries in browser session
1) how to feed a baby
2) how to keep a baby quiet
3) how to update ur iphone 5
4) how to update your iphone 5
5) how to update ur iphone 5

Queries in clicker session
1) halloween city stores
2) female star trek characters
3) female star trek officers
4) female star trek officers
5) star trek officers uniform

Fig. 2. Examples of user sessions (actions ordered chronologically)

A. Competing prediction models
Logistic regression (LR) and Support vector machines

(SVM). We first considered linear LR and non-linear SVM
classifiers, which both assume that actions within a user ses-
sion are independent. Since LR and SVM can not encode the
dynamics between user actions in the session, the data set was
processed in such a way that all feature representations within
a session were exponentially time-decayed and aggregated into
one feature representation Φ(s) for session s,

Φ(s) =

T∑
t=1

Φ(xt)α
tT−tt ,

where tt is the timestamp of the tth action, and α is a decay
factor with 0 < α ≤ 1 (we set this parameter to 0.99). In
the experiments we used Vowpal Wabbit toolbox3 for logistic
regression and LibSVM toolbox [22] for SVM. We used a
Gaussian kernel in SVM, and randomly split the data set using
70% of examples for training and the remainder for testing.

Hidden Markov Model (HMM). We used publicly avail-
able implementation4, and trained one HMM model per each
class: the clicker model trained on all sessions labeled as
clicker, and the browser model on all sessions labeled as
browser. Both models had 2 hidden states and the observation
model assumed multivariate Gaussian distribution. During
testing phase, a test session was passed through the both HMM
models. Then, a label associated with HMM that resulted in
a higher likelihood was selected as the predicted label [23].

Conditional Random Field (CRF). The model learns to
predict labels for each action within a training session. In order
to be able to train CRF, we assigned an overall session label
to all actions within that session. During testing, we run the
Viterbi algorithm on test sessions to find the most likely label
sequence, assigning the most frequent label to a session [23].

Hidden Conditional Random Fields (HCRF). We used the
HCRF model described in Section III-B, setting the cardinality
of the latent set to |H| = 2. During testing, a session was
labeled with a label that maximized equation (10). For both
CRF and HCRF we used a publicly available code5.

3github.com/JohnLangford/vowpal wabbit, accessed October 2014
4www.run.montefiore.ulg.ac.be/∼francois/software/jahmm/, acc. Oct. 2014
5sourceforge.net/projects/hcrf/, accessed October 2014
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Fig. 3. Word cloud of nearest neighbors for word ”baseball” obtained by
the directed skip-gram trained on: a) browser sessions; b) clicker sessions

As our main goal is to detect clicker sessions, in order to
evaluate effectiveness of the considered methods we used pre-
cision (fraction of true clicker sessions among the predicted
ones), recall (fraction of correctly retrieved clicker sessions),
and F1-score measures. Ideal method should have high values
for both precision and recall, although in targeted advertising
only CTR (i.e., precision) is commonly measured and reported.

B. Results

We first demonstrate that feature representation of user
actions obtained by the directed skip-gram model is able to
capture subtle differences in user behavioral patterns in the
clicker and browser modes. To illustrate this, we used two
directed skip-gram models: one trained on clicker sessions,
and the other trained on browser sessions in the same time
period. In Figures 3(a) and 3(b) we show word clouds of
the nearest neighbor words in the inferred lower-dimensional
embedding space, with respect to cosine distance, of term
”baseball” for the browser and clicker skip-gram models,
respectively (note that, as we used only ”pv” and ”sq” user
actions, we were able to plot word clouds as inferred by our
models). We can see that the nearest neighbors for ”baseball”
in the browser model were all related to general sports terms,



TABLE I
RELATIVE IMPROVEMENT (IN %) WITH RESPECT TO LOGISTIC

REGRESSION (AVERAGED OVER 5-FOLD CROSS-VALIDATION RUNS)

SVM HMM CRF HCRFundir HCRFdir

Prec. 7.82 1.03 3.89 9.06 12.9
Rec. 8.84 1.10 3.59 9.85 11.1Click

pred. F1 8.29 1.06 3.74 9.39 12.1
Prec. 1.03 0.17 0.86 2.07 2.58
Rec. 2.04 0.41 0.20 2.65 3.47Purch.

pred. F1 1.57 0.30 0.50 2.38 3.06

such as ”football”, ”sports”, ”basketball”. On the other hand,
we see that most of the nearest neighbors in the clicker model
were terms that can be associated with purchasing behavior
(e.g., ”clothing”, ”hats”, ”pants”). These results provide a
strong evidence that the skip-gram model can find useful and
intuitive embeddings, and that the sequential patterns of user
actions differ significantly between the two modes, confirming
findings from Figure 2. In the remaining experiments we used
representation of user actions obtained by training a single
skip-gram model using the entire training data set.

In the next set of experiments we evaluated predictive power
of the models. We conducted experiments using 5-fold cross-
validation on two versions of the data set: 1) ad click prediction
data, where the labels were obtained using user ad clicks; and
2) purchase prediction data, where the labels were obtained
using e-mail receipts. In order to protect business-sensitive
information, we only give relative performance improvement
over the logistic regression, and report the precision, recall,
and F1-score in Table I. By considering the last two columns,
we can see that the proposed directed skip-gram outperformed
undirected approach (although we report this result only for
HCRF, similar advantage of directed over undirected skip-
gram was found for the competing methods as well). This
is an expected result, due to the fact that there exists a strong
temporal causality in user online behavior, which can not be
fully captured by the undirected skip-gram. Consequently, we
only used representations obtained by the directed skip-gram
to report the results of the baseline methods.

Further, we can see that a simple HMM model obtained only
a small improvement over logistic regression. More expressive
CRF resulted in further improvement of performance, however
this model is not suitable for sequence-level labeling, and may
have suffered from the labeling of user actions during training
using a session-level information. Interestingly, even though it
does not model sequential data explicitly, SVM obtained very
competitive performance, even outperforming HMM and CRF.
Lastly, we see that HCRF obtained the best results.

By comparing the reported results for click and conversion
prediction given in Table I, we can see that the problem of
conversion prediction posed much bigger challenge. Although
HCRF still outperformed the competition and obtained nearly
3% improvement over the logistic regression, it is an inter-
esting research avenue to develop methods that would obtain
superior performance in this case as well, as user conversions
are what the advertisers are ultimately interested in.

V. CONCLUSION

We considered the problem of estimating user’s propensity
to click on an ad or make a purchase, a critical problem
in ad targeting. We predicted whether a user in a particular
session is a clicker or just a browser, indicating higher or
lower responsiveness to the advertising campaign, respectively.
The results showed that the proposed directed skip-gram
architecture found useful representations of user actions, and
that HCRF significantly outperformed the baseline approaches.
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