
ParkAssistant: An Algorithm for Guiding a Car to a Parking Spot 1

 2

 3

 4
Nemanja Djuric 5

Department of Computer and Information Sciences 6

Temple University 7

1805 N. Broad Street, 319 Wachman Hall 8

Philadelphia, PA 19122 9

E-mail: nemanja@temple.edu 10

Phone: 267-334-4708 11

Fax: 215-204-5082 12

 13

Mihajlo Grbovic 14

Department of Computer and Information Sciences 15

Temple University 16

1805 N. Broad Street, 323 Wachman Hall 17

Philadelphia, PA 19122 18

E-mail: mihajlo@temple.edu 19

Phone: 267-252-4617 20

Fax: 215-204-5082 21

 22

Slobodan Vucetic 23

Department of Computer and Information Sciences 24

Temple University 25

1805 N. Broad Street, 304 Wachman Hall 26

Philadelphia, PA 19122 27

E-mail: vucetic@temple.edu 28

Phone: 267-334-4708 29

Fax: 215-204-5082 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

Submitted for presentation and publication to the 42

95th Annual Meeting of the Transportation Research Board 43

January 10th-14th, 2016 44

 45

Submitted on: August 1st, 2015 46

Resubmitted on: November 15th, 2015 47

 48

Word count: 7,249 = 5,749 words + 250 (5 pictures + 1 table) 49

Djuric, Grbovic, Vucetic 2

ABSTRACT 1

Parking search is a major issue in urban areas. Drivers in major cities face a daily struggle in finding 2

parking space, and much of this is due to lack of information about parking rules, parking prices, 3

traffic conditions, and parking availability. As a consequence, drivers often perform inefficient search 4

for a parking space and spend too much time searching, pay too much, or park too far from an 5

intended destination. Inefficient parking search is not a problem only for drivers, it is also increasing 6

traffic congestion and pollution and it causes a distortion of the parking market. Despite the vast 7

technological advances in recent decades, parking search remains fundamentally the same societal 8

problem it has been for almost a century. The objective of this paper is to address this issue by 9

proposing the ParkAssistant, an algorithm that calculates a cruising route that minimizes the expected 10

cost of parking, defined as a mix of price and time to reach the destination. To calculate a good 11

cruising route, the algorithm uses parking information that consists of parking rules, traffic 12

conditions, probabilities of finding an empty parking space, and drivers’ utility function. We 13

evaluated ParkAssistant through simulations using real-life parking occupancy data from San 14

Francisco, CA. The results indicate that, as compared to an uninformed driver model, it allows drivers 15

to find parking much faster. The results also show that the quality of ParkAssistant recommendations 16

grows with the quality of parking information the method is provided with. 17

INTRODUCTION 18

Parking search is a major issue in urban areas. A recent study (1) conducted in 20 international cities 19

shows that drivers face a daily struggle in finding a parking spot: 60% of drivers have abandoned 20

their search for a spot at least once, and more than a quarter have gotten into an argument with a 21

fellow motorist over a parking space. Much of this is caused by lack of information about parking 22

rules, parking prices, and parking availability near the destination. Thus, drivers are often forced to 23

perform an inefficient search for a parking spot, thus spending too much time searching, paying too 24

much, or parking too far. Inefficient parking search is not a problem only for drivers seeking parking. 25

The same study estimates that 30% of overall traffic in major cities originates from drivers searching 26

for a parking spot. Thus, inefficient parking search is increasing traffic congestion and pollution. 27

From the economic perspective, inefficient parking search also causes a distortion of the parking 28

market. Interestingly, despite the vast technological advances during the recent decades, parking 29

search remains fundamentally the same societal problem it has been for almost a century (2). The 30

objective of this work is to become a stepping stone towards solving the parking search problem. 31

 Let us look at the setup of urban parking in more detail. There are two major types of 32

parking: on-street and off-street. The on-street parking spots are typically alongside the roads and are 33

treated as public property. The off-street parking includes parking lots and garages that are managed 34

either by private providers or by municipal authorities. Both types of spots are regulated with parking 35

rules defining availability, time limits, pricing, and permissions, and there is typically a large 36

variability in rules even between spatially neighboring locations. Regarding the pricing, it is typical in 37

the U.S. cities that the on-street parking is significantly more affordable than the off-street parking, 38

particularly for residential parking and for shorter stays of up to a couple of hours. In fact, a vast 39

majority of on-street spots are typically free and lightly regulated, and only the spots within business, 40

tourist, and entertainment areas are metered and could have complex regulations. Affordability of on-41

street spots is a consequence of a political view that treats them as a shared public good. Prices in 42

parking garages and lots are typically market-based, reflecting the fact that construction and 43

maintenance of parking spaces is costly. As a consequence, the on-street spots are in higher demand 44

and drivers are typically interested in exploring their availability before considering the off-street 45

parking. Due to the higher demand and occupancy rates of the on-street parking, searching for an on-46

street parking spot often requires significantly more time and is more uncertain. This opens an 47

interesting dilemma – whether saving several dollars is worth spending an uncertain amount of time 48

searching for an on-street spot. This dilemma is at the core of the decision challenges that many 49

drivers face when considering parking in urban areas. 50

Djuric, Grbovic, Vucetic 3

 To better understand the complexity of parking decision-making from the perspective of 1

drivers, let us look at all the relevant information that one should consider. Let us assume a car is 2

approaching its destination and its driver needs to decide where to search for a parking spot. The first 3

piece of information is where the parking is permitted in the neighborhood of the destination and 4

what the prices are. The second piece of information is current availability of parking at the permitted 5

locations. In particular, it is appropriate to think about the availability in terms of probability of 6

finding an open parking spot at the time of the arrival. The third piece of information that impacts the 7

time needed to find parking are traffic conditions; in particular, the speed of traffic. The fourth piece 8

of information is related to the driver’s parking preferences. This is related to questions such as the 9

purpose of the trip, the time constraints, driver’s willingness to walk, their budget, and the comfort 10

with on-street parking (e.g., parallel parking may be an issue for some drivers). Importantly, even if 11

all that diverse and complex information were available, it is not clear how to present it to the driver 12

to facilitate the parking search. Due to the uncertain nature of parking search, processing all the 13

available information and reasoning about it to make parking decisions could be a daunting task for 14

any driver. In practice, the parking information is likely to be incomplete and uncertain, which further 15

exacerbates the complexity of the parking decision-making process. 16

BACKGROUND 17

Recent years have seen the birth of “smart parking”, which refers to the innovative use of technology 18

to make parking more efficient and easier. In the following, we briefly review efforts that are in our 19

view the most relevant to the current work and which motivate our approach. One type of effort 20

focuses on parking occupancy monitoring. For example, many parking garages have sensing systems 21

that provide real-time information about parking availability, such as a total number of available 22

parking spots in the garage or a number of available spots in each garage segment. For on-street 23

parking, several cities have been experimenting with sensors installed at the individual on-street 24

parking spots to collect real-time information about parking availability. For example, SFpark (3) is a 25

federally funded pilot project initiated in 2011, which resulted in installation of occupancy sensors at 26

around 7,000 metered parking spots in downtown San Francisco, CA. Their purpose is to help 27

determine demand-responsive pricing and to provide real-time occupancy and pricing information to 28

the public through Internet. While parking sensors indeed give very useful information, this comes at 29

a price. For example, StreetLine that installed similar sensors at around 10,000 similar on-street 30

parking sensors in Los Angeles apparently charges around $1 per day for operation and maintenance 31

of each sensor (4). A recent study by the San Francisco Department of Transportation found that there 32

are 26,750 parking meters, 275,450 total on-street spots, and another 166,500 off-street parking spots 33

in the city, and that the length of all street parking spots exceeds the total length of California’s entire 34

840-mile coastline (5). Having this in mind, it is doubtful that placing dedicated sensors even under a 35

fraction of the spots could be cost-effective. 36

There are potential alternatives to sensors embedded at parking spots. A notable example is 37

ParkNet (6), which observes on-street parking occupancy from a moving vehicle equipped with a 38

GPS receiver and a passenger-side-facing ultrasonic rangefinder. The authors claim that their system 39

is 95% accurate and that it might be cheaper than the SFpark sensing project if the sensors were 40

installed on all taxis in San Francisco. However, the deployment of such a system would still require 41

significant investment by the municipalities and the resulting coverage would be uneven and 42

dependent on the taxi routes, which might not correlate well with the locations of the most demanded 43

parking spots. Other authors studied a scenario where multiple drivers use an app that collects their 44

GPS traces, detects when somebody parked or left a parking spot, and broadcast this information back 45

to the users (7, 8, 9). In (10) the authors propose how to use such information to estimate parking 46

probabilities by assuming the parking data are obtained by random sampling. 47

Beyond occupancy sensing, creation of traveler information systems for parking is another 48

important smart parking challenge. These systems typically come in the shape of websites or apps 49

that provide real-time parking information. For example, a popular ParkMe app (11) provides pricing 50

Djuric, Grbovic, Vucetic 4

regulations and rules for all parking lots and garages in a number of cities. It also provides occupancy 1

information for garages equipped with smart sensors, as well as navigation to the selected garage. 2

However, in most cities, the app does not provide any information about the on-street parking, thus 3

making it an incomplete source of information. For cities such as San Francisco and Los Angeles, 4

during 2012 and 2013 it was possible for public to view real-time occupancy of monitored spots, but 5

the coverage was limited to a small number of city blocks. Other than the occupancy, parking rules 6

are another important source of information. Several cities such as Seattle and New York provide web 7

interfaces that allow querying of the on-street rules. Interestingly, parking signs in New York City are 8

so complicated that drivers have trouble interpreting them, and the city maintains several dedicated 9

web pages helping the public to interpret them (12). There remain two major open questions related to 10

the traveler information systems for parking: how to collect information necessary for informed 11

parking, and how to present this information to drivers to help them minimize the cost of their 12

parking search. 13

A question of parking reservation and pricing has also garnered significant research interest. 14

Some researchers are proposing systems that allow drivers to reserve open parking spots (13, 14, 15). 15

In addition, some authors take a game-theoretic view of parking search and propose real-time 16

auctions to determine who gets an open spot (15, 16, 17), which often requires decisions to be 17

centralized and information to be censored (16). However, such reservation and pricing approaches 18

use questionable assumptions that open spots can be detected, that they could be reserved, and that all 19

drivers have access to the auction system. A related approach is to set parking prices in a demand-20

responsive way such that at least a small fraction of spots are available on every street at any given 21

time (18). This approach was tested in San Francisco as part of the SFpark project, and it was 22

observed that the resulting average parking prices were lower, parking availability was improved, and 23

drivers were spending less time looking for parking (19). Despite this apparent success, some scholars 24

are questioning the stated benefits and point to the remaining open issues (20, 21), and it is unclear if 25

the approach can be translated to other cities because it implies significant investments in parking 26

sensor networks, as well as a political will to implement the unpopular demand-responsive pricing. 27

The question of parking choice and parking search has been studied before in the context of 28

agent-based modeling of parking. In (22), a parking choice model was proposed, which models how 29

drivers decide which parking spot to go to. Similarly to our work, the authors account for driver’s 30

budget, walking distance, and other relevant factors, and assign a utility score to each parking 31

location. On the other hand, the authors model the decision process while not addressing the problem 32

of a parking search, which is the topic of this study. In ParkAgent (23), a simplistic model of parking 33

search is proposed where drivers drive directly to the destination, start searching as they get close to 34

it, and continue going in circles until they find a parking spot. This model is similar to our 35

uninformed driver model that we will use as a baseline in our experiments. In (24), the ParkAgent 36

model has been enhanced to use sensor information about parking occupancy. As compared to our 37

optimization-based model, the model from (24) is a greedy search heuristics that might not fully 38

exploit the available occupancy information. 39

PROPOSED APPROACH 40

As we described in the previous sections, despite many efforts it is still not clear how to harness 41

novel, advanced technology and create smart parking solutions that address the longstanding parking 42

challenges. We believe that an answer to most of the open questions in smart parking has to start with 43

helping drivers find the best parking spot they could, done by using all the publicly available 44

information. If we can help every driver maximize parking utility based on their personal preferences, 45

we believe it can start a cascade of events that will minimize driver frustration, reduce parking search 46

time, create an efficient parking market, allow policy makers to make informed decisions about 47

parking, and enable benefiting from future technological advances. This is why the aim of this work 48

was to propose an algorithm that uses uncertain and incomplete parking information to help drivers 49

Djuric, Grbovic, Vucetic 5

find a parking spot that maximizes their expected utility. We will refer to this algorithm as the 1

ParkAssistant, and describe it in the following section. 2

Methodology 3

Parking search is a complex decision problem under uncertainty, where it is possible that several 4

approaches are viable. To compute the optimal one, ParkAssistant first acquires parking instructions 5

from a driver consisting of current car location (origin), location of destination, and parking 6

preferences such as intended parking duration, time flexibility, price elasticity, and willingness to 7

walk. The parking preferences are converted into an appropriate utility function. ParkAssistant then 8

uses the obtained parking instructions to recommend a parking route defined as a sequence of M 9

consecutive road segments starting from the current location, where each segment is labeled either as 10

PARK or NO PARK. Value M is fixed and prespecified by a modeler, usually set to an appropriate 11

number to make sure that, for example, the route has a length of at least 10 city blocks. The driver is 12

instructed to drive along the parking route and to park at the first available parking spot along road 13

segments labeled with PARK, while ignoring potentially available parking spots at NO PARK 14

segments (e.g., the segment may be far from the destination and driver’s willingness to walk is low). 15

 16

 17
 18

FIGURE 1 Illustration of the parking search process using ParkAssistant 19

 20

 Figure 1 provides an illustration of the parking search process. It shows a city grid with 4 21

times 4 city blocks. There are only 6 open parking spots plotted as small checkered rectangles. The 22

car is at the origin and its driver is interested in reaching the destination. The driver does not know in 23

advance where the open spots are. ParkAssistant provided a parking route of length M = 9, which 24

consists of full and dashed lines denoting PARK and NO PARK street segments, respectively. The 25

car starts moving along segment S1. Since that part of the route is dashed, it means the driver ignores 26

any open parking spots and keeps driving. Thus, the car does not park at the open spot along segment 27

S1. Since segment S2 is also dashed, the driver keeps following the route without looking for parking. 28

PARK

NO PARK

S1
S

5

S4

S6

S9

S
2

S
7

S
8

S3

 Origin

Car

Destination

City block

Parking

route

 Open spot

Djuric, Grbovic, Vucetic 6

Upon reaching segment S3, which is a full line, the driver keeps looking for the open parking spots, 1

but there are not any. Upon reaching the full-line segment S4, the driver keeps looking and observes 2

the open parking spot. The driver parks the car at the open spot, potentially pays the parking fee, and 3

proceeds walking towards the destination. Given the outcome, the question is what the driver’s 4

satisfaction with the provided route is. We propose to measure it using a utility function. 5

 Let us denote the utility function that quantifies drivers’ satisfaction with parking and 6

reaching the destination from the origin in t minutes as U(t). In Figure 2 we illustrate two possible 7

utility functions which have the maximum value of 1 when t = 0, and equal to 0 for t > 20 min. The 8

first function is constant until t = 20 min, while the second function gradually decreases towards zero. 9

The first utility function may correspond to a driver who must reach the destination in 20 minutes 10

because of an important business meeting, where the utility drops significantly as the meeting time 11

approaches, thus favoring parking as soon and as close as possible. The second utility function may 12

correspond to a driver interested in going to a theater with friends, where arriving any time before the 13

theater door closes is acceptable, thus allowing less-constrained search and more room for 14

exploration. Given the function U(t), it is possible to calculate the utility of parking at any particular 15

parking spot. For example, the utility may be calculated as U(Td + Tw), where Td is driving time from 16

the origin to the parking spot and Tw is walking time required to reach the destination from the 17

parking spot. For the example route given in Figure 1, the utility equals U(Td ({S1, S2, S3, S4}) + 18

Tw (S4, destination)), where Td (S) is a total driving time along segments from the segment multiset S, 19

and Tw (A, B) is a total walking time from location A to location B. 20

 21

 22
(a) (b) 23

 24
FIGURE 2 Examples of utility functions U(t) that simulate: (a) driver going 25

to an important business meeting; (b) driver going to a theater with friends 26

 27

The proposed approach is very flexible, and a modeler can use more elaborate ways to 28

calculate the utility in order to better model drivers’ parking preferences. For example, the utility may 29

be calculated as U(Td + w1 · Tw) where w1 is a constant larger than one, reflecting that the driver 30

prefers to find a parking spot close to the destination even if it requires longer total driving time. It is 31

also possible to account for the price elasticity of the driver. For example, the utility may be 32

calculated as U(Td + w1 · Tw + w2 · price), where price is the price of parking and w2 is a positive 33

constant, thus reflecting that the utility drops with the price of parking. Alternatively, the utility can 34

be defined as a function of parking search time and price, which may also depend on time of day and 35

weather conditions. 36

Calculating parking route utility 37

Given the ability to calculate the utility for parking at a specific spot, it becomes possible to 38

calculate the utility of a parking search route. If the locations of open parking spots were known in 39

advance, calculating the utility of a route would amount simply to observing the first open spot along 40

Time t

Utility

U(t)

1

20 minutes

minutes

Time t

1

Utility

U(t)

20 minutes

Djuric, Grbovic, Vucetic 7

the PARK segments of the route, calculating Td and Tw, and computing the utility as U(Td + Tw). 1

However, unless parking spots are monitored with sensors (which is very costly), the parking 2

occupancy could not be known with certainty. In addition, knowledge about the traffic conditions is 3

also typically uncertain, which makes it challenging to calculate driving time Td. Since the utility is 4

subject to uncertainties such as actual traffic and the probabilities of finding available parking spots 5

along the route, ParkAssistant calculates the expected utility for the given parking route. Let us 6

represent the unique identifiers (IDs) of road segments along a specific route of length M as a 7

sequence {i1, i2, …, iM}. Then, let us define as {park1, park2, …, parkM} the corresponding indicators 8

of whether the driver should look for a parking spot along each of the route segments, where parkm = 9

1 encodes that the mth segment along the route with ID im is labeled as PARK and parkm = 0 means 10

that the segment is labeled as NO PARK. Let us denote with P(iM) the probability that there is an 11

open parking spot along street segment iM. 12

To get an intuition on how to calculate the expected utility of parking route of length M 13

defined with a sequence of segments {i1, i2, …, iM} labeled with {park1, park2, …, parkM}, let us 14

assume that park1 = 1. Then, with probability P(i1), the car will park along the first segment and the 15

utility will equal U(Td (i1) + Tw(i1, dest)), where dest denotes the destination. If we assume park1 = 0, 16

then the probability of parking along the first segment is 0. Thus, we can claim that with probability 17

P(i1) · park1 the utility will equal U(Td (i1) + Tw(i1, dest)), and with probability 1 − P(i1) · park1 the car 18

will continue driving. Following this reasoning, we can conclude that with probability (1 − 19

P(i1) · park1) · P(i2) · park2 the car will park along segment i2 and observe utility U(Td ({i1, i2}) + 20

Tw(i2, dest)). By continuing this line of thought, it becomes possible to express the lower bound Ulower 21

on the expected utility of the route as the following recursive formula, 22

 23

 .)(1),(}),...,,({)(

},...,,{},,...,,{

},...,,{},,...,,{

1

1

21

121121

2121

M

m

mmMwMdMM

MMlower

MMlower

parkiPdestiTiiiTUparkiP

parkparkparkiiiU

parkparkparkiiiU

(1)

The formula expresses a lower bound Ulower of the expected utility, because it assumes that if parking 24

is not found along the M segments of the route, the utility of the subsequent parking search is zero. 25

Thus, the lower bound represents a pessimistic estimate of the expected utility. To get an optimistic 26

estimate, we can calculate the upper bound Uupper as follows, 27
 28

 ,)(1),(}),...,,({

},...,,{},,...,,{

},...,,{},,...,,{

1

21

2121

2121

M

m

mmMdMd

MMlower

MMupper

parkiPdestiTiiiTU

parkparkparkiiiU

parkparkparkiiiU

(2)

where Td (iM, dest) denotes the driving time from the Mth route segment to the destination. The upper 29

bound in the equation assumes that if there are no available parking spots along the M segments of the 30

route, the driver will be able to drive directly to the destination and find a parking spot there. Both 31

bounds approach the expected utility when M is large. 32

Computing the optimal parking route 33

 The objective of ParkAssistant is to find the route of length M with the highest expected 34

utility. If we are interested in finding the optimal route in a brute force manner, this would require 35

examination of all routes of length M, whose number scales exponentially as O(2M). Instead, we 36

propose a computationally efficient, greedy procedure for finding the optimal route, given as 37

Algorithm 1. 38

Djuric, Grbovic, Vucetic 8

The recursive algorithm is invoked twice for each parking instance. In particular, the 1

algorithm is invoked with the segment on which the origin is located as an input, labeled once with 2

PARK and once with NO PARK label. In addition, all global variables are initialized to the values 3

given in the table before the function is run. The function first checks if the length of the current route 4

has reached the prespecified length M (line 01), in which case it updates the current best route 5

information if the route’s lower bound on the expected utility is higher than the lower bound of the 6

best route so far (lines 03-06), and the algorithm then brakes out from the recursion (line 07). If the 7

route length is still smaller than M, it is expanded with the segments that can be reached from the 8

final segment of the route (line 09), and the method is called recursively for each of the expanded 9

routes and for both possible park labels (lines 10-17). However, before the recursive call, for each 10

expanded route we first check if the upper bound is lower than the lower bound of the best route so 11

far (line 15), which allows us to prune away bad routes. In practice, we found that the pruning step 12

reduces the search space significantly and results in large computational speed ups, making the route 13

optimization practical for M as large as 20. Note that if the utility function is monotonically non-14

increasing, such as utility functions given in Figure 2, it can be shown that the computed route of 15

length M is guaranteed to be optimal, and to have the highest lower bound on the expected utility of 16

all the possible routes of length M. 17

 18

ALGORITHM 1 Pseudocode of the recursive routing algorithm 19

ParkAssistant(route = segment of origin, labels = 0/1)

Input variables : current route route, park/no park labels labels;

Global variables: optimal route bestRoute = [], optimal labels

 bestLabels = [], lower bound of current optimal

 route maxLowerBound = 0, max route depth M;

00: // break out of recursion if maximum depth is reached

01: if (route is of length M)

02: // check if this is a new best route

03: if (Ulower of route and labels > maxLowerBound)

04: maxLowerBound ← Ulower;

05: bestRoute ← route;

06: bestLabels ← labels;

07: return;

08: // expand the current route

09: find set S of next driving segments for route;

10: foreach (segment seg from S)

11: foreach (label lab from {0, 1} set)

12: newRoute ← append seg to route;

13: newLabels ← append lab to labels;

14: // check if we can prune this route

15: if (Uupper of newRoute and newLabels < maxLowerBound)

16: next;

17: ParkAssistant(newRoute, newLabels);

 20

 Let us summarize the inputs ParkAssistant relies on to provide the route. First, ParkAssistant 21

needs to know the origin and the destination. Second, it needs to know parking preferences of the 22

driver to set the utility function. Third, it needs to know the road network, traffic rules (e.g., one-way 23

streets, no-turns), and parking regulations. Fourth, it needs to know the current traffic conditions to 24

calculate the driving time. Finally, it needs to know parking probabilities for all segments within the 25

area of interest. We implemented ParkAssistant and evaluated it in San Francisco, CA. In the 26

following section we present the experimental results that illustrate the performance of the algorithm. 27

 28

Djuric, Grbovic, Vucetic 9

EXPERIMENTS 1

In this section we present results of an empirical evaluation of ParkAssistant. Our evaluation was 2

focused on comparison with a naïve, uninformed human agent, as well as on examining the impact of 3

incomplete information on the performance of ParkAssistant. To evaluate the algorithms, we used a 4

public SFPark API to collect a data set containing minute-by-minute parking occupancy information 5

obtained from SFpark sensors at 247 blocks in downtown San Francisco, location of which is shown 6

in Figure 3. For this study we considered occupancy data from 4 consecutive Thursdays in August 7

2013. The first three Thursdays were used as training data, while the last Thursday was used for 8

testing. For segments not covered by the sensors we assumed that parking is not available. Although 9

this assumption does not hold in practice, it nevertheless allowed us to properly evaluate 10

ParkAssistant in a controlled setting. 11

 12

 13
FIGURE 3 Locations of parking sensors in downtown San Francisco, CA (shown as red dots) 14

 15

 To test the algorithms, we generated 10,000 parking instances. For each instance we 16

randomly selected an origin location in downtown San Francisco and a destination location such that 17

it is within 0.15 miles of the origin (0.15 miles is roughly equivalent to 5 city blocks). For each 18

parking instance we uniformly at random selected a starting time between 4pm and 5pm, when 19

parking spots are in high demand in the downtown. We then calculated parking routes for each 20

parking instance using four algorithms: 21

(a) “Uninformed driver” that simulates uninformed driver who drives around the desired destination 22
(driving straight for a few street segments, and then flipping a fair coin and turning double left or 23
double right to continue driving parallel to the starting direction; after the double turn when the 24
route passes closest to the destination another fair coin is flipped and the route continues straight, 25
left, or right, after which the process is repeated from the beginning); 26

(b) “All 0.9” that uses ParkAssistant where 90% parking probability is assumed on all street 27

segments, including both those that are sensor-equipped and those that are not; 28

(c) “Park 0.9” that uses ParkAssistant where 90% parking probability is assumed on street 29

segments equipped with the sensors, and 0 elsewhere (this corresponds to our assumption that 30

parking is available only on sensor-equipped segments); 31

(d) “Historical” that uses ParkAssistant where parking probabilities are estimated from the 32

training data (the parking occupancy between 4pm and 5pm from the first three Thursdays). 33

Given a suggested route, we let the car virtually drive along the route and park on the first 34

sensor-equipped segment which is not fully occupied. To know if a street segment is full, we check its 35

parking occupancy at a time of the car arrival. Then, for each parking instance we calculate the time 36

Djuric, Grbovic, Vucetic 10

to reach the destination, which is a sum of the driving and walking times. In the experiments we 1

assumed the constant cruising speed of 10mph and the constant walking speed of 2mph. In addition, 2

we assumed the parking is free and that the utility function is the one depicted in Figure 2(a). 3

 4
FIGURE 4 Comparison of various approaches to compute parking route 5

 6

Comparison of the four algorithms is shown in Figure 4, where we ordered the parking 7

instances by ascending parking times. We found that the average parking times were 17.08 minutes 8

for “Uninformed driver”, 12.46 minutes for “All 0.9”, 7.31 minutes for “Park 0.9”, and 6.24 minutes 9

for “Historical” approach. Moreover, the figure shows that “Uninformed driver” finds a parking spot 10

in less than 5 minutes in only 18% of parking instances, while “Historical” manages to do this in 42% 11

of the instances, constituting a significant increase in parking efficiency over the baseline. It is also 12

interesting to note that the average parking time difference between “Park 0.9” and “Historical” is 13

only around one minute, which is somewhat surprising considering that “Park 0.9” did not consider 14

any historical training data. In addition, we observe that the “Historical” method is significantly more 15

difficult and expensive to implement in practice, requiring installation of parking sensors. This result 16

suggests that inexpensive “Park 0.9” represents a viable and effective alternative to potentially 17

expensive “Historical” approach, and can be used in cases when historical data are not available. 18

 19

 20
FIGURE 5 Parking routes (shown in blue) found by: a) "All 0.9"; b) "Historical"; circle 21

represents an origin which is also a destination, red, yellow, and green denote historical 22

availabilities on segments (<33%, 33-66%, and >66% parking spots available, respectively) 23
 24

Djuric, Grbovic, Vucetic 11

To better illustrate differences between various approaches, in Figure 5 we show routes 1

computed by “All 0.9” and “Historical” methods for the same parking instance initiated at 4:55pm. 2

The circle denotes the starting location which is also a desired destination, blue line denotes the 3

suggested route, while red, yellow, and green colors denote historical parking availabilities on 4

parking segments for this time (representing less than 33%, between 33% and 66%, and more than 5

66% parking spots available, respectively). We can observe a significant difference between the two 6

routes. Since “All 0.9” was not aware of the historical parking probabilities, the method suggested the 7

route that led a user to circle around the destination and search for parking at street segments where 8

the parking probabilities were very low and made it unlikely to find a spot. On the other hand, 9

“Historical” suggested the route that covers many segments with relatively higher probability of 10

finding a parking spot, while still keeping the user as close as possible to the destination in order to 11

minimize the walking time. 12

The results clearly indicate that ParkAssistant can substantially reduce parking time and take 13

advantage of any parking information available. The computational cost of the proposed route-finding 14

algorithm is small, allowing it to be implemented and run directly on smartphone devices. 15

CONCLUSION 16

Finding a parking spot in urban jungles has been an issue for millions of drivers in the past decades, 17

and is becoming an even larger societal and environmental concern with further increase of 18

populations in metropolitan regions. In this paper we proposed an approach that addresses this 19

growing problem, designed to help the drivers find the most effective and efficient parking route in 20

urban areas. The method, called ParkAssistant, is capable of taking into consideration current parking 21

and traffic rules and conditions, as well as driver’s preferences such as the specific purpose of the trip 22

and willingness to walk, and to compute an optimal parking route that maximizes their overall 23

parking utility. To this end we defined the parking utility function, and described how to efficiently 24

find the route that maximizes the expected utility. The proposed method was evaluated on the real-25

world data collected by the SFpark project from San Francisco, CA, where we compared 26

ParkAssistant to a naïve baseline and explored how the performance is affected by varying levels of 27

available parking information provided to the algorithm. The results strongly suggest the benefits of 28

the proposed approach, and present a step towards solving the problem of parking in urban areas. 29

REFERENCES 30

1. IBM. IBM Global Parking Survey: Drivers Share Worldwide Parking Woes. https://www-31

03.ibm.com/press/us/en/pressrelease/35515.wss. Accessed November 13, 2015. 32

2. Shoup, D. C., Cruising for parking. Transport Policy, vol. 13, no. 6, pp. 479-486, 2006. 33

3. SFPark. http://www.sfpark.org. Accessed November 13, 2015. 34

4. Eilene Zimmerman. CNNMoney. A silver bullet for urban traffic problems. 35

http://money.cnn.com/2011/04/29/technology/streetline/. Accessed November 13, 2015. 36

5. Kurtis Alexander. SFGATE. How many parking spots are there in S.F? 37

http://blog.sfgate.com/stew/2014/05/23/how-many-parking-spots-are-there-in-s-f/. Accessed 38

November 13, 2015. 39

6. Mathur, S., Jin, T., Kasturirangan, N., Chandrasekaran, J., Xue, W., Gruteser, M., Trappe, W., 40

Parknet: Drive-by sensing of road-side parking statistics, International Conference on Mobile 41

Systems, Applications, and Services, pp. 123-136, San Francisco, USA, 2010. 42

7. Stenneth, L., Wolfson, O., Xu, B., Philip, S. Y., PhonePark: Street parking using mobile phones, 43

International Conference on Mobile Data Management, pp. 278-279, 2012. 44

8. Koster, A., Oliveira, A., Volpato, O., Delvequio, V., Koch, F., Recognition and recommendation 45

of parking places, Advances in Artificial Intelligence, pp. 675-685, 2014. 46

Djuric, Grbovic, Vucetic 12

9. Nawaz, S., Efstratiou, C., Mascolo, C., ParkSense: A smartphone-based sensing system for on-1

street parking, Annual International Conference on Mobile Computing and Networking, pp. 75-2

86, Miami, USA, 2013. 3

10. Xu, B., Wolfson, O., Yang, J., Stenneth, L., Yu, P. S., Nelson, P. C., Real-time street parking 4

availability estimation, International Conference on Mobile Data Management, vol. 1, pp. 16-25, 5

2013. 6

11. ParkMe. http://www.parkme.com. Accessed November 13, 2015. 7

12. The Official Website of the City of New York. Parking Signs and Locator. 8

http://www1.nyc.gov/nyc-resources/service/2178/parking-signs-and-locator. Accessed November 9

13, 2015. 10

13. Alhammad, A., Siewe, F., Al-Bayatti, A. H., An infostation-based context-aware on-street 11

parking system, International Conference on Computer Systems and Industrial Informatics, pp. 12

1-6, 2012. 13

14. Wang, H., He, W., A reservation-based smart parking system. Computer Communications 14

Workshops, pp. 690-695, 2011, 15

15. Ayala, D., Wolfson, O., Xu, B., Dasgupta, B., Lin, J., Parking slot assignment games, 16

International Conference on Advances in Geographic Information Systems, pp. 299-308, 2011. 17

16. Kokolaki, E., Karaliopoulos, M., Stavrakakis, I., Leveraging information in parking assistance 18

systems, IEEE Transactions on Vehicular Technology, 62.9: pp. 4309-4317, 2013. 19

17. Ayala, D., Wolfson, O., Xu, B., DasGupta, B., Lin, J., Pricing of parking for congestion 20

reduction, International Conference on Advances in Geographic Information Systems, pp. 43-51, 21

2012. 22

18. Shoup, D.C., The high cost of free parking, Planners Press, Washington, DC, 2005. 23

19. Pierce, G., Shoup, D., Getting the prices right: An evaluation of pricing parking by demand in 24

San Francisco, Journal of the American Planning Association, vol. 79, no. 1, pp. 67-81, 2013. 25

20. Millard-Ball, A., Weinberger, R., Hampshire, R., Comment on Pierce and Shoup: Evaluating the 26

impacts of performance-based parking, Journal of the American Planning Association, vol. 79, 27

no. 4, pp. 330-336, 2013. 28

21. Pierce, G., Shoup, D., Response to Millard-Ball et al.: Parking prices and parking occupancy in 29

San Francisco, Journal of the American Planning Association, vol. 79, no. 4, pp. 336-339, 2013. 30

22. Waraich, R., Axhausen, K., Agent-based parking choice model, Transportation Research Record: 31

Journal of the Transportation Research Board, vol. 2319, pp. 39-46, 2012. 32

23. Benenson, I., Martens, K., Birfir, S., PARKAGENT: An agent-based model of parking in the city, 33

Computers, Environment and Urban Systems, vol. 32, no. 6, pp. 431-439, 2008. 34

24. Tasseron, G., Martens, K., van der Heijden, R., The Potential Impact of Vehicle-to-Vehicle and 35

Sensor-to-Vehicle Communication in Urban Parking, Intelligent Transportation Systems 36

Magazine, IEEE, vol. 7, no. 2, pp. 22-33, 2015. 37

