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Abstract

Aerosols are small airborne particles produced by natural and man-made sources.

Aerosol Optical Depth (AOD), recognized as one of the most important quanti-

ties in understanding and predicting the Earth’s climate, is estimated daily on a

global scale by several Earth-observing satellite instruments. Each instrument

has different coverage and sensitivity to atmospheric and surface conditions, and,

as a result, the quality of AOD estimated by different instruments varies across

the globe. We present a semi-supervised method for learning how to aggregate

estimations from multiple satellite instruments into a more accurate estimate,

where labels come from a small number of accurate and expensive ground-based

instruments. The method also accounts for the problem of missing experts, an

issue inherent to the AOD estimation task. By assuming a context-dependent

prior, the model is capable of incorporating additional information and provid-

ing estimates even when there are no available experts. Moreover, the proposed

method uses a latent variable to partition the data, so that in each partition

the expert AOD estimations are aggregated in a different, optimal way. We

applied the method to combine global AOD estimations from 5 instruments

aboard 4 satellites, and the results indicate it can successfully exploit labeled

and unlabeled data to produce accurate aggregated AOD estimations.
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1. Introduction

Aerosols are small airborne particles produced by natural and man-made

sources that both reflect and absorb incoming Solar radiation. Depending on

their distribution and composition, aerosols can result either in cooling or warm-

ing of the atmosphere, thus having a major role in regulating the climate system.5

Distribution of aerosols is measured by Aerosol Optical Depth (AOD or τ), a

quantitative measure of the extinction of Solar radiation by scattering and ab-

sorption between the top of the atmosphere and the surface. Aerosols have been

recognized among the most important quantities in understanding and predict-

ing the Earth’s climate by the Intergovernmental Panel on Climate Change10

(IPCC) [1], and have been a focal point of a number of scientific studies due

to their importance and large impact on our atmosphere [2, 3, 4]. AOD is an

important input to climate models, and it can significantly impact predictions of

future climate changes [5]. Considering that climate predictions influence deci-

sions of policy makers, accurate AOD estimation is a task of global significance.15

Moreover, in addition to its impact on large-scale terrestrial climate studies,

AOD is an important quantity in estimation of air pollution that affects the

well-being and quality of life of us all. For example, it was shown by [6] that

AOD is an accurate predictor of PM2.5, the concentration of particulate matter

with aerodynamic diameters ≤ 2.5µm, which poses a serious health hazard to20

the population [7].

Currently, a number of instruments aboard several Earth-observing satel-

lites report their AOD estimates, such as MODIS instrument aboard Terra

and Aqua satellites [8], MISR aboard Terra [9], OMI aboard Aura [10], Sea-

WiFS aboard SeaStar [11], Cloud-Aerosol Lidar with Orthogonal Polarization25

(CALIOP) aboard CALIPSO [12], and others. All these instruments have a

capability of providing global estimates of AOD distribution with a fine spa-

tial (few kilometers) and temporal (few days) resolution. Each instrument has

different properties and estimates AOD using a different algorithm developed

by domain scientists. Coverage and quality of satellite measurements can differ30

2



Terra, 10:30amAqua, 1:30pm

W
idth of th

e fie
ld of v

iew
- AERONET

Satellite paths

Green   - Aqua MODIS

Yellow - Terra MODIS
Red      - Terra MISR

Figure 1: Coverage of instruments over the USA

from instrument to instrument for a number of reasons. As illustrated in Figure

1, width of the field of view of MODIS instrument is 2,330km, allowing MODIS

to observe the entire Earth every day, as opposed to 360km width of MISR

instrument, which requires 9 days for global coverage. The quality of AOD

estimates from different instruments varies with atmospheric and surface con-35

ditions [13]. For example, 9 cameras observing Earth at 9 different angles used

by MISR allow it to be more accurate than MODIS when clouds are present,

over bright surfaces, or for some types of aerosol compositions. In addition to

satellite-borne sensors, AOD is also measured by a network of ground-based

sensors from AERONET [14], placed at several hundred unevenly distributed40

locations across the globe, see Figure 2. AERONET AOD measurements are

considered a ground-truth, as they are several times more accurate than the

best available satellite AOD estimations. The drawback of AERONET is that

it has a very limited spatial coverage, and that it cannot be used to provide

global estimation of AOD distribution required for climate models.45

Different spatial and temporal coverage, design, and specific mission objec-

tives of various satellite-borne instruments mean that they observe and measure

different, possibly complementary aspects of the same phenomenon. Thus, in-

stead of considering AOD estimates of individual instruments in isolation, com-

bining measurements from different sources into an aggregated estimate may50

prove to be the best path towards obtaining a higher-quality, global estimation
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Figure 2: Global coverage of AERONET instruments

of aerosol distribution. A recent study by [13] confirmed this hypothesis by

illustrating that even a simple average of collocated Terra MODIS and MISR

AOD estimations resulted in an improved accuracy.

Apart from AOD studies, researchers have explored aggregation of measure-55

ments in other areas of Earth science as well, including work on climate change

[15, 16], carbon dioxide distribution [17], and sea surface height [18]. Moreover,

the combination of experts that ultimately yields an estimate that is more accu-

rate than any of the individual forecasts is a well-researched topic in many other

scientific areas, such as risk analysis [19], information retrieval [20], or artificial60

intelligence [21]. More recently, researchers have proposed a number of state-of-

the-art methods that address the problem of aggregation of discrete predictions

[22, 23, 24]. However, less progress has been made to address the problem when

experts provide real-valued predictions. Assuming the Gaussian distribution of

prediction errors and no missing experts, in the seminal works [25] and [26] the65

authors described a method for learning the optimal combination of experts

from labeled data. If data set is unlabeled, in [27] the authors proposed how to

learn a combination of experts by extending a classification method from [28].

The approach assumed that the experts are independent and that all experts

are always available for aggregation, which may be an unrealistic assumption70

for the considered task of aerosol estimation.
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In this paper1 we propose a novel method suitable for finding a linear com-

bination of AOD estimations from multiple instruments. There are several in-

teresting challenges specific to the aerosol domain that had to be addressed. (1)

As quality of different instruments varies with atmospheric and surface condi-75

tions, it is not likely that the same linear combination would work equally well

at different locations, for example, in North America and Africa [30]. There-

fore, it might be needed to develop specialized combinations for different regions

around the globe. (2) Number of labeled data points is relatively small. For

example, in North America, thanks to a relative abundance of AERONET sites,80

the number of labeled data points can exceed a thousand every year, while in

Africa and parts of Asia there are very few AERONET sites, and the number

of labeled data points could be measured in tens every year. In addition to

their small number, labeled data points might cover only a limited set of con-

ditions observable at AERONET locations. On the other hand, the number85

of unlabeled data points is orders of magnitudes larger. An open question in

AOD estimation is how to exploit labeled and unlabeled data. (3) As shown in

Figure 1, which illustrates daily coverage of different sensors over the USA, for

most of the labeled (e.g., points A and B) and unlabeled (e.g., points C and D)

data points, AOD estimations from some of the instruments are missing. For90

example, points A and C have AOD estimate from all 3 satellite instruments,

while points B and D are just outside of MISR’s field of view and do not have

its AOD estimate. Moreover, even when a particular location is covered by a

satellite instrument (i.e., location is within satellite’s field of view), it does not

mean that the instrument necessarily provides a prediction, further exacerbating95

the problem of missing data. Typical reasons for missing predictions are cloud

contamination, sunglint, or sensor maintenance and repair. Similar holds for

ground-based AERONET instrument, which does not provide a complete tem-

poral coverage as it is strongly affected by local weather conditions and other

technical issues. This opens a question of learning from data with significant100

1This article is an extended version of an earlier publication [29].
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amounts of missing AOD estimations.

To address these many issues plaguing remote sensing of aerosols, we assume

that AOD estimation errors of individual satellite instruments have multivariate

Gaussian distribution, and propose a semi-supervised method that can handle

missing data while being able to partition the data into homogeneous subsets105

on which specialized aggregators are learned. Moreover, by assuming a context-

dependent AOD prior, the model is capable of providing estimates even when

there are no available experts. We note that our method can be seen as a sig-

nificant generalization of the traditional supervised method for combination of

experts introduced by [25] and [26], as well as of recently proposed unsupervised110

method for averaging of experts in regression by [27].

2. Methodology

In this section we describe the details of the proposed semi-supervised ag-

gregation algorithm. We will see that the model is very suitable for aggregation

of aerosol predictions, as it accounts for missing satellite predictions, correlated115

experts, as well as for unlabeled data for which AERONET failed to provide

a ground-truth. In addition, by assuming a context-dependent prior, it is ca-

pable of incorporating prior knowledge and additional data sources, as well as

providing predictions even when there are no available satellite predictors.

2.1. Problem setup and assumptions120

Let us assume we are given a training set D = {xi, {ŷik}k=1,...,K , yi}i=1,...,N ,

where target value yi for the ith data point is predicted by K experts, with the

kth expert providing an opinion in a form of prediction ŷik, and xi ∈ RD is a

column-vector of explanatory features for the ith data point. For example, in

the aerosol domain that we study, the experts are satellite instruments and the125

predictions are their individual AOD estimates, while explanatory variables can

be longitude, latitude, temperature, or any other information we have readily

available for the ith data point. We arrange the data set such that the first
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Nu data points are unlabeled, while the last Nl data points are labeled, i.e.,

we have a ground truth only for data points indexed by i = (Nu + 1), . . . , N ,130

with N = (Nu + Nl). In the remainder of the paper we use 1 to denote a

column-vector of all ones of an appropriate length, 0 to denote a matrix of all

zeros, and ŷK
i = [ŷi1, . . . , ŷiK ]T to denote a column-vector of expert predictions

for the ith data point.

We assume a linear model for the generation of true AOD values, corrupted

by a stochastic process as

yi ≡ f(xi,w) = wTxi + εi, (1)

where w ∈ RD is a weight vector, and εi is a regression error due to zero-mean

Gaussian noise with variance σ2. Then, we can say that the target values yi are

sampled from the following Gaussian distribution,

yi ∼ N (µi, σ
2), with µi = f(xi,w). (2)

Further, we assume that data points are independent and identically distributed

(IID), and that expert predictions for the ith data point are sampled from a

multivariate Gaussian distribution as

ŷK
i |yi ∼ N (yi1,ΣK). (3)

This assumption allows the experts to be correlated (i.e., ΣK is non-diagonal),135

as is the case in practice in the aerosol domain. We will first consider a case

where all experts are available, and then extend the methodology to account

for missing experts. Given D, the objective is to learn ΣK , w, and σ2. By

Θ = {ΣK ,w, σ
2} we denote a set of parameters to be learned.

Once Θ is learned, and given expert predictions ŷi, aggregated prediction

yi for the ith data point can be found as a mean of the posterior distribution

yi|xi, ŷ
K
i ∼ N (yi, (1

TΣ−11)−1), where mean yi is computed as

yi =
ŷT
i Σ−11

1TΣ−11
, (4)
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with ŷi = [(ŷK
i )T, µi]

T, and Σ is a (K + 1)× (K + 1) block matrix equal to

Σ =

 ΣK 0

0 σ2

 . (5)

Interestingly, we can see that the prior mean µi can be viewed as an additional140

expert with variance σ2, which is independent from the original K experts.

Thus, to simplify the presentation, in the following we consider the prior mean

as the (K + 1)th expert that is always available to the aggregation algorithm

(i.e., it can never be missing).

2.2. Semi-supervised combination of experts145

Given the model parameters Θ, probability of observing the data set D can

be written as

P(D|Θ) = P(Du|Θ) P(Dl|Θ), (6)

where subscripts u and l denote unlabeled and labeled parts of the data set,

respectively. Let us first consider P(Du|Θ). As the data points are sampled IID,

the probability factorizes over individual data points, and we can write

P(Du|Θ) =

Nu∏
i=1

P(ŷi|Θ) =

Nu∏
i=1

∫
y

P(ŷK
i |y,Θ) P(y|Θ) dy. (7)

As both probabilities under the integral are assumed Gaussian, due to (2) and

(3), their product is also Gaussian. Then, by solving the integral, we obtain

P(Du|Θ) =

Nu∏
i=1

(√ |Σ|−1

(2π)K1TΣ−11
exp

(
− 1

2
(ŷi − yi1)TΣ−1(ŷi − yi1)

))
. (8)

Moreover, likelihood of the labeled part can be written as follows,

P(Dl|Θ) =

N∏
i=Nu+1

P(ŷK
i |yi,Θ) P(yi|Θ), (9)

which, following equations (2) and (3), is a product of Nl multivariate Gaussians

with covariance matrix Σ. Then, combining equations (6), (8), and (9), we can

compute likelihood of the data set D for any given set of parameters Θ.
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We employ the maximum likelihood principle to find the model parameters.

After finding the derivative of the log-likelihood with respect to Σ−1 and equat-

ing the resulting expression with zero, we obtain the following expression for

computing the Σ matrix,

Σ =
1

N

(
(Ŷl − yl1

T)T(Ŷl − yl1
T) +

Nu11T

1TΣ−11
+

ŶT
u Ŷu +

Nu∑
i=1

(
y2i11T − yi(1ŷT

i + ŷi1
T)
))
�

1 0

0 1

 , (10)

where � denotes element-wise matrix multiplication operator, 1 is a K × K

matrix of all ones, Ŷu and Ŷl are Nu × (K + 1) and Nl × (K + 1) matrices150

of expert predictions for unlabeled and labeled data, respectively, with each

row corresponding to a single data point, and yl is an Nl × 1 column-vector of

ground-truth values. Equation (10) yields an iterative procedure for learning

Σ, where Σ on the l.h.s. is a new value, and Σ on the r.h.s. is an old value.

Next, we maximize the log-likelihood of data set D with respect to w. The

log-likelihood, after removing all elements not dependent on w from equations

(8) and (9), is equal to

L = − 1

2σ2

Nu∑
i=1

(
yi − f(xi,w)

)2 − 1

2σ2

Nu+Nl∑
i=Nu+1

(
yi − f(xi,w)

)2
. (11)

We can see from (11) that, in order to maximize L with respect to w, we need

to solve linear regression where for unlabeled points we use an estimate of a

ground truth equal to yi. A closed-form solution for w can be found using the

familiar equations for solving linear regression, computed as

w = (XTX)−1XTy, (12)

where X is an N×D matrix of explanatory features with each row corresponding155

to a single data point, and y is an N -dimensional vector with the first Nu

elements equal to yi, i = 1, . . . , Nu, and the remaining Nl elements equal to

yi, i = Nu + 1, . . . , N .
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2.3. Missing experts

Let us now consider the case where some experts are missing. For exam-

ple, let us assume that the ith data point has q missing predictions. Then,

we reorganize vector ŷi in such a way so that the first a = (K + 1 − q) ele-

ments are available predictions, while the last q elements are missing predic-

tions, i.e., ŷi = [ŷT
ai, ŷ

T
qi]

T. Similarly, we reorganize Σ−1 matrix so that the

first a rows/columns correspond to available predictions, while the remaining q

rows/columns correspond to missing predictions, or

Πi(Σ
−1) =

 U V

VT Q

 , (13)

where Πi is a permutation function used to reorder both rows and columns

of Σ−1 according to the ith data point, and U is an a × a matrix. Given the

covariance matrix Σ and a vector of expert predictions ŷai for the ith data point,

the aggregated prediction yi can be found as a mean of the posterior distribution

yi|ŷai ∼ N (yi, (1
TU′i1)−1), where we introduced U′ = U−VQ−1VT to simplify

the notation, and

yi =
ŷT
aiU

′
i1

1TU′i1
. (14)

Note that we appended subscript i to indicate that the size of a matrix U′i160

depends on the number of available experts for the ith data point.

In the following, we derive the update equation for Σ. The probability of

observing the ith unlabeled point is equal to

P(ŷai|Θ) =

∫
ŷqi

P([ŷT
ai, ŷ

T
qi]

T|Θ) dŷqi =

∫
y

∫
ŷqi

P([ŷT
ai, ŷ

T
qi]

T|y,Θ) P(y|Θ) dŷqi dy.

(15)

Solving the equation (15) we obtain

P(ŷai|Θ) =

√
|Σ|−1|Qi|−1

(2π)K+q1TU′i1
exp

(
− 1

2
(ŷai − yi1)TU′i(ŷai − yi1)

)
. (16)

In a very similar manner we can find the probability of observing the ith labeled

data point. It follows

P(ŷai|yi,Θ) =

∫
ŷqi

P([ŷT
ai, ŷ

T
qi]

T|yi,Θ) dŷqi, (17)
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which, after solving the integral, results in

ŷai|yi ∼ N (yi1,U
′−1
i ). (18)

By combining equations (6), (16), and (18), we can find the likelihood of the

data set D. After finding derivative of the log-likelihood with respect to Σ−1

[31] and equating the resulting expression with zero, we obtain the following

expression for computing the Σ matrix,

Σ =
1

N

(
Nu∑
i=1

(
Jŷaiŷ

T
aiK +

J11TK
1TU′i1

+ y2i J11TK− yiJ1ŷT
ai + ŷai1

TK
)

+

N∑
i=Nu+1

J(ŷai − yi1) (ŷai − yi1)TK +

N∑
i=1

Π−1i (Ψi)

)
�

1 0

0 1

 , (19)

where Π−1i is an inverse permutation function that reorders rows and columns

of the matrix back to the original order of experts, symmetric (K+1)× (K+1)

matrix Ψi is equal to

Ψi =

 0 0

0 Q−1i

 , (20)

and JAiK for some symmetric a× a matrix Ai denotes the following symmetric

(K + 1)× (K + 1) matrix,

JAiK = Π−1i

( Ai −Ai Vi Q−1i

−Q−1i VT
i Ai Q−1i VT

i Ai ViQ
−1
i

). (21)

Lastly, after finding the derivative of the log-likelihood with respect to w, pa-

rameter vector of the prior model can be found as in (12).

2.4. Incorporating prior probability P(Θ)

Let us consider the case where we have some prior, expert knowledge about

the underlining data-generation model, and would like to include this knowledge

into the aggregation model. First, we write the joint probability of the data and

the model as follows,

P(D,Θ) = P(D|Σ−1,w) P(Σ−1) P(w). (22)
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Note that we defined prior P(Σ−1) in terms of an inverse of the covariance

matrix (i.e., in terms of a precision matrix). For the prior over the Θ parameters

we choose a normal-Wishart distribution NW(0, λ−1,S, n), a conjugate prior

for multivariate Gaussian distribution, with given λ prior variance parameter,

(K + 1)× (K + 1) scale matrix S, and n > K degrees of freedom, resulting in

P(Σ−1) P(w) =
|Σ−1|0.5(n−K−2) exp

(
−0.5 Tr(S−1Σ−1)

)
20.5n(K+1)|S|0.5nΓK+1(0.5n)

N (w|0, λI), (23)

where ΓK+1 is the multivariate gamma function, and I is a (K + 1)× (K + 1)

identity matrix. After setting n = (K + 3) and finding the derivative of the

log-likelihood with respect to Σ−1, we obtain the following update equation for

the covariance matrix Σ,

Σ =
1

1 +N

(
S−1 +

N∑
i=1

Π−1i (Ψi) +

N∑
i=Nu+1

J(ŷai − yi1) (ŷai − yi1)TK+

Nu∑
i=1

(Jŷaiŷ
T
aiK +

J11TK
1TU′i1

+ y2i J11TK− yiJ1ŷT
ai + ŷai1

TK)
)
�

1 0

0 1

 . (24)

Similarly, after finding the derivative of the log-likelihood with respect to weight

vector, w can be found using the closed-form solution for regularized linear

regression, with regularization parameter equal to λσ2,

w = (XTX + λσ2I)−1XTy. (25)

2.5. Data partitioning using a latent variable165

It is an inherent property of the experts in the aerosol domain that they do

not maintain the same quality of predictions across all observed conditions. To

address this characteristic of the aggregation problem, we consider partitioning

the data points into several groups, called the regimes, where each regime is

governed by a different prior from (2) and multivariate Gaussian from (3). In170

the following we assume there are R regimes, and that we have available a

feature vector x̃i ∈ RD̃ for the ith data point that could be used to assign it

to an appropriate regime [32]. Note that we denoted feature vector x̃i used for
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partitioning and feature vector xi used in the prior from equation (1) differently,

to emphasize that they do not necessarily need to be identical.175

Assuming a mixture of R regimes, probability of observing expert predictions

ŷai for the ith labeled data point can be written as

P(ŷai|x̃i, yi,Θ) =

R∑
r=1

Pr(ŷai|yi) πir(x̃i), (26)

where Pr(ŷai|yi) = P(ŷai|regimer, x̃i, yi,Θ), πir(x̃i) = P(regimer|x̃i,Θ), and

where appended subscript r denotes the rth regime. Similarly, we can write

probability of observing expert predictions ŷai for the ith unlabeled data point

as follows,

P(ŷai|x̃i,Θ) =

R∑
r=1

Pr(ŷai) πir(x̃i). (27)

Probability of observing the ith unlabeled or labeled data point given that it was

generated by the rth regime, Pr(ŷai) or Pr(ŷai|yi), respectively, can be computed

by considering equations (16) and (18), respectively. Before computing the

aggregated prediction, we first find the prior mean as

µi ≡ E[µi|x̃i,Θ] =

R∑
r=1

πir(x̃i) f(xi,wr), (28)

which acts as the (K + 1)st expert, and the aggregated prediction yi can then

be found using the following expression,

yi = E[yi|ŷai, x̃i,Θ] =

R∑
r=1

πir(x̃i)
ŷT
aiU

′
ir1

1TU′ir1
. (29)

To facilitate model optimization, we consider regime assignments as unob-

served data, and introduce a latent indicator variable zir such that the following

holds,

zir =

 1 if ŷai was generated by the rth regime,

0 otherwise.
(30)

Further, by introducing zi = [zi1, . . . , ziR]T, we can write the complete-data

likelihood for the ith labeled data point as

P(ŷai, zi|x̃i, yi,Θ) =

R∏
r=1

(
πir(x̃i) Pr(ŷai|yi)

)zir
. (31)
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Note that, for conciseness, in equations (31), (32), and (34), we only give ex-

pressions for labeled data. However, when dealing with the ith unlabeled data

point we simply need to replace Pr(ŷai|yi) by Pr(ŷai). Then, the complete-data

log-likelihood L is equal to

L =

N∑
i=1

R∑
r=1

zir
(

log πir(x̃i) + logPr(ŷai|yi)
)
. (32)

Expectation-Maximization (EM) algorithm [33] can be used to find the param-

eters Θ that maximize L from (32).

2.5.1. EM algorithm for semi-supervised aggregation

Before moving on, we need to decide on the parameterization of the prior

probability πir. We define this probability using a softmax function,

πir =
exp

(
−(x̃i − qr)TΛr(x̃i − qr)

)∑R
m=1 exp (−(x̃i − qm)TΛm(x̃i − qm))

, (33)

where we defined a prototype vector qr ∈ RD̃ and a D̃ × D̃ feature scaling

matrix Λr for each regime, to be found during optimization, resulting in Θ =180

{Σr,qr,Λr}r=1,...,R.

In the E-step, we compute the current expectation of posterior probability

hir that the rth regime is ”responsible” for generating expert predictions for the

ith labeled point as

hir = E[zir|ŷai, yi, x̃i,Θ] =
πir(x̃i) Pr(ŷai|yi)∑R

m=1 πim(x̃i) Pm(ŷai|yi)
. (34)

In the M-step, we fix values of hir for all data points and regimes, and

optimize L with respect to covariance matrices Σr, weight vectors wr, as well

as prototype vectors qr and scaling matrices Λr, r = 1, . . . , R. Note that the

derivatives of L with respect to these two sets of variables are independent from

each other, and the optimization of Σr and wr on one side, and qr and Λr on

the other, can be easily parallelized. After derivation, the update equation for
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Σr can be written as follows,

Σr =
1

1 +
∑N

i=1 hir

(
σ2
0rI +

N∑
i=1

hir Π−1
i (Ψir) +

N∑
i=Nu+1

hirJ(ŷai − yi1) (ŷai − yi1)TKr +

Nu∑
i=1

hir

(
Jŷaiŷ

T
aiKr +

J11TKr
1TU′ir1

+ y2irJ11TKr − yirJ1ŷT
ai + ŷai1

TKr
))

�

1 0

0 1

 .
(35)

In order to find the weight vector wr, let us first write out log-likelihood Lr,

pertaining to the rth regime. After removing all elements not dependent on wr

from equations (16) and (18), we obtain the following expression,

Lr = − 1

2σ2
r

Nu∑
i=1

zir
(
yi−f(xi,wr)

)2− 1

2σ2
r

Nu+Nl∑
i=Nu+1

zir
(
yi−f(xi,wr)

)2− λ
2

wT
r wr,

(36)

where the regularization term weighted by 0.5λ corresponds to an isotropic

Gaussian prior over weight vector wr introduced in Section 2.4. A closed-form

solution for wr can be found using the equation for weighted, regularized linear

regression, equal to

wr = (XTWrX + λσ2
rI)−1XTWry, (37)

where Wr is a diagonal N × N weight-matrix with the ith diagonal element

equal to hir.

Lastly, prototype vector qr and scaling matrix Λr can be found through the

gradient ascent optimization using the following update equations,

qnew
r = qold

r + η Λold
r

N∑
i=1

(hir − πold
ir )(x̃i − qold

r ),

Λnew
r = Λold

r − η
N∑
i=1

(hir − πold
ir )(x̃i − qold

r )(x̃i − qold
r )T,

(38)

where η is an appropriately set learning rate.

3. Experiments185

In this section, we first experimentally validate the semi-supervised aggre-

gation on synthetic data, and then apply the method to AOD estimation using

15



real-world aerosol data set. We used Root Mean Squared Error (RMSE) mea-

sure to report performance of various aggregation methods, commonly used in

AOD research [34]. RMSE is defined as follows,

RMSE =

√√√√ 1

N

N∑
i=1

(yi − yi)2, (39)

where the sum is over N labeled data points from the test set.

3.1. Validation on synthetic data

We started by evaluating our method on synthetic data generated as follows:

for a given number of regimes R and experts K, we selected weight vector w,

prototype q, and a covariance matrix for each regime Σ. Then, we assigned the190

ith data point uniformly at random with probability 1/R to a regime, say the lth

regime, and obtained features xi by sampling from multivariate Gaussian with

mean ql and covariance matrix 0.5I, where for simplicity we also set x̃i = xi.

We sampled wr, r = 1, . . . , R, from multivariate Gaussian with zero mean and

unit variance. We sampled ground-truth value yi from Gaussian with unit195

variance and mean computed using (1), then sampled K expert predictions

from a Gaussian N (yi1,Σl). Finally, we removed each expert’s prediction with

probability 0.5 to simulate missing experts. In all experiments we set S = I, and

used 15 EM iterations. Learning rate η was set through cross-validation, and

the reported results were averaged over 100 experiments. To better characterize200

the proposed model, we first assumed uninformative prior (i.e., do not learn

wr vectors and set σ → ∞), and evaluated the benefits of the informative,

context-dependent prior at the end of this section.

In order to evaluate the semi-supervised method without clustering, we set

K = 5, R = 1, D = D̃ = 2, and Σ1 = diag([0.1, 0.2, 0.3, 0.4, 0.5]). We compared205

our learning method to a baseline method that averages all available experts, as

well as to the optimal predictor that computes the prediction (29) using the true

Σ1. We increased the number of training points N from 10 to 100 in increments

of 10, and for each N we experimented with percentage of labeled data points

equal to 0%, 20%, 40%, and 100% (shown as four solid lines in Figure 3).210
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Figure 3: Results on the synthetic data set

The results in terms of RMSE, evaluated on 1,000 testing points generated

in the same way as the training set, are shown in Figure 3a. We can see that the

performance of the fully unsupervised approach, given by the top-most full line,

is already better than simple averaging, which further improves as the number of

unlabeled data grows. Moreover, as we increase the number of labeled points,215

the semi-supervised method further improves the accuracy, approaching the

lower bound on RMSE achieved by the optimal combination of experts.

Next, we generated the data using two regimes by setting q1 = [1, 1], q2 =

[−1,−1], Σ1 = diag([0.1, 0.2, 0.3, 0.4, 0.5]), Σ2 = diag([0.5, 0.4, 0.3, 0.2, 0.1]),

and we set R = 2. The results in terms of RMSE are given in Figure 3b, where220

we also show accuracy of the proposed method which used only labeled data,

but assumed only one cluster. The RMSE of supervised method that assumed

only a single cluster is worse than simple averaging, and approached it as the

data size increased. Unsupervised method using two clusters achieved better

accuracy than simple averaging, and RMSE further decreased with larger data225

sizes. Introduction of labeled data points further decreased the RMSE.

In the next set of experiments we evaluate the benefits of the prior model

as in (1), and learn both the feature vectors wr and variances σr, r = 1, . . . , R.

We set the number of training data points to 100, and experimented with per-
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Figure 4: Semi-supervised model with and without prior on the synthetic data set

centage of labeled data points from 0% to 100%, with 10% increments. We set230

λ = 10, and run experiments for R = 1 and R = 2. The results in terms of

RMSE are illustrated in Figure 4. We can see that the introduction of prior

model resulted in significant decrease in the RMSE measure. It is important to

note that baseline linear regression alone, trained on labeled data points only,

would have RMSE of around 1, much worse than any of the experts. Interest-235

ingly, for purely unlabeled data set, the method with informative prior obtained

slightly worse result than the method without, which is due to overfitting to the

estimated ground-truth values for unlabeled data points (i.e., the prior model

learns to predict other experts’ predictions), and can be mitigated with stronger

regularization when number of labeled data points is small or by increasing size240

of the training set. However, for both R = 1 and R = 2, the method with

context-dependent prior outperformed the aggregation method with uninfor-

mative prior even for small number of available ground-truth labels. Moreover,

the performance gap quickly grew as we increased the fraction of labeled data,

eventually reaching better RMSE than the optimal method from Figure 3.245

3.2. Validation on aerosol data

In this section we present the results of the experiments on real-world, global

aerosol data set. We first describe how the data set was generated, before moving
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on to the discussion of the performance results.

3.2.1. The data set250

We used ground-based AERONET data [14] and global data from 5 satel-

lite instruments spanning 5 years, from 2006 to 2010. For the ground-based

AERONET sensors we downloaded data for all sites from AERONET web-

site2. To obtain the target AOD values we used only Level 2.0 AOD data,

the highest-quality data, as it is pre- and post-field calibrated, automatically255

cloud-cleared and manually inspected, and take a measurement at 10:30am

as a ground-truth AOD value. Furthermore, to obtain feature vectors xi we

used the 2nd-generation NOAA Global Ensemble Forecast System Reforecast

(GEFS/R) data3, and considered longitude and latitude of the location, as well

as the following measurements: wind mixing energy, skin temperature, resulting260

in dimensionality D = 4. To obtain partition feature vectors x̃i we considered

longitude and latitude of the location, resulting in dimensionality D̃ = 2.

For the satellite sensors, we used Multi-sensor Aerosol Products Sampling

System [35], and downloaded data from the project’s website4, which provides

satellite data only when they are collocated with AERONET locations. We only265

used research-quality AOD estimates, recommended by the teams responsible

for prediction algorithm of each sensor. The following satellite instruments were

considered:

• MODIS We used Daily Level 2 aerosol product, collection 5.1 (MOD04 L2

and MYD04 L2, for Terra and Aqua, respectively). For this study we only270

used predictions with Quality Assurance (QA) flag equal to 3, and consid-

ered the following Scientific Data Set (SDS): Corrected Optical Depth Land.

The product was available at around 10:30am and 1:30pm local time, at

the overpass times of Terra and Aqua satellites, respectively.

2http://aeronet.gsfc.nasa.gov/cgi-bin/combined data access new, accessed July 2014
3http://esrl.noaa.gov/psd/forecasts/reforecast2/download.html, accessed July 2014
4http://disc.sci.gsfc.nasa.gov/aerosols/services/mapss/mapssdoc.html, accessed July 2014
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• MISR We used MIL2ASAE data product, a MISR Level 2 aerosol prod-275

uct. For this study we only used predictions with the Quality Assur-

ance (QAb) flags equal to 0 and 1, and considered the following SDS:

RegBestEstimateSpectralOptDepth. The product was available at around

10:30am local time, at the overpass time of Terra satellite.

• OMI We used OMAERUV, a Level-2 near-UV aerosol absorption and280

extinction optical depth and single scattering albedo OMI data product.

For this study we only used predictions with the Quality assurance for

final algorithm flag (Qafaf) equal to 0, and considered the following SDS:

FinalAerosolOpticalDepth. The product was available at around 1:30pm

local time, at the overpass time of Aura satellite.285

• SeaWiFS We used SWDB L2, Deep Blue Aerosol Optical Depth Daily

Level 2 data product. For this study we only used predictions with Qual-

ity Assurance (QA) flag equal to 3, and considered the following SDS:

aerosol optical thickness 550 land. The product was available at around

12:20pm local time, at the overpass time of SeaStar.290

We note that we also considered the CALIOP data product. However, due to

a very small number of collocated data points that were available, we did not

include it in this study.

We considered AOD at 550nm wavelength. If an instrument did not provide

AOD at this wavelength, we performed linear interpolation or extrapolation in

the log-scale of predictions at two closest wavelengths to 550nm [36]. In partic-

ular, if τa and τb are available, where τx denotes AOD reported at wavelength

x, τ550 is calculated as

τ550 = τa · exp

((
log(550)− log(a)

)(
log(τb)− log(τa)

)
log(b)− log(a)

)
. (40)

We used 5 years of data from 2006 to 2010, where there were, on average, 199

working AERONET sites each year. After removing AERONET sites with too295

few observations, there remained 86 sites in the data set, with locations shown
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Table 1: RMSE performance of the aggregation methods

Continent Number of sites Baseline Supervised Semi-supervised

Africa 6 0.0737 0.0734 0.0697

Asia 11 0.0929 0.0887 0.0847

Europe 33 0.0873 0.0690 0.0648

North America 32 0.0814 0.0795 0.0752

South America 4 0.0916 0.0864 0.0844

in Figure 5. This resulted in a labeled data set with N = 23,119 data points,

where 67% of expert predictions were missing. Both xi and x̃i vectors were

always available for all data points. We used this data set for three sets of

experiments: (1) evaluating usefulness of unlabeled data; (2) evaluating useful-300

ness of partitioning; and (3) evaluating usefulness of context-dependent prior

over AOD values. In all sets of experiments we performed leave-one-site-out

cross-validation.

3.2.2. Results

In the first set of experiments, we manually split the data into 5 per-305

continent subsets (2 Australian sites were assigned to Asian cluster), and then

trained a separate aggregation model for each partition. We first randomly se-

lected 2 training AERONET sites and took 50 labeled data points from each of

them. Then, we selected 50 unlabeled data points from the remaining training

AERONET sites, and sampled 50 labeled data points from the left-out site for310

validation. We trained one model which used only labeled data, and one that

used both labeled and unlabeled data. We used R = 1 clusters in both cases,

and assumed σ →∞, resulting in an uninformative prior over the AOD values.

We compared the performance to a baseline method that takes a simple average

of available expert predictions. The results in terms of RMSE are given in Ta-315

ble 1, clearly indicating that the proposed method successfully exploited large

amounts of readily available unlabeled data. This is particularly important for

the largest continents of Asia and Africa, where the density of AERONET sites
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Table 2: Performance of the semi-supervised aggregation methods

Method # clusters RMSE

Per-continent partition 5 0.0758

No partitioning 1 0.0728

EM-partitioning 2 0.0720

EM-partitioning 3 0.0711

EM-partitioning 4 0.0723

EM-partitioning 5 0.0726

EM-partitioning with prior 3 0.0689
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Figure 5: Found clustering of AERONET sites

is very low and labeled data are extremely scarce. As seen in Table 1, the aver-

age improvement of semi-supervised approach over the baseline was over 10%,320

and around 5% over the purely supervised method.

In the second set of experiments we evaluated the benefits of data partition-

ing using the EM algorithm. We randomly sampled from each training site 50

labeled and 50 unlabeled data points, and from the left-out site sampled 50 la-

beled data points used for validation, assuming σ →∞. We used our proposed325

method with R ∈ {1, 2, 3, 4, 5}, repeating the experiments 5 times. RMSE is re-

ported in the middle of Table 2, where at the top we also report the RMSE of the

semi-supervised method using the per-continent partition considered earlier.
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We can see that semi-supervised aggregation with partitioning using latent

variables had significantly lower RMSE than the baseline where we manually330

split the data into per-continent subsets using domain knowledge. By increas-

ing the number of clusters from 1 (i.e., without partitioning) to 5 we observed

a drop in RMSE of around 6% over the baseline, achieving the best perfor-

mance for R = 3 clusters. In Figure 5 we color-code the AERONET sites

according to their cluster assignments for this case. Interestingly, the shown335

partition roughly corresponds to clustering found by earlier studies that con-

sidered aerosol properties [30], where south-western cluster contains sites with

mostly absorbing aerosols, south-eastern cluster sites with mostly non-absorbing

aerosols, and northern cluster contains sites with mixed moderately absorbing

and non-absorbing aerosols. Given predictions of all the experts, for the north-340

ern cluster the weights of linear combination assigned to MISR, Terra MODIS,

Aqua MODIS, OMI, and SeaWiFS instruments were [0.37, 0.19, 0.19, 0.13, 0.12],

for the south-eastern cluster they were [0.46, 0.18, 0.18, 0.05, 0.13], for the south-

western cluster they were [0.44, 0.15, 0.15, 0.10, 0.16], respectively. In concor-

dance with the domain knowledge, MISR obtained the largest weights, while345

other instruments were given similar weights, with the exception of OMI which

consistently had the lowest weight in all clusters.

Lastly, we evaluated the benefits of the linear regression prior over the AOD

values, introduced in equation (1). Here we dropped the assumption that σ →

∞, set R = 3 due to the results shown in the middle part of Table 2, and350

during training learned both weight vectors wr and prior variances σr, r =

{1, 2, 3}. In order to partition the data set we used longitude and latitude of the

AERONET sites as in the previous experiment, while for explanatory features

xi from (1) we used 4 ground measurements discussed in Section 3.2.1. The

RMSE performance of the final model is given at the bottom of Table 2, where355

we can see further improvements over the methods that assumed uninformative

prior. In particular, compared to the best previous model, RMSE dropped by

around 3.2%, and it is interesting to note that the learned weight of the linear

combination for the prior model was roughly similar to the weights of Terra
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MODIS and Aqua MODIS. An additional benefit of the assumed prior is the360

ability to provide AOD estimates even when there are no available satellite

experts, by using the available non-AOD ground-based measurements through

equation (1). We can conclude that the results presented in this section confirm

the validity of the proposed semi-supervised method for aggregation of experts,

which is able to account for missing experts, find a partition of data into clusters,365

exploit additional available information through the prior model, and construct

specialized aggregators on each cluster.

4. Conclusion and future work

Aerosol Optical Depth is an important input parameter to complex climate

models developed to predict and better understand Earth’s climate. Conse-370

quently, accurate AOD estimation is the problem of global significance, and in

this paper we address this task by proposing a semi-supervised method for ag-

gregation of AOD predictions from noisy satellite-borne sensors into a single,

more accurate estimate. By assuming that expert predictions follow multivari-

ate Gaussian distribution, the method accounts for both missing experts and375

unlabeled data in a principled manner, addressing an issue inherent to the re-

mote sensing domain. Furthermore, by introducing a context-dependent AOD

prior, the model is capable of incorporating additional data sources and provid-

ing estimates even when there are no available experts. Lastly, we also cluster

the data during training by introducing a latent indicator variable for each clus-380

ter, resulting in a more interpretable model. Results on a synthetic data set and

real-world aerosol data set comprising 5 satellite-borne sensors strongly indicate

the benefits of the proposed aggregation method.

The described approach makes several assumptions that resulted in a sim-

plified model of aerosol distribution, yet do not necessarily hold in practice. In385

particular, we assumed that the data points are sampled IID, and did not ac-

count for spatio-temporal correlations that inherently exist in the aerosol data

[37, 38]. In addition, the covariance matrix in this work is assumed static, and is
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not affected by the context in which the data points appear. Lastly, we assumed

that errors in measurements are Gaussian, and that all experts have equal, zero390

biases. We are investigating approaches where we weaken or altogether drop

these simplifying assumptions in order to extend and further improve modeling

of aerosol distribution, and leave these ideas for future work.
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