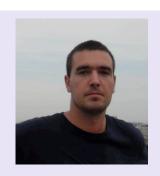


# Hidden CRF with Distributed User Embeddings for Ad Targeting



Nemanja Djuric



Vladan Radosavljevic



Mihajlo Grbovic



Narayan Bhamidipati

ICDM 2014 December 17<sup>th</sup>, 2014, in Shenzhen, China

#### Overview of the talk

- What and why?
- Methodology
  - Distributed embeddings of user activities
  - Hidden Conditional Random Fields
- Results
- Conclusion



#### Introduction

- Millions of people visit Yahoo websites daily to search, read articles, check for email, ...
- Targeted online ads: right time, right place, right person
  - Improves online experience
  - Brings benefits for both publishers and advertisers
- Problem: estimate users' propensity to click on an ad or purchase an item







## Traditional approaches

- Problem is defined as a classification or a ranking task
- Learn a model based on:
  - Demographic information
  - Information aggregated over time based on activity history (e.g., pages visited, queries issued, ads viewed or clicked on, ...)
  - Immediate search queries
- However, actual sequence of user actions is not used

## Proposed approach

- We propose to infer user modes from a sequence of activities on a session level: shopper vs. non-shopper
  - Increases the value of each shown ad
  - Reduces the number of shown ads
- Example of a search sessions:

time

halloween city stores female star trek characters female star trek officers female star trek officers star trek officers uniform

Label: shopper

how to feed a baby how to keep a baby quiet how to update ur iphone 5 how to update your iphone 5 how to update ur iphone 5

Label: Non-shopper

### Methodology: Data representation

- Many challenges ahead
  - Sparsity (e.g., large activity space)
  - Scalability (millions and millions of records)
- Embedding of user activities
  - Sessionize a sequence of user activities  $\mathbf{s} = (x_1, \dots x_T)$

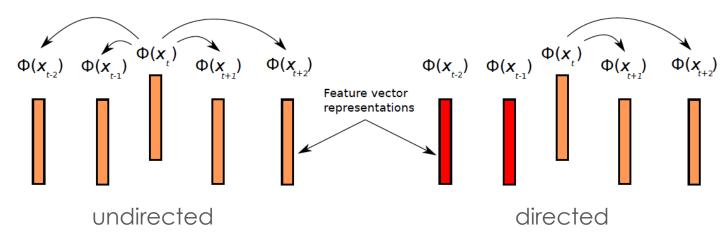
session as a sentence

"halloween city stores" "female star trek characters" "female star trek officers" "star trek officers uniform"

activity as a word

Low-dimensional activity representation using directed skipgram: activity  $x_t$  represented as D dimensional vector  $\Phi(x_t)$ 

### Methodology: Directed skip-gram



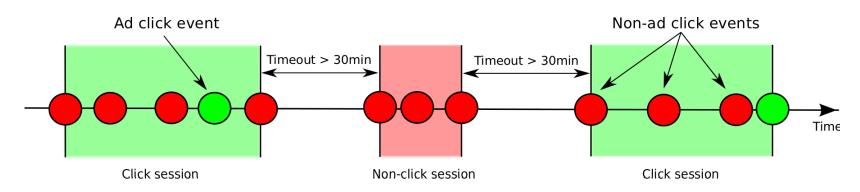
■ The directed skip-gram: maximizes log-probabilities of future activities  $x_{t+i}$  given their preceding activity  $x_t$ 

maximize 
$$\frac{1}{T} \sum_{t=1}^{T} \sum_{1 \le i \le l} \log \mathbb{P}(x_{t+i} | x_t)$$

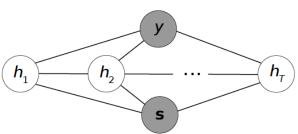
The model focuses on predicting subsequent activities instead of both past and future contexts

## Methodology: Hidden CRF

We consider a task of inferring user modes: shopper vs. non-shopper



- Use HCRF to model user behavior
  - Each activity assigned latent variable h
  - Label: shopper vs. non-shopper



## Methodology: Hidden CRF

Hidden CRF models distribution

$$\mathbb{P}(y, \mathbf{h}|\mathbf{s}, \mathbf{w}) = \frac{1}{Z(\mathbf{h}, \mathbf{s}, \mathbf{w})} \exp (\Psi(y, \mathbf{h}, \mathbf{s}, \mathbf{w}))$$

$$\Psi(\mathbf{h}, y, \mathbf{s}, \mathbf{w}) = \sum_{t=1}^{T} \sum_{k=1}^{|\mathcal{H}|} \sum_{d=1}^{D} w_{kd}^{(1)} f_{kd}^{(1)}(x_t, h_t) + \sum_{t=1}^{T} \sum_{k=1}^{|\mathcal{H}|} \sum_{r=1}^{|\mathcal{Y}|} w_{kr}^{(2)} f_{kr}^{(2)}(y, h_t) + \sum_{t=2}^{T} \sum_{k_1, k_2 = 1}^{|\mathcal{H}|} \sum_{r=1}^{|\mathcal{Y}|} w_{k_1 k_2 r}^{(3)} f_{k_1 k_2 r}^{(3)}(y, h_{t-1}, h_t)$$

- $f_{kd}^{(1)}(x_t,h_t)=\Phi_d(x_t)\cdot I(h_t=k)$  compatibility of activity representations and hidden states
- $f_{kr}^{(2)}(y,h_t)=Iig((h_t=k)\wedge(y=r)ig)$  compatibility between hidden state  $h_t$  and session-level label y

$$f_{k_1k_2r}^{(3)}(y,h_{t-1},h_t) = I\big((h_{t-1}=k_1) \wedge (h_t=k_2) \wedge (y=r)\big) \quad \text{compatibility between} \quad \text{neighboring hidden states and the label}$$

- Training: maximize  $\log \mathbb{P}(\mathbf{y}|\mathbf{s}, \mathbf{w}) = \sum_{i=1}^{N} \log \mathbb{P}(y_i|\mathbf{s}_i, \mathbf{w}) \lambda \mathbf{w}^{\mathrm{T}} \mathbf{w}$
- Inference:  $\hat{y} = \underset{y}{\operatorname{argmax}} \left( \sum_{\mathbf{h}} \mathbb{P}(y, \mathbf{h}|\mathbf{s}, \mathbf{w}) \right)$

## Experiments: Setup

- Activity representation learned on one month of Yahoo log data (October 2013)
- Vector dimension set to 100, window length to 5
- Labeled data for HCRF
  - Balanced set of ~500,000 click/non-click or purchase/non-purchase sessions
  - Minimum session length 5
- Competing methods
  - logistic regression, SVM (using average of vectors in session)
  - HMM, CRF (each activity is labeled with session label)
- 5-fold crossvalidation

### Experiments: Activity embeddings

- Learned distributed activity representations give very intuitive results
- Example: nearest neighbors with respect to cosine distance for search query "baseball"



## Experiments: Results

- Relative improvement over logistic regression model, where either clicks or purchases are used as labels
- HCRF outperforms alternatives for all accuracy measures
- Directed skip-gram outperformed undirected approach

|                 |       | SVM  | HMM  | CRF  | $\mathbf{HCRF}_{undir}$ | $HCRF_{dir}$ |
|-----------------|-------|------|------|------|-------------------------|--------------|
| Click<br>pred.  | Prec. | 7.82 | 1.03 | 3.89 | 9.06                    | 12.9         |
|                 | Rec.  | 8.84 | 1.10 | 3.59 | 9.85                    | 11.1         |
| preu.           | F1    | 8.29 | 1.06 | 3.74 | 9.39                    | 12.1         |
| Purch.<br>pred. | Prec. | 1.03 | 0.17 | 0.86 | 2.07                    | 2.58         |
|                 | Rec.  | 2.04 | 0.41 | 0.20 | 2.65                    | 3.47         |
|                 | F1    | 1.57 | 0.30 | 0.50 | 2.38                    | 3.06         |

## www.targetad-workshop.net



Speaker Lineup More Info



#### Jure Leskove

Assistant Professor of Computer Science at Stanford University

I am an assistant professor of Computer Science at Stanford University, where I am a member of the InfoLab and the Al lab. I joined the department in September 2009. I also work with the Artificial Intelligence Laboratory, Jozef Stefan Institute, Ljubijana, Slovenia. In 2008/09 I was a postdoctoral researcher at ...

More Info



#### Deepak Agarwal

r Director of Engineering at LinkedIr

Big data analyst with 15 years of experience developing and deploying state-of-the-art machine learning and statistical methods for improving the relevance of web applications. Have worked in various positions: chief scientist of large projects, managed small and highly technical teams and also experienced in ...

More Info



#### Narayan Bhamidipati

Targeting Science Lead at Yahoo Labs

Narayan has an extensive industry experience and is currently in a lead role of a Targeting Sciences team at Yahoo Labs. Prior to this, he has worked on display advertisements, targeting and user segmentation. His interests are in the areas of Machine Learning and Data Mining. He has received his PhD from the ...

More Info

he topics of this workshop include, but are not limited to, the following areas:

- Machine learning-based Ad Targeting
- · Ad Targeting in Social Networks
- · Ad Targeting and Big Data
- Ad Targeting on Mobile Devices
- · Big Data Platforms
- Recommender systems
- Pay-per-install targeting strategies
- · In-game and in-app advertising
- Deep Learning for Ad Targeting
- · Machine Learning in Sponsored Search
- · Contextual advertising
- Large-scale user modeling for Ad Targeting
- · Data-driven methods for interest targeting
- Privacy-preserving targeting
- · Behavioral targeting
- Personalization
- · Post-conversion Feature Attribution
- · Learning to rank for interest targeting
- · Click-conversion modeling

he workshop is organized by the following industry researchers:

- Vanja Josifovski (Google)
- Olivier Chapelle (Criteo Labs)
- Mihajlo Grbovic (Yahoo Labs)
- Vladan Radosavljevic (Yahoo Labs)
- Nemanja Djuric (Yahoo Labs)

P rogram committee of the workshop includes the following area experts:

- Shuang Yang (Twitter)
- Minmin Chen (Criteo Labs)
- Junfeng Pan (Facebook Inc.)
- Kosta Ristovski (Hitachi Labs)
- Sujith Ravi (Google Research)
- Slobodan Vucetic (Temple University)
- Abhimanyu Das (Microsoft Research)
- Zornitsa Kozareva (Yahoo Labs)
- Suleyman Cetintas (Yahoo Labs)
- Fabrizio Silvestri (Yahoo Labs)
- Dmitry Pechyony (Microsoft)
- Onno Zoeter (Xerox Research)

#### Conclusions

- The proposed directed skip-gram architecture finds useful representations of user actions
- HCRF significantly outperformed the baseline approaches
- Ongoing/future work
  - Incorporating context, demographics, location, weather, and other useful signals
  - Multi-vector representations of a single activity

# Thank you!

Questions?

