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Abstract

Aerosols are small airborne particles produced by natural and man-made sources.
Aerosol Optical Depth (AOD), recognized as one of the most important quanti-
ties in understanding and predicting the Earth’s climate, is estimated daily on a
global scale by several Earth-observing satellite instruments. Each instrument
has different coverage and sensitivity to atmospheric and surface conditions, and,
as a result, the quality of AOD estimated by different instruments varies across
the globe. We present a semi-supervised method for learning how to aggregate
estimations from multiple satellite instruments into a more accurate estimate,
where labels come from a small number of accurate and expensive ground-based
instruments. The method also accounts for the problem of missing experts, an
issue inherent to the AOD estimation task. By assuming a context-dependent
prior, the model is capable of incorporating additional information and provid-
ing estimates even when there are no available experts. Moreover, the proposed
method uses a latent variable to partition the data, so that in each partition
the expert AOD estimations are aggregated in a different, optimal way. We
applied the method to combine global AOD estimations from 5 instruments
aboard 4 satellites, and the results indicate it can successfully exploit labeled
and unlabeled data to produce accurate aggregated AOD estimations.
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1. Introduction

Aerosols are small airborne particles produced by natural and man-made
sources that both reflect and absorb incoming Solar radiation. Depending on
their distribution and composition, aerosols can result either in cooling or warm-
ing of the atmosphere, thus having a major role in regulating the climate system.
Distribution of aerosols is measured by Aerosol Optical Depth (AOD or 1), a
quantitative measure of the extinction of Solar radiation by scattering and ab-
sorption between the top of the atmosphere and the surface. Aerosols have been
recognized among the most important quantities in understanding and predict-
ing the Earth’s climate by the Intergovernmental Panel on Climate Change
(IPCC) [1I, and have been a focal point of a number of scientific studies due
to their importance and large impact on our atmosphere [2 Bl 4]. AOD is an
important input to climate models, and it can significantly impact predictions of
future climate changes [5]. Considering that climate predictions influence deci-
sions of policy makers, accurate AOD estimation is a task of global significance.
Moreover, in addition to its impact on large-scale terrestrial climate studies,
AOD is an important quantity in estimation of air pollution that affects the
well-being and quality of life of us all. For example, it was shown by [6] that
AOD is an accurate predictor of PMj 5, the concentration of particulate matter
with aerodynamic diameters < 2.5um, which poses a serious health hazard to
the population [7].

Currently, a number of instruments aboard several Earth-observing satel-
lites report their AOD estimates, such as MODIS instrument aboard Terra
and Aqua satellites [§], MISR aboard Terra [9], OMI aboard Aura [I0], Sea-
WiF'S aboard SeaStar [I1], Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP) aboard CALIPSO [12], and others. All these instruments have a
capability of providing global estimates of AOD distribution with a fine spa-
tial (few kilometers) and temporal (few days) resolution. Each instrument has
different properties and estimates AOD using a different algorithm developed

by domain scientists. Coverage and quality of satellite measurements can differ
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Figure 1: Coverage of instruments over the USA

from instrument to instrument for a number of reasons. As illustrated in Figure
width of the field of view of MODIS instrument is 2,330km, allowing MODIS
to observe the entire Earth every day, as opposed to 360km width of MISR
instrument, which requires 9 days for global coverage. The quality of AOD
estimates from different instruments varies with atmospheric and surface con-
ditions [I3]. For example, 9 cameras observing Earth at 9 different angles used
by MISR allow it to be more accurate than MODIS when clouds are present,
over bright surfaces, or for some types of aerosol compositions. In addition to
satellite-borne sensors, AOD is also measured by a network of ground-based
sensors from AERONET [I4], placed at several hundred unevenly distributed
locations across the globe, see Figure AERONET AOD measurements are
considered a ground-truth, as they are several times more accurate than the
best available satellite AOD estimations. The drawback of AERONET is that
it has a very limited spatial coverage, and that it cannot be used to provide
global estimation of AOD distribution required for climate models.

Different spatial and temporal coverage, design, and specific mission objec-
tives of various satellite-borne instruments mean that they observe and measure
different, possibly complementary aspects of the same phenomenon. Thus, in-
stead of considering AOD estimates of individual instruments in isolation, com-
bining measurements from different sources into an aggregated estimate may

prove to be the best path towards obtaining a higher-quality, global estimation
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Figure 2: Global coverage of AERONET instruments

of aerosol distribution. A recent study by [I3] confirmed this hypothesis by
illustrating that even a simple average of collocated Terra MODIS and MISR
AOD estimations resulted in an improved accuracy.

Apart from AOD studies, researchers have explored aggregation of measure-
ments in other areas of Earth science as well, including work on climate change
[15 16], carbon dioxide distribution [I7], and sea surface height [18]. Moreover,
the combination of experts that ultimately yields an estimate that is more accu-
rate than any of the individual forecasts is a well-researched topic in many other
scientific areas, such as risk analysis [I9], information retrieval [20], or artificial
intelligence [2I]. More recently, researchers have proposed a number of state-of-
the-art methods that address the problem of aggregation of discrete predictions
[22, 23], 24]). However, less progress has been made to address the problem when
experts provide real-valued predictions. Assuming the Gaussian distribution of
prediction errors and no missing experts, in the seminal works [25] and [26] the
authors described a method for learning the optimal combination of experts
from labeled data. If data set is unlabeled, in [27] the authors proposed how to
learn a combination of experts by extending a classification method from [2§].
The approach assumed that the experts are independent and that all experts
are always available for aggregation, which may be an unrealistic assumption

for the considered task of aerosol estimation.
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In this papelﬂ we propose a novel method suitable for finding a linear com-
bination of AOD estimations from multiple instruments. There are several in-
teresting challenges specific to the aerosol domain that had to be addressed. (1)
As quality of different instruments varies with atmospheric and surface condi-
tions, it is not likely that the same linear combination would work equally well
at different locations, for example, in North America and Africa [30]. There-
fore, it might be needed to develop specialized combinations for different regions
around the globe. (2) Number of labeled data points is relatively small. For
example, in North America, thanks to a relative abundance of AERONET sites,
the number of labeled data points can exceed a thousand every year, while in
Africa and parts of Asia there are very few AERONET sites, and the number
of labeled data points could be measured in tens every year. In addition to
their small number, labeled data points might cover only a limited set of con-
ditions observable at AERONET locations. On the other hand, the number
of unlabeled data points is orders of magnitudes larger. An open question in
AOD estimation is how to exploit labeled and unlabeled data. (3) As shown in
Figure [T} which illustrates daily coverage of different sensors over the USA, for
most of the labeled (e.g., points A and B) and unlabeled (e.g., points C' and D)
data points, AOD estimations from some of the instruments are missing. For
example, points A and C' have AOD estimate from all 3 satellite instruments,
while points B and D are just outside of MISR’s field of view and do not have
its AOD estimate. Moreover, even when a particular location is covered by a
satellite instrument (i.e., location is within satellite’s field of view), it does not
mean that the instrument necessarily provides a prediction, further exacerbating
the problem of missing data. Typical reasons for missing predictions are cloud
contamination, sunglint, or sensor maintenance and repair. Similar holds for
ground-based AERONET instrument, which does not provide a complete tem-
poral coverage as it is strongly affected by local weather conditions and other

technical issues. This opens a question of learning from data with significant

IThis article is an extended version of an earlier publication [29].
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amounts of missing AOD estimations.

To address these many issues plaguing remote sensing of aerosols, we assume
that AOD estimation errors of individual satellite instruments have multivariate
Gaussian distribution, and propose a semi-supervised method that can handle
missing data while being able to partition the data into homogeneous subsets
on which specialized aggregators are learned. Moreover, by assuming a context-
dependent AOD prior, the model is capable of providing estimates even when
there are no available experts. We note that our method can be seen as a sig-
nificant generalization of the traditional supervised method for combination of
experts introduced by [25] and [26], as well as of recently proposed unsupervised

method for averaging of experts in regression by [27].

2. Methodology

In this section we describe the details of the proposed semi-supervised ag-
gregation algorithm. We will see that the model is very suitable for aggregation
of aerosol predictions, as it accounts for missing satellite predictions, correlated
experts, as well as for unlabeled data for which AERONET failed to provide
a ground-truth. In addition, by assuming a context-dependent prior, it is ca-
pable of incorporating prior knowledge and additional data sources, as well as

providing predictions even when there are no available satellite predictors.

2.1. Problem setup and assumptions

Let us assume we are given a training set D = {x;, {§ik }k=1,... k> ¥i }i=1,... N
where target value y; for the i*" data point is predicted by K experts, with the
kth expert providing an opinion in a form of prediction ¢;1, and x; € RP is a
column-vector of explanatory features for the i*" data point. For example, in
the aerosol domain that we study, the experts are satellite instruments and the
predictions are their individual AOD estimates, while explanatory variables can
be longitude, latitude, temperature, or any other information we have readily

available for the i*" data point. We arrange the data set such that the first
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N, data points are unlabeled, while the last N; data points are labeled, i.e.,
we have a ground truth only for data points indexed by i = (N, + 1),..., N,
with N = (N, + N;). In the remainder of the paper we use 1 to denote a
column-vector of all ones of an appropriate length, 0 to denote a matrix of all
zeros, and yf = [9i1,---,0ix] " to denote a column-vector of expert predictions
for the " data point.

We assume a linear model for the generation of true AOD values, corrupted

by a stochastic process as
yi = f(xi, W) = w'x; + &, (1)

where w € RP is a weight vector, and ¢; is a regression error due to zero-mean
Gaussian noise with variance 2. Then, we can say that the target values y; are

sampled from the following Gaussian distribution,
Yi ~ N(Mi,0'2)7 with Mi = f(Xi7W). (2)

Further, we assume that data points are independent and identically distributed
(IID), and that expert predictions for the i*" data point are sampled from a

multivariate Gaussian distribution as
¥l ~ N (i1, Bk). (3)

This assumption allows the experts to be correlated (i.e., ¥ is non-diagonal),
as is the case in practice in the aerosol domain. We will first consider a case
where all experts are available, and then extend the methodology to account
for missing experts. Given D, the objective is to learn X, w, and o2. By
O = {Zk,w,0?} we denote a set of parameters to be learned.
Once O is learned, and given expert predictions y;, aggregated prediction
y; for the " data point can be found as a mean of the posterior distribution
yilxi, yE ~ N (7, (1Tx7'1)~1), where mean 7, is computed as
o _yizTh
TSy

(4)
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with 3; = [(5)T, 1;]T, and T is a (K + 1) x (K + 1) block matrix equal to

Xk O
3= . (5)

0 o2
Interestingly, we can see that the prior mean pu; can be viewed as an additional
expert with variance o2, which is independent from the original K experts.
Thus, to simplify the presentation, in the following we consider the prior mean

as the (K + 1)*" expert that is always available to the aggregation algorithm

(i.e., it can never be missing).

2.2. Semi-supervised combination of experts

Given the model parameters ©, probability of observing the data set D can
be written as

P(D|©) = P(D.[©) P(Di|0), (6)

where subscripts u and [ denote unlabeled and labeled parts of the data set,
respectively. Let us first consider P(D,,|©). As the data points are sampled IID,
the probability factorizes over individual data points, and we can write

Ny

P(D,|0) = HIP’yzl@ H 1|y, ©) P(y|©) dy. (7)

=1
As both probabilities under the integral are assumed Gaussian, due to and
, their product is also Gaussian. Then, by solving the integral, we obtain
Ny

p(2.16) = 1 (| Gryargry o0 (~ 300 =0 =75 ~52)- )

Moreover, likelihood of the labeled part can be written as follows,
P(Di|©) = H P(y{ |yi, ©) P(3i]©), (9)
i=Ny+1

which, following equations (2)) and (), is a product of N; multivariate Gaussians
with covariance matrix 3. Then, combining equations (@, , and @D, we can

compute likelihood of the data set D for any given set of parameters ©.
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We employ the maximum likelihood principle to find the model parameters.
After finding the derivative of the log-likelihood with respect to £ 7! and equat-
ing the resulting expression with zero, we obtain the following expression for

computing the 3 matrix,

1/.¢ « N, 117
E:—(Y— 1T (Y, — y1T) 4wt
N \((Yi=y15) (Y —y )+1T2711
Lo (10)
YTy, +Z (72117 — 3,(1yT +y11T)))@ ,
0 1

where ® denotes element-wise matrix multiplication operator, 1 is a K x K
matrix of all ones, Y, and Y; are N, x (K +1) and N; x (K + 1) matrices
of expert predictions for unlabeled and labeled data, respectively, with each
row corresponding to a single data point, and y; is an N; X 1 column-vector of
ground-truth values. Equation yields an iterative procedure for learning
3%, where 3 on the Lh.s. is a new value, and ¥ on the r.h.s. is an old value.
Next, we maximize the log-likelihood of data set D with respect to w. The

log-likelihood, after removing all elements not dependent on w from equations

and (9), is equal to
1 Al 2 1 Nutd 9
= TZ f(xi,w T Z Xl,W)) . (11)
i=1 —N.,

We can see from that, in order to maximize £ with respect to w, we need
to solve linear regression where for unlabeled points we use an estimate of a
ground truth equal to ;. A closed-form solution for w can be found using the

familiar equations for solving linear regression, computed as
w = (XTX)"'XTy, (12)

where X is an N x D matrix of explanatory features with each row corresponding
to a single data point, and y is an N-dimensional vector with the first N,
elements equal to y,;,¢ = 1,...,N,, and the remaining NV; elements equal to

yii=N,+1,...,N.
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2.3. Missing experts
Let us now consider the case where some experts are missing. For exam-

" data point has ¢ missing predictions. Then,

ple, let us assume that the i
we reorganize vector ¥; in such a way so that the first a = (K + 1 — ¢) ele-
ments are available predictions, while the last ¢ elements are missing predic-
tions, i.e., y; = [ya;, Y] - Similarly, we reorganize >~ matrix so that the

first a rows/columns correspond to available predictions, while the remaining ¢

rows/columns correspond to missing predictions, or

= U Vv

vt Q
where II; is a permutation function used to reorder both rows and columns
of ¥7! according to the i data point, and U is an a x a matrix. Given the
covariance matrix ¥ and a vector of expert predictions y,; for the i*" data point,
the aggregated prediction y; can be found as a mean of the posterior distribution
Yilyai ~ N (y;, (1TU}1)71), where we introduced U’ = U-VQ~1VT to simplify

the notation, and
g, = YOl
to1Tull’
Note that we appended subscript ¢ to indicate that the size of a matrix U]

(14)

0 data point.

depends on the number of available experts for the i
In the following, we derive the update equation for 3. The probability of

observing the " unlabeled point is equal to

P(yai|®) = [ P([Yaw yqz dyql / / yaz’ yqz ‘y7 @) P(y|®) dyqz dy
Yqi Yqi
(15)
Solving the equation we obtain

=il

1, _ . _
m €xXp ( - *(Yai - yil)TU;(Yai - yzl)) (16)

P(Ya'L'@) = 2

In a very similar manner we can find the probability of observing the i*? labeled

data point. It follows

P(§ailys, ©) = / (5T, 971 i, ©) df . (17)
Yy

qi

10



which, after solving the integral, results in
Vailyi ~ N(y:1, U ). (18)

By combining equations @, , and , we can find the likelihood of the
data set D. After finding derivative of the log-likelihood with respect to X~*
[31] and equating the resulting expression with zero, we obtain the following

expression for computing the 3 matrix,

1 O £ 5 ) P T T
T=— Vaid o 72 [117] - 3, [1y 5 + Yl
v 2 (st frgg + 90" 015 5"+
N N 1 0 (19)
N N T —1
E [(Yai —¥il) (Yai —wil) ]+ E I1; (‘I’i)> © ,
= Nut1 =1 0 1

where TI; ! is an inverse permutation function that reorders rows and columns
of the matrix back to the original order of experts, symmetric (K +1) x (K +1)

matrix ¥, is equal to

0 o0
U, = , (20)
0 Q!

and [A;] for some symmetric a X a matrix A; denotes the following symmetric

(K +1) x (K 4+ 1) matrix,

A; -A; V; Q!
)

[[Ai]]zﬂfl( - o .
-Q; Vi A, QV] A;V,Q;

(21)

Lastly, after finding the derivative of the log-likelihood with respect to w, pa-
rameter vector of the prior model can be found as in .

2.4. Incorporating prior probability P(O)
Let us consider the case where we have some prior, expert knowledge about
the underlining data-generation model, and would like to include this knowledge

into the aggregation model. First, we write the joint probability of the data and

the model as follows,
P(D,0) =P(D|="', w) P(Z71) P(w). (22)

11
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Note that we defined prior P(X7!) in terms of an inverse of the covariance
matrix (i.e., in terms of a precision matrix). For the prior over the © parameters
we choose a normal-Wishart distribution NW(0,A7!,S,n), a conjugate prior
for multivariate Gaussian distribution, with given A prior variance parameter,
(K +1) x (K +1) scale matrix S, and n > K degrees of freedom, resulting in

$5-1(0.5(n—K—2) —0.5Tr(S~1x !
]P’(Eil) HD(W) — | | eXP( ( ))
20.5n(K+1)[S|0-57T 4 1 (0.5n)

N(w[0,AT),  (23)

where ' y1 is the multivariate gamma function, and I'is a (K 4+ 1) x (K + 1)
identity matrix. After setting n = (K + 3) and finding the derivative of the
log-likelihood with respect to 71, we obtain the following update equation for

the covariance matrix 3,

N N
—L —1 —1 . o o -
b _]_ + N (S + ZHZ (‘IIL) + . Z [[(y(“ yzl) (Ytu yll) ﬂ+
=t i=Ny+1
(24)
Ny [117] Y ) i
;([[yaiyai]] + 1TU;1 + Y; |I11 ]] - yz[[lym —+ Yai]- ]])) 0)

Similarly, after finding the derivative of the log-likelihood with respect to weight
vector, w can be found using the closed-form solution for regularized linear

regression, with regularization parameter equal to Ao?,
w = (XTX + \o?1) !XTy, (25)

2.5. Data partitioning using a latent variable

It is an inherent property of the experts in the aerosol domain that they do
not maintain the same quality of predictions across all observed conditions. To
address this characteristic of the aggregation problem, we consider partitioning
the data points into several groups, called the regimes, where each regime is
governed by a different prior from and multivariate Gaussian from . In
the following we assume there are R regimes, and that we have available a
feature vector x; € RD for the it data point that could be used to assign it

to an appropriate regime [32]. Note that we denoted feature vector X; used for

12
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partitioning and feature vector x; used in the prior from equation differently,
to emphasize that they do not necessarily need to be identical.
Assuming a mixture of R regimes, probability of observing expert predictions

Vai for the i labeled data point can be written as

R
P(§ail%i, yi, ©) = > Pr(Failys) mir (%), (26)

r=1
where P,.(Yailyi) = P(¥ai|regime,,X;, yi, ©), mir(X;) = P(regime,|X;,©), and

where appended subscript r denotes the rt®

regime. Similarly, we can write
probability of observing expert predictions y,; for the i*" unlabeled data point

as follows,
Yaz|xu ZP Yal Ty Xz) (27)

Probability of observing the i*" unlabeled or labeled data point given that it was
generated by the ! regime, P,.(¥4;) or P,.(¥4:|y:), respectively, can be computed
by considering equations and (L8), respectively. Before computing the

aggregated prediction, we first find the prior mean as

i = ,uzlxza Zﬂ'zr Xz Xiawr)7 (28)

which acts as the (K + 1)%' expert, and the aggregated prediction 3; can then

be found using the following expression,

Ui = E[yil¥ai, X, 0] = Y mip (%) T2 (29)

To facilitate model optimization, we consider regime assignments as unob-
served data, and introduce a latent indicator variable z;,. such that the following

holds,

1 if y,; was generated by the 7" regime,
0  otherwise.
Further, by introducing z; = [21,...,2r|", we can write the complete-data

likelihood for the it labeled data point as

P(yaiazi|§i7yza H 7Tzr Xz Yaz|yz))zw' (31)

13
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Note that, for conciseness, in equations , , and , we only give ex-
pressions for labeled data. However, when dealing with the i*" unlabeled data
point we simply need to replace P,.(J4:|y:) by Pr-(¥4:). Then, the complete-data
log-likelihood L is equal to

N R

L= Z Zzir(IOg Tir(Xi) + 108 Pp (Y ailyi)) - (32)

1=1r=1
Expectation-Maximization (EM) algorithm [33] can be used to find the param-
eters © that maximize £ from (32).

2.5.1. EM algorithm for semi-supervised aggregation
Before moving on, we need to decide on the parameterization of the prior

probability ;.. We define this probability using a softmax function,
eXp <_(§EZ - q'r)TAr(SEi - qr))

St P (=(%i = ) A (%Ki — )

Tiy = (33)
where we defined a prototype vector q, € RP and a D x D feature scaling
matrix A, for each regime, to be found during optimization, resulting in © =
{Zrar, Artrzr, R

In the E-step, we compute the current expectation of posterior probability
hir that the rt" regime is "responsible” for generating expert predictions for the

it" labeled point as

~ r ~i ]P)r Aai 7
hir == ]E[Zir|yai;yiaxi7®} = T (X ) (y ‘y ) . (34)

22:1 Tim (iz) Py (S’ai |yz)

In the M-step, we fix values of h;. for all data points and regimes, and

optimize £ with respect to covariance matrices X,., weight vectors w,., as well
as prototype vectors q, and scaling matrices A,,r = 1,..., R. Note that the
derivatives of £ with respect to these two sets of variables are independent from
each other, and the optimization of 3, and w, on one side, and q,- and A, on

the other, can be easily parallelized. After derivation, the update equation for

14
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3, can be written as follows,
1 N N
e (Ugrl > hie TN (%) + > hir[(Fai — vil) Fai — i) ] +
1+ Zi:l hir i=1 =Ny +1

Ny T
o 114, — = < \ 1 0
Z hir (ﬂyaiyai]]r + ][.[TU;T],]. + yirﬂllT]]T - yirﬂlyzi + yailT]]r)> © |:0 1:| .

i=1

(35)
In order to find the weight vector w,., let us first write out log-likelihood L,.,
pertaining to the r*" regime. After removing all elements not dependent on w,.
from equations and (18], we obtain the following expression,

N,+N;

A
Z Zir(yi_f(xiawr))Q _EWE‘WT;

i=N,+1

1 > 1

L, = _Tr% ZziT(yi_f(Xivwr)) — @
=1

(36)

where the regularization term weighted by 0.5\ corresponds to an isotropic

Gaussian prior over weight vector w, introduced in Section A closed-form

solution for w,. can be found using the equation for weighted, regularized linear

regression, equal to
w, = (XTW, X + Ao?1) ' XTW,y, (37)

where W, is a diagonal N x N weight-matrix with the i** diagonal element
equal to h;,..
Lastly, prototype vector q, and scaling matrix A, can be found through the

gradient ascent optimization using the following update equations,

N
Q@ =+ AYY (her — w2,
i=1
N

AT = AP =3 (e - G - @) s - )T
i=1

where 7 is an appropriately set learning rate.
3. Experiments

In this section, we first experimentally validate the semi-supervised aggre-

gation on synthetic data, and then apply the method to AOD estimation using

15
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real-world aerosol data set. We used Root Mean Squared Error (RMSE) mea-
sure to report performance of various aggregation methods, commonly used in

AOD research [34]. RMSE is defined as follows,

N
1 _
RMSE = N § (ys — yi)zv (39)

i=1

where the sum is over N labeled data points from the test set.

3.1. Validation on synthetic data

We started by evaluating our method on synthetic data generated as follows:
for a given number of regimes R and experts K, we selected weight vector w,
prototype q, and a covariance matrix for each regime 3. Then, we assigned the
ith data point uniformly at random with probability 1/R to a regime, say the [*}
regime, and obtained features x; by sampling from multivariate Gaussian with
mean q; and covariance matrix 0.5I, where for simplicity we also set X; = x;.
We sampled w,.,r = 1,..., R, from multivariate Gaussian with zero mean and
unit variance. We sampled ground-truth value y; from Gaussian with unit
variance and mean computed using , then sampled K expert predictions
from a Gaussian N (y;1,%;). Finally, we removed each expert’s prediction with
probability 0.5 to simulate missing experts. In all experiments we set S = I, and
used 15 EM iterations. Learning rate n was set through cross-validation, and
the reported results were averaged over 100 experiments. To better characterize
the proposed model, we first assumed uninformative prior (i.e., do not learn
w, vectors and set ¢ — o0), and evaluated the benefits of the informative,
context-dependent prior at the end of this section.

In order to evaluate the semi-supervised method without clustering, we set
K=5R=1,D=D=2,and &, = diag([0.1,0.2,0.3,0.4,0.5]). We compared
our learning method to a baseline method that averages all available experts, as
well as to the optimal predictor that computes the prediction using the true
31. We increased the number of training points N from 10 to 100 in increments
of 10, and for each N we experimented with percentage of labeled data points

equal to 0%, 20%, 40%, and 100% (shown as four solid lines in Figure [3]).

16
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Figure 3: Results on the synthetic data set

The results in terms of RMSE, evaluated on 1,000 testing points generated
in the same way as the training set, are shown in Figure We can see that the
performance of the fully unsupervised approach, given by the top-most full line,
is already better than simple averaging, which further improves as the number of
unlabeled data grows. Moreover, as we increase the number of labeled points,
the semi-supervised method further improves the accuracy, approaching the
lower bound on RMSE achieved by the optimal combination of experts.

Next, we generated the data using two regimes by setting q; = [1,1], q2 =
[-1,—1], 3; = diag([0.1,0.2,0.3, 0.4,0.5]), X5 = diag(]0.5,0.4,0.3,0.2,0.1]),
and we set R = 2. The results in terms of RMSE are given in Figure where
we also show accuracy of the proposed method which used only labeled data,
but assumed only one cluster. The RMSE of supervised method that assumed
only a single cluster is worse than simple averaging, and approached it as the
data size increased. Unsupervised method using two clusters achieved better
accuracy than simple averaging, and RMSE further decreased with larger data
sizes. Introduction of labeled data points further decreased the RMSE.

In the next set of experiments we evaluate the benefits of the prior model
as in , and learn both the feature vectors w,. and variances o,., r =1,..., R.

We set the number of training data points to 100, and experimented with per-
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Figure 4: Semi-supervised model with and without prior on the synthetic data set

centage of labeled data points from 0% to 100%, with 10% increments. We set
A = 10, and run experiments for R = 1 and R = 2. The results in terms of
RMSE are illustrated in Figure [dl We can see that the introduction of prior
model resulted in significant decrease in the RMSE measure. It is important to
note that baseline linear regression alone, trained on labeled data points only,
would have RMSE of around 1, much worse than any of the experts. Interest-
ingly, for purely unlabeled data set, the method with informative prior obtained
slightly worse result than the method without, which is due to overfitting to the
estimated ground-truth values for unlabeled data points (i.e., the prior model
learns to predict other experts’ predictions), and can be mitigated with stronger
regularization when number of labeled data points is small or by increasing size
of the training set. However, for both R = 1 and R = 2, the method with
context-dependent prior outperformed the aggregation method with uninfor-
mative prior even for small number of available ground-truth labels. Moreover,
the performance gap quickly grew as we increased the fraction of labeled data,

eventually reaching better RMSE than the optimal method from Figure

3.2. Validation on aerosol data

In this section we present the results of the experiments on real-world, global

aerosol data set. We first describe how the data set was generated, before moving
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on to the discussion of the performance results.

3.2.1. The data set

We used ground-based AERONET data [I4] and global data from 5 satel-
lite instruments spanning 5 years, from 2006 to 2010. For the ground-based
AERONET sensors we downloaded data for all sites from AERONET web-
siteﬂ To obtain the target AOD values we used only Level 2.0 AOD data,
the highest-quality data, as it is pre- and post-field calibrated, automatically
cloud-cleared and manually inspected, and take a measurement at 10:30am
as a ground-truth AOD value. Furthermore, to obtain feature vectors x; we
used the 2"d-generation NOAA Global Ensemble Forecast System Reforecast
(GEFS/R) dataEL and considered longitude and latitude of the location, as well
as the following measurements: wind mixing energy, skin temperature, resulting
in dimensionality D = 4. To obtain partition feature vectors x; we considered
longitude and latitude of the location, resulting in dimensionality D =2.

For the satellite sensors, we used Multi-sensor Aerosol Products Sampling
System [35], and downloaded data from the project’s Websitdﬂ, which provides
satellite data only when they are collocated with AERONET locations. We only
used research-quality AOD estimates, recommended by the teams responsible
for prediction algorithm of each sensor. The following satellite instruments were

considered:

e MODIS We used Daily Level 2 aerosol product, collection 5.1 (MOD04_1.2
and MYDO04_L2, for Terra and Aqua, respectively). For this study we only
used predictions with Quality Assurance (QA) flag equal to 3, and consid-
ered the following Scientific Data Set (SDS): Corrected_Optical_Depth_Land.
The product was available at around 10:30am and 1:30pm local time, at

the overpass times of Terra and Aqua satellites, respectively.

2http://aeronet.gsfc.nasa.gov/cgi-bin/combined_data_access_new, accessed July 2014
Shttp://esrl.noaa.gov/psd/forecasts/reforecast2/download.html, accessed July 2014
4http://disc.sci.gsfc.nasa.gov/aerosols/services/mapss/mapssdoc.html, accessed July 2014
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e MISR We used MIL2ASAE data product, a MISR Level 2 aerosol prod-
uct. For this study we only used predictions with the Quality Assur-
ance (QAb) flags equal to 0 and 1, and considered the following SDS:
RegBestEstimateSpectralOptDepth. The product was available at around

10:30am local time, at the overpass time of Terra satellite.

e OMI We used OMAERUYV, a Level-2 near-UV aerosol absorption and
extinction optical depth and single scattering albedo OMI data product.
For this study we only used predictions with the Quality assurance for
final algorithm flag (Qafaf) equal to 0, and considered the following SDS:
FinalAerosolOpticalDepth. The product was available at around 1:30pm

local time, at the overpass time of Aura satellite.

e SeaWiFS We used SWDB_L2, Deep Blue Aerosol Optical Depth Daily
Level 2 data product. For this study we only used predictions with Qual-
ity Assurance (QA) flag equal to 3, and considered the following SDS:
aerosol_optical_thickness_550_land. The product was available at around

12:20pm local time, at the overpass time of SeaStar.

We note that we also considered the CALIOP data product. However, due to
a very small number of collocated data points that were available, we did not
include it in this study.

We considered AOD at 550nm wavelength. If an instrument did not provide
AOD at this wavelength, we performed linear interpolation or extrapolation in
the log-scale of predictions at two closest wavelengths to 550nm [36]. In partic-
ular, if 7, and 7, are available, where 7, denotes AOD reported at wavelength

T, Tss0 1S calculated as

(log(550) — log(a)) (log(7s) — log(7a)) ) . (40)

o0 = Ta P ( log(b) — log(a)

We used 5 years of data from 2006 to 2010, where there were, on average, 199
working AERONET sites each year. After removing AERONET sites with too

few observations, there remained 86 sites in the data set, with locations shown
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Table 1: RMSE performance of the aggregation methods

Continent Number of sites  Baseline  Supervised Semi-supervised
Africa 6 0.0737 0.0734 0.0697
Asia 11 0.0929 0.0887 0.0847
Europe 33 0.0873 0.0690 0.0648
North America 32 0.0814 0.0795 0.0752
South America 4 0.0916 0.0864 0.0844

in Figure ol This resulted in a labeled data set with N = 23,119 data points,
where 67% of expert predictions were missing. Both x; and X; vectors were
always available for all data points. We used this data set for three sets of
experiments: (1) evaluating usefulness of unlabeled data; (2) evaluating useful-
ness of partitioning; and (3) evaluating usefulness of context-dependent prior
over AOD values. In all sets of experiments we performed leave-one-site-out

cross-validation.

3.2.2. Results

In the first set of experiments, we manually split the data into 5 per-
continent subsets (2 Australian sites were assigned to Asian cluster), and then
trained a separate aggregation model for each partition. We first randomly se-
lected 2 training AERONET sites and took 50 labeled data points from each of
them. Then, we selected 50 unlabeled data points from the remaining training
AERONET sites, and sampled 50 labeled data points from the left-out site for
validation. We trained one model which used only labeled data, and one that
used both labeled and unlabeled data. We used R = 1 clusters in both cases,
and assumed o — 0o, resulting in an uninformative prior over the AOD values.
We compared the performance to a baseline method that takes a simple average
of available expert predictions. The results in terms of RMSE are given in Ta-
ble [1} clearly indicating that the proposed method successfully exploited large
amounts of readily available unlabeled data. This is particularly important for

the largest continents of Asia and Africa, where the density of AERONET sites
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Table 2: Performance of the semi-supervised aggregation methods

Method # clusters RMSE
Per-continent partition 5 0.0758
No partitioning 1 0.0728
EM-partitioning 2 0.0720
EM-partitioning 3 0.0711
EM-partitioning 4 0.0723
EM-partitioning 5 0.0726
EM-partitioning with prior 3 0.0689
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Figure 5: Found clustering of AERONET sites

is very low and labeled data are extremely scarce. As seen in Table[T] the aver-
age improvement of semi-supervised approach over the baseline was over 10%,
and around 5% over the purely supervised method.

In the second set of experiments we evaluated the benefits of data partition-
ing using the EM algorithm. We randomly sampled from each training site 50
labeled and 50 unlabeled data points, and from the left-out site sampled 50 la-
beled data points used for validation, assuming ¢ — co. We used our proposed
method with R € {1,2,3,4,5}, repeating the experiments 5 times. RMSE is re-
ported in the middle of Table[2] where at the top we also report the RMSE of the

semi-supervised method using the per-continent partition considered earlier.
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We can see that semi-supervised aggregation with partitioning using latent
variables had significantly lower RMSE than the baseline where we manually
split the data into per-continent subsets using domain knowledge. By increas-
ing the number of clusters from 1 (i.e., without partitioning) to 5 we observed
a drop in RMSE of around 6% over the baseline, achieving the best perfor-
mance for R = 3 clusters. In Figure [f] we color-code the AERONET sites
according to their cluster assignments for this case. Interestingly, the shown
partition roughly corresponds to clustering found by earlier studies that con-
sidered aerosol properties [30], where south-western cluster contains sites with
mostly absorbing aerosols, south-eastern cluster sites with mostly non-absorbing
aerosols, and northern cluster contains sites with mixed moderately absorbing
and non-absorbing aerosols. Given predictions of all the experts, for the north-
ern cluster the weights of linear combination assigned to MISR, Terra MODIS,
Aqua MODIS, OMI, and SeaWiFS instruments were [0.37,0.19,0.19,0.13,0.12],
for the south-eastern cluster they were [0.46,0.18,0.18,0.05, 0.13], for the south-
western cluster they were [0.44,0.15,0.15,0.10,0.16], respectively. In concor-
dance with the domain knowledge, MISR obtained the largest weights, while
other instruments were given similar weights, with the exception of OMI which
consistently had the lowest weight in all clusters.

Lastly, we evaluated the benefits of the linear regression prior over the AOD
values, introduced in equation . Here we dropped the assumption that ¢ —
00, set R = 3 due to the results shown in the middle part of Table [2| and
during training learned both weight vectors w, and prior variances o,, r =
{1,2,3}. In order to partition the data set we used longitude and latitude of the
AERONET sites as in the previous experiment, while for explanatory features
x; from we used 4 ground measurements discussed in Section m The
RMSE performance of the final model is given at the bottom of Table [2] where
we can see further improvements over the methods that assumed uninformative
prior. In particular, compared to the best previous model, RMSE dropped by
around 3.2%, and it is interesting to note that the learned weight of the linear

combination for the prior model was roughly similar to the weights of Terra
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MODIS and Aqua MODIS. An additional benefit of the assumed prior is the
ability to provide AOD estimates even when there are no available satellite
experts, by using the available non-AOD ground-based measurements through
equation . We can conclude that the results presented in this section confirm
the validity of the proposed semi-supervised method for aggregation of experts,
which is able to account for missing experts, find a partition of data into clusters,
exploit additional available information through the prior model, and construct

specialized aggregators on each cluster.

4. Conclusion and future work

Aerosol Optical Depth is an important input parameter to complex climate
models developed to predict and better understand Earth’s climate. Conse-
quently, accurate AOD estimation is the problem of global significance, and in
this paper we address this task by proposing a semi-supervised method for ag-
gregation of AOD predictions from noisy satellite-borne sensors into a single,
more accurate estimate. By assuming that expert predictions follow multivari-
ate Gaussian distribution, the method accounts for both missing experts and
unlabeled data in a principled manner, addressing an issue inherent to the re-
mote sensing domain. Furthermore, by introducing a context-dependent AOD
prior, the model is capable of incorporating additional data sources and provid-
ing estimates even when there are no available experts. Lastly, we also cluster
the data during training by introducing a latent indicator variable for each clus-
ter, resulting in a more interpretable model. Results on a synthetic data set and
real-world aerosol data set comprising 5 satellite-borne sensors strongly indicate
the benefits of the proposed aggregation method.

The described approach makes several assumptions that resulted in a sim-
plified model of aerosol distribution, yet do not necessarily hold in practice. In
particular, we assumed that the data points are sampled IID, and did not ac-
count for spatio-temporal correlations that inherently exist in the aerosol data

[37,B8]. In addition, the covariance matrix in this work is assumed static, and is
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not affected by the context in which the data points appear. Lastly, we assumed
that errors in measurements are Gaussian, and that all experts have equal, zero
biases. We are investigating approaches where we weaken or altogether drop
these simplifying assumptions in order to extend and further improve modeling

of aerosol distribution, and leave these ideas for future work.
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