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ABSTRACT 1 

Parking search is a major issue in urban areas. Drivers in major cities face a daily struggle in finding 2 

parking space, and much of this is due to lack of information about parking rules, parking prices, 3 

traffic conditions, and parking availability. As a consequence, drivers often perform inefficient search 4 

for a parking space and spend too much time searching, pay too much, or park too far from an 5 

intended destination. Inefficient parking search is not a problem only for drivers, it is also increasing 6 

traffic congestion and pollution and it causes a distortion of the parking market. Despite the vast 7 

technological advances in recent decades, parking search remains fundamentally the same societal 8 

problem it has been for almost a century. The objective of this paper is to address this issue by 9 

proposing the ParkAssistant, an algorithm that calculates a cruising route that minimizes the expected 10 

cost of parking, defined as a mix of price and time to reach the destination. To calculate a good 11 

cruising route, the algorithm uses parking information that consists of parking rules, traffic 12 

conditions, probabilities of finding an empty parking space, and drivers’ utility function. We 13 

evaluated ParkAssistant through simulations using real-life parking occupancy data from San 14 

Francisco, CA. The results indicate that, as compared to an uninformed driver model, it allows drivers 15 

to find parking much faster. The results also show that the quality of ParkAssistant recommendations 16 

grows with the quality of parking information the method is provided with. 17 

INTRODUCTION 18 

Parking search is a major issue in urban areas. A recent study (1) conducted in 20 international cities 19 

shows that drivers face a daily struggle in finding a parking spot: 60% of drivers have abandoned 20 

their search for a spot at least once, and more than a quarter have gotten into an argument with a 21 

fellow motorist over a parking space. Much of this is caused by lack of information about parking 22 

rules, parking prices, and parking availability near the destination. Thus, drivers are often forced to 23 

perform an inefficient search for a parking spot, thus spending too much time searching, paying too 24 

much, or parking too far. Inefficient parking search is not a problem only for drivers seeking parking. 25 

The same study estimates that 30% of overall traffic in major cities originates from drivers searching 26 

for a parking spot. Thus, inefficient parking search is increasing traffic congestion and pollution. 27 

From the economic perspective, inefficient parking search also causes a distortion of the parking 28 

market. Interestingly, despite the vast technological advances during the recent decades, parking 29 

search remains fundamentally the same societal problem it has been for almost a century (2). The 30 

objective of this work is to become a stepping stone towards solving the parking search problem. 31 

 Let us look at the setup of urban parking in more detail. There are two major types of 32 

parking: on-street and off-street. The on-street parking spots are typically alongside the roads and are 33 

treated as public property. The off-street parking includes parking lots and garages that are managed 34 

either by private providers or by municipal authorities. Both types of spots are regulated with parking 35 

rules defining availability, time limits, pricing, and permissions, and there is typically a large 36 

variability in rules even between spatially neighboring locations. Regarding the pricing, it is typical in 37 

the U.S. cities that the on-street parking is significantly more affordable than the off-street parking, 38 

particularly for residential parking and for shorter stays of up to a couple of hours. In fact, a vast 39 

majority of on-street spots are typically free and lightly regulated, and only the spots within business, 40 

tourist, and entertainment areas are metered and could have complex regulations. Affordability of on-41 

street spots is a consequence of a political view that treats them as a shared public good. Prices in 42 

parking garages and lots are typically market-based, reflecting the fact that construction and 43 

maintenance of parking spaces is costly. As a consequence, the on-street spots are in higher demand 44 

and drivers are typically interested in exploring their availability before considering the off-street 45 

parking. Due to the higher demand and occupancy rates of the on-street parking, searching for an on-46 

street parking spot often requires significantly more time and is more uncertain. This opens an 47 

interesting dilemma – whether saving several dollars is worth spending an uncertain amount of time 48 

searching for an on-street spot. This dilemma is at the core of the decision challenges that many 49 

drivers face when considering parking in urban areas. 50 
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 To better understand the complexity of parking decision-making from the perspective of 1 

drivers, let us look at all the relevant information that one should consider. Let us assume a car is 2 

approaching its destination and its driver needs to decide where to search for a parking spot. The first 3 

piece of information is where the parking is permitted in the neighborhood of the destination and 4 

what the prices are. The second piece of information is current availability of parking at the permitted 5 

locations. In particular, it is appropriate to think about the availability in terms of probability of 6 

finding an open parking spot at the time of the arrival. The third piece of information that impacts the 7 

time needed to find parking are traffic conditions; in particular, the speed of traffic. The fourth piece 8 

of information is related to the driver’s parking preferences. This is related to questions such as the 9 

purpose of the trip, the time constraints, driver’s willingness to walk, their budget, and the comfort 10 

with on-street parking (e.g., parallel parking may be an issue for some drivers). Importantly, even if 11 

all that diverse and complex information were available, it is not clear how to present it to the driver 12 

to facilitate the parking search. Due to the uncertain nature of parking search, processing all the 13 

available information and reasoning about it to make parking decisions could be a daunting task for 14 

any driver. In practice, the parking information is likely to be incomplete and uncertain, which further 15 

exacerbates the complexity of the parking decision-making process. 16 

BACKGROUND 17 

Recent years have seen the birth of “smart parking”, which refers to the innovative use of technology 18 

to make parking more efficient and easier. In the following, we briefly review efforts that are in our 19 

view the most relevant to the current work and which motivate our approach. One type of effort 20 

focuses on parking occupancy monitoring. For example, many parking garages have sensing systems 21 

that provide real-time information about parking availability, such as a total number of available 22 

parking spots in the garage or a number of available spots in each garage segment. For on-street 23 

parking, several cities have been experimenting with sensors installed at the individual on-street 24 

parking spots to collect real-time information about parking availability. For example, SFpark (3) is a 25 

federally funded pilot project initiated in 2011, which resulted in installation of occupancy sensors at 26 

around 7,000 metered parking spots in downtown San Francisco, CA. Their purpose is to help 27 

determine demand-responsive pricing and to provide real-time occupancy and pricing information to 28 

the public through Internet. While parking sensors indeed give very useful information, this comes at 29 

a price. For example, StreetLine that installed similar sensors at around 10,000 similar on-street 30 

parking sensors in Los Angeles apparently charges around $1 per day for operation and maintenance 31 

of each sensor (4). A recent study by the San Francisco Department of Transportation found that there 32 

are 26,750 parking meters, 275,450 total on-street spots, and another 166,500 off-street parking spots 33 

in the city, and that the length of all street parking spots exceeds the total length of California’s entire 34 

840-mile coastline (5). Having this in mind, it is doubtful that placing dedicated sensors even under a 35 

fraction of the spots could be cost-effective. 36 

There are potential alternatives to sensors embedded at parking spots. A notable example is 37 

ParkNet (6), which observes on-street parking occupancy from a moving vehicle equipped with a 38 

GPS receiver and a passenger-side-facing ultrasonic rangefinder. The authors claim that their system 39 

is 95% accurate and that it might be cheaper than the SFpark sensing project if the sensors were 40 

installed on all taxis in San Francisco. However, the deployment of such a system would still require 41 

significant investment by the municipalities and the resulting coverage would be uneven and 42 

dependent on the taxi routes, which might not correlate well with the locations of the most demanded 43 

parking spots. Other authors studied a scenario where multiple drivers use an app that collects their 44 

GPS traces, detects when somebody parked or left a parking spot, and broadcast this information back 45 

to the users (7, 8, 9). In (10) the authors propose how to use such information to estimate parking 46 

probabilities by assuming the parking data are obtained by random sampling. 47 

Beyond occupancy sensing, creation of traveler information systems for parking is another 48 

important smart parking challenge. These systems typically come in the shape of websites or apps 49 

that provide real-time parking information. For example, a popular ParkMe app (11) provides pricing 50 
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regulations and rules for all parking lots and garages in a number of cities. It also provides occupancy 1 

information for garages equipped with smart sensors, as well as navigation to the selected garage. 2 

However, in most cities, the app does not provide any information about the on-street parking, thus 3 

making it an incomplete source of information. For cities such as San Francisco and Los Angeles, 4 

during 2012 and 2013 it was possible for public to view real-time occupancy of monitored spots, but 5 

the coverage was limited to a small number of city blocks. Other than the occupancy, parking rules 6 

are another important source of information. Several cities such as Seattle and New York provide web 7 

interfaces that allow querying of the on-street rules. Interestingly, parking signs in New York City are 8 

so complicated that drivers have trouble interpreting them, and the city maintains several dedicated 9 

web pages helping the public to interpret them (12). There remain two major open questions related to 10 

the traveler information systems for parking: how to collect information necessary for informed 11 

parking, and how to present this information to drivers to help them minimize the cost of their 12 

parking search. 13 

A question of parking reservation and pricing has also garnered significant research interest. 14 

Some researchers are proposing systems that allow drivers to reserve open parking spots (13, 14, 15). 15 

In addition, some authors take a game-theoretic view of parking search and propose real-time 16 

auctions to determine who gets an open spot (15, 16, 17), which often requires decisions to be 17 

centralized and information to be censored (16). However, such reservation and pricing approaches 18 

use questionable assumptions that open spots can be detected, that they could be reserved, and that all 19 

drivers have access to the auction system. A related approach is to set parking prices in a demand-20 

responsive way such that at least a small fraction of spots are available on every street at any given 21 

time (18). This approach was tested in San Francisco as part of the SFpark project, and it was 22 

observed that the resulting average parking prices were lower, parking availability was improved, and 23 

drivers were spending less time looking for parking (19). Despite this apparent success, some scholars 24 

are questioning the stated benefits and point to the remaining open issues (20, 21), and it is unclear if 25 

the approach can be translated to other cities because it implies significant investments in parking 26 

sensor networks, as well as a political will to implement the unpopular demand-responsive pricing.  27 

The question of parking choice and parking search has been studied before in the context of 28 

agent-based modeling of parking. In (22), a parking choice model was proposed, which models how 29 

drivers decide which parking spot to go to. Similarly to our work, the authors account for driver’s 30 

budget, walking distance, and other relevant factors, and assign a utility score to each parking 31 

location. On the other hand, the authors model the decision process while not addressing the problem 32 

of a parking search, which is the topic of this study. In ParkAgent (23), a simplistic model of parking 33 

search is proposed where drivers drive directly to the destination, start searching as they get close to 34 

it, and continue going in circles until they find a parking spot. This model is similar to our 35 

uninformed driver model that we will use as a baseline in our experiments. In (24), the ParkAgent 36 

model has been enhanced to use sensor information about parking occupancy. As compared to our 37 

optimization-based model, the model from (24) is a greedy search heuristics that might not fully 38 

exploit the available occupancy information.    39 

PROPOSED APPROACH 40 

As we described in the previous sections, despite many efforts it is still not clear how to harness 41 

novel, advanced technology and create smart parking solutions that address the longstanding parking 42 

challenges. We believe that an answer to most of the open questions in smart parking has to start with 43 

helping drivers find the best parking spot they could, done by using all the publicly available 44 

information. If we can help every driver maximize parking utility based on their personal preferences, 45 

we believe it can start a cascade of events that will minimize driver frustration, reduce parking search 46 

time, create an efficient parking market, allow policy makers to make informed decisions about 47 

parking, and enable benefiting from future technological advances. This is why the aim of this work 48 

was to propose an algorithm that uses uncertain and incomplete parking information to help drivers 49 
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find a parking spot that maximizes their expected utility. We will refer to this algorithm as the 1 

ParkAssistant, and describe it in the following section. 2 

Methodology 3 

Parking search is a complex decision problem under uncertainty, where it is possible that several 4 

approaches are viable. To compute the optimal one, ParkAssistant first acquires parking instructions 5 

from a driver consisting of current car location (origin), location of destination, and parking 6 

preferences such as intended parking duration, time flexibility, price elasticity, and willingness to 7 

walk. The parking preferences are converted into an appropriate utility function. ParkAssistant then 8 

uses the obtained parking instructions to recommend a parking route defined as a sequence of M 9 

consecutive road segments starting from the current location, where each segment is labeled either as 10 

PARK or NO PARK. Value M is fixed and prespecified by a modeler, usually set to an appropriate 11 

number to make sure that, for example, the route has a length of at least 10 city blocks. The driver is 12 

instructed to drive along the parking route and to park at the first available parking spot along road 13 

segments labeled with PARK, while ignoring potentially available parking spots at NO PARK 14 

segments (e.g., the segment may be far from the destination and driver’s willingness to walk is low). 15 

 16 

 17 
 18 

FIGURE 1 Illustration of the parking search process using ParkAssistant 19 

 20 

 Figure 1 provides an illustration of the parking search process. It shows a city grid with 4 21 

times 4 city blocks. There are only 6 open parking spots plotted as small checkered rectangles. The 22 

car is at the origin and its driver is interested in reaching the destination. The driver does not know in 23 

advance where the open spots are. ParkAssistant provided a parking route of length M = 9, which 24 

consists of full and dashed lines denoting PARK and NO PARK street segments, respectively. The 25 

car starts moving along segment S1. Since that part of the route is dashed, it means the driver ignores 26 

any open parking spots and keeps driving. Thus, the car does not park at the open spot along segment 27 

S1. Since segment S2 is also dashed, the driver keeps following the route without looking for parking. 28 
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Upon reaching segment S3, which is a full line, the driver keeps looking for the open parking spots, 1 

but there are not any. Upon reaching the full-line segment S4, the driver keeps looking and observes 2 

the open parking spot. The driver parks the car at the open spot, potentially pays the parking fee, and 3 

proceeds walking towards the destination. Given the outcome, the question is what the driver’s 4 

satisfaction with the provided route is. We propose to measure it using a utility function. 5 

 Let us denote the utility function that quantifies drivers’ satisfaction with parking and 6 

reaching the destination from the origin in t minutes as U(t). In Figure 2 we illustrate two possible 7 

utility functions which have the maximum value of 1 when t = 0, and equal to 0 for t > 20 min. The 8 

first function is constant until t = 20 min, while the second function gradually decreases towards zero. 9 

The first utility function may correspond to a driver who must reach the destination in 20 minutes 10 

because of an important business meeting, where the utility drops significantly as the meeting time 11 

approaches, thus favoring parking as soon and as close as possible. The second utility function may 12 

correspond to a driver interested in going to a theater with friends, where arriving any time before the 13 

theater door closes is acceptable, thus allowing less-constrained search and more room for 14 

exploration. Given the function U(t), it is possible to calculate the utility of parking at any particular 15 

parking spot. For example, the utility may be calculated as U(Td + Tw), where Td is driving time from 16 

the origin to the parking spot and Tw is walking time required to reach the destination from the 17 

parking spot. For the example route given in Figure 1, the utility equals U(Td ({S1, S2, S3, S4}) + 18 

Tw (S4, destination)), where Td (S) is a total driving time along segments from the segment multiset S, 19 

and Tw (A, B) is a total walking time from location A to location B. 20 

  21 

 22 
(a)                                                            (b) 23 

 24 
FIGURE 2 Examples of utility functions U(t) that simulate: (a) driver going                                 25 

to an important business meeting; (b) driver going to a theater with friends 26 

 27 

The proposed approach is very flexible, and a modeler can use more elaborate ways to 28 

calculate the utility in order to better model drivers’ parking preferences. For example, the utility may 29 

be calculated as U(Td + w1 · Tw) where w1 is a constant larger than one, reflecting that the driver 30 

prefers to find a parking spot close to the destination even if it requires longer total driving time. It is 31 

also possible to account for the price elasticity of the driver. For example, the utility may be 32 

calculated as U(Td + w1 · Tw + w2 · price), where price is the price of parking and w2 is a positive 33 

constant, thus reflecting that the utility drops with the price of parking. Alternatively, the utility can 34 

be defined as a function of parking search time and price, which may also depend on time of day and 35 

weather conditions. 36 

Calculating parking route utility 37 

Given the ability to calculate the utility for parking at a specific spot, it becomes possible to 38 

calculate the utility of a parking search route. If the locations of open parking spots were known in 39 

advance, calculating the utility of a route would amount simply to observing the first open spot along 40 
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the PARK segments of the route, calculating Td and Tw, and computing the utility as U(Td + Tw). 1 

However, unless parking spots are monitored with sensors (which is very costly), the parking 2 

occupancy could not be known with certainty. In addition, knowledge about the traffic conditions is 3 

also typically uncertain, which makes it challenging to calculate driving time Td. Since the utility is 4 

subject to uncertainties such as actual traffic and the probabilities of finding available parking spots 5 

along the route, ParkAssistant calculates the expected utility for the given parking route. Let us 6 

represent the unique identifiers (IDs) of road segments along a specific route of length M as a 7 

sequence {i1, i2, …, iM}. Then, let us define as {park1, park2, …, parkM} the corresponding indicators 8 

of whether the driver should look for a parking spot along each of the route segments, where parkm = 9 

1 encodes that the mth segment along the route with ID im is labeled as PARK and parkm = 0 means 10 

that the segment is labeled as NO PARK. Let us denote with P(iM) the probability that there is an 11 

open parking spot along street segment iM. 12 

To get an intuition on how to calculate the expected utility of parking route of length M 13 

defined with a sequence of segments {i1, i2, …, iM} labeled with {park1, park2, …, parkM}, let us 14 

assume that park1 = 1. Then, with probability P(i1), the car will park along the first segment and the 15 

utility will equal U(Td (i1) + Tw(i1, dest)), where dest denotes the destination. If we assume park1 = 0, 16 

then the probability of parking along the first segment is 0. Thus, we can claim that with probability 17 

P(i1) · park1 the utility will equal U(Td (i1) + Tw(i1, dest)), and with probability 1 − P(i1) · park1 the car 18 

will continue driving. Following this reasoning, we can conclude that with probability (1 − 19 

P(i1) · park1) · P(i2) · park2 the car will park along segment i2 and observe utility U(Td ({i1, i2}) + 20 

Tw(i2, dest)). By continuing this line of thought, it becomes possible to express the lower bound Ulower 21 

on the expected utility of the route as the following recursive formula, 22 

 23 
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The formula expresses a lower bound Ulower of the expected utility, because it assumes that if parking 24 

is not found along the M segments of the route, the utility of the subsequent parking search is zero. 25 

Thus, the lower bound represents a pessimistic estimate of the expected utility. To get an optimistic 26 

estimate, we can calculate the upper bound Uupper as follows, 27 
 28 
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(2) 

where Td (iM, dest) denotes the driving time from the Mth route segment to the destination. The upper 29 

bound in the equation assumes that if there are no available parking spots along the M segments of the 30 

route, the driver will be able to drive directly to the destination and find a parking spot there. Both 31 

bounds approach the expected utility when M is large. 32 

Computing the optimal parking route 33 

 The objective of ParkAssistant is to find the route of length M with the highest expected 34 

utility. If we are interested in finding the optimal route in a brute force manner, this would require 35 

examination of all routes of length M, whose number scales exponentially as O(2M). Instead, we 36 

propose a computationally efficient, greedy procedure for finding the optimal route, given as 37 

Algorithm 1. 38 
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The recursive algorithm is invoked twice for each parking instance. In particular, the 1 

algorithm is invoked with the segment on which the origin is located as an input, labeled once with 2 

PARK and once with NO PARK label. In addition, all global variables are initialized to the values 3 

given in the table before the function is run. The function first checks if the length of the current route 4 

has reached the prespecified length M (line 01), in which case it updates the current best route 5 

information if the route’s lower bound on the expected utility is higher than the lower bound of the 6 

best route so far (lines 03-06), and the algorithm then brakes out from the recursion (line 07). If the 7 

route length is still smaller than M, it is expanded with the segments that can be reached from the 8 

final segment of the route (line 09), and the method is called recursively for each of the expanded 9 

routes and for both possible park labels (lines 10-17). However, before the recursive call, for each 10 

expanded route we first check if the upper bound is lower than the lower bound of the best route so 11 

far (line 15), which allows us to prune away bad routes. In practice, we found that the pruning step 12 

reduces the search space significantly and results in large computational speed ups, making the route 13 

optimization practical for M as large as 20. Note that if the utility function is monotonically non-14 

increasing, such as utility functions given in Figure 2, it can be shown that the computed route of 15 

length M is guaranteed to be optimal, and to have the highest lower bound on the expected utility of 16 

all the possible routes of length M. 17 

 18 

ALGORITHM 1 Pseudocode of the recursive routing algorithm 19 

ParkAssistant(route = segment of origin, labels = 0/1) 

Input variables : current route route, park/no park labels labels; 

Global variables: optimal route bestRoute = [], optimal labels  

                  bestLabels = [], lower bound of current optimal  

                  route maxLowerBound = 0, max route depth M; 

 

00: // break out of recursion if maximum depth is reached 

01: if (route is of length M) 

02:    // check if this is a new best route 

03:    if (Ulower of route and labels > maxLowerBound) 

04:     maxLowerBound ← Ulower; 

05:       bestRoute     ← route; 

06:       bestLabels    ← labels; 

07:  return; 

 

08: // expand the current route 

09: find set S of next driving segments for route; 

10: foreach (segment seg from S) 

11:    foreach (label lab from {0, 1} set)  

12:       newRoute  ← append seg to route; 

13:       newLabels ← append lab to labels; 

14:       // check if we can prune this route 

15:       if (Uupper of newRoute and newLabels < maxLowerBound) 

16:        next; 

17:     ParkAssistant(newRoute, newLabels); 

 20 

 Let us summarize the inputs ParkAssistant relies on to provide the route. First, ParkAssistant 21 

needs to know the origin and the destination. Second, it needs to know parking preferences of the 22 

driver to set the utility function. Third, it needs to know the road network, traffic rules (e.g., one-way 23 

streets, no-turns), and parking regulations. Fourth, it needs to know the current traffic conditions to 24 

calculate the driving time. Finally, it needs to know parking probabilities for all segments within the 25 

area of interest. We implemented ParkAssistant and evaluated it in San Francisco, CA. In the 26 

following section we present the experimental results that illustrate the performance of the algorithm. 27 

 28 
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EXPERIMENTS 1 

In this section we present results of an empirical evaluation of ParkAssistant. Our evaluation was 2 

focused on comparison with a naïve, uninformed human agent, as well as on examining the impact of 3 

incomplete information on the performance of ParkAssistant. To evaluate the algorithms, we used a 4 

public SFPark API to collect a data set containing minute-by-minute parking occupancy information 5 

obtained from SFpark sensors at 247 blocks in downtown San Francisco, location of which is shown 6 

in Figure 3. For this study we considered occupancy data from 4 consecutive Thursdays in August 7 

2013. The first three Thursdays were used as training data, while the last Thursday was used for 8 

testing. For segments not covered by the sensors we assumed that parking is not available. Although 9 

this assumption does not hold in practice, it nevertheless allowed us to properly evaluate 10 

ParkAssistant in a controlled setting. 11 

 12 

 13 
FIGURE 3 Locations of parking sensors in downtown San Francisco, CA (shown as red dots) 14 

 15 

 To test the algorithms, we generated 10,000 parking instances. For each instance we 16 

randomly selected an origin location in downtown San Francisco and a destination location such that 17 

it is within 0.15 miles of the origin (0.15 miles is roughly equivalent to 5 city blocks). For each 18 

parking instance we uniformly at random selected a starting time between 4pm and 5pm, when 19 

parking spots are in high demand in the downtown. We then calculated parking routes for each 20 

parking instance using four algorithms: 21 

(a) “Uninformed driver” that simulates uninformed driver who drives around the desired destination 22 
(driving straight for a few street segments, and then flipping a fair coin and turning double left or 23 
double right to continue driving parallel to the starting direction; after the double turn when the 24 
route passes closest to the destination another fair coin is flipped and the route continues straight, 25 
left, or right, after which the process is repeated from the beginning); 26 

(b) “All 0.9” that uses ParkAssistant where 90% parking probability is assumed on all street 27 

segments, including both those that are sensor-equipped and those that are not;  28 

(c) “Park 0.9” that uses ParkAssistant where 90% parking probability is assumed on street 29 

segments equipped with the sensors, and 0 elsewhere (this corresponds to our assumption that 30 

parking is available only on sensor-equipped segments); 31 

(d) “Historical” that uses ParkAssistant where parking probabilities are estimated from the 32 

training data (the parking occupancy between 4pm and 5pm from the first three Thursdays). 33 

Given a suggested route, we let the car virtually drive along the route and park on the first 34 

sensor-equipped segment which is not fully occupied. To know if a street segment is full, we check its 35 

parking occupancy at a time of the car arrival. Then, for each parking instance we calculate the time 36 
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to reach the destination, which is a sum of the driving and walking times. In the experiments we 1 

assumed the constant cruising speed of 10mph and the constant walking speed of 2mph. In addition, 2 

we assumed the parking is free and that the utility function is the one depicted in Figure 2(a). 3 

 4 
FIGURE 4 Comparison of various approaches to compute parking route 5 

 6 

Comparison of the four algorithms is shown in Figure 4, where we ordered the parking 7 

instances by ascending parking times. We found that the average parking times were 17.08 minutes 8 

for “Uninformed driver”, 12.46 minutes for “All 0.9”, 7.31 minutes for “Park 0.9”, and 6.24 minutes 9 

for “Historical” approach. Moreover, the figure shows that “Uninformed driver” finds a parking spot 10 

in less than 5 minutes in only 18% of parking instances, while “Historical” manages to do this in 42% 11 

of the instances, constituting a significant increase in parking efficiency over the baseline. It is also 12 

interesting to note that the average parking time difference between “Park 0.9” and “Historical” is 13 

only around one minute, which is somewhat surprising considering that “Park 0.9” did not consider 14 

any historical training data. In addition, we observe that the “Historical” method is significantly more 15 

difficult and expensive to implement in practice, requiring installation of parking sensors. This result 16 

suggests that inexpensive “Park 0.9” represents a viable and effective alternative to potentially 17 

expensive “Historical” approach, and can be used in cases when historical data are not available. 18 

 19 

  20 
FIGURE 5 Parking routes (shown in blue) found by: a) "All 0.9"; b) "Historical"; circle 21 

represents an origin which is also a destination, red, yellow, and green denote historical 22 

availabilities on segments (<33%, 33-66%, and >66% parking spots available, respectively) 23 
 24 
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To better illustrate differences between various approaches, in Figure 5 we show routes 1 

computed by “All 0.9” and “Historical” methods for the same parking instance initiated at 4:55pm. 2 

The circle denotes the starting location which is also a desired destination, blue line denotes the 3 

suggested route, while red, yellow, and green colors denote historical parking availabilities on 4 

parking segments for this time (representing less than 33%, between 33% and 66%, and more than 5 

66% parking spots available, respectively). We can observe a significant difference between the two 6 

routes. Since “All 0.9” was not aware of the historical parking probabilities, the method suggested the 7 

route that led a user to circle around the destination and search for parking at street segments where 8 

the parking probabilities were very low and made it unlikely to find a spot. On the other hand, 9 

“Historical” suggested the route that covers many segments with relatively higher probability of 10 

finding a parking spot, while still keeping the user as close as possible to the destination in order to 11 

minimize the walking time. 12 

The results clearly indicate that ParkAssistant can substantially reduce parking time and take 13 

advantage of any parking information available. The computational cost of the proposed route-finding 14 

algorithm is small, allowing it to be implemented and run directly on smartphone devices.  15 

CONCLUSION 16 

Finding a parking spot in urban jungles has been an issue for millions of drivers in the past decades, 17 

and is becoming an even larger societal and environmental concern with further increase of 18 

populations in metropolitan regions. In this paper we proposed an approach that addresses this 19 

growing problem, designed to help the drivers find the most effective and efficient parking route in 20 

urban areas. The method, called ParkAssistant, is capable of taking into consideration current parking 21 

and traffic rules and conditions, as well as driver’s preferences such as the specific purpose of the trip 22 

and willingness to walk, and to compute an optimal parking route that maximizes their overall 23 

parking utility. To this end we defined the parking utility function, and described how to efficiently 24 

find the route that maximizes the expected utility. The proposed method was evaluated on the real-25 

world data collected by the SFpark project from San Francisco, CA, where we compared 26 

ParkAssistant to a naïve baseline and explored how the performance is affected by varying levels of 27 

available parking information provided to the algorithm. The results strongly suggest the benefits of 28 

the proposed approach, and present a step towards solving the problem of parking in urban areas.  29 
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