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Parking search is a major issue in urban areas. Drivers in major

cities face a daily struggle in finding parking space, and much of

this is due to lack of information about parking rules, prices, traffic

conditions, and parking availability. As a consequence, drivers

often perform inefficient search for a parking space and spend too

much time searching, pay too much, or park too far from an

intended destination. Inefficient parking search is not a problem

only for drivers, it is also increasing traffic congestion and

pollution and it causes a distortion of the parking market. Despite

the vast technological advances, parking search remains

fundamentally the same societal problem it has been for almost a

century. The objective of this paper is to address this issue by

proposing the ParkAssistant, an algorithm that calculates a cruising

route that minimizes the expected cost of parking, defined as a mix

of price and time to reach the destination. To calculate a good

cruising route, the algorithm uses parking information that consists

of parking rules, traffic conditions, probabilities of finding an

empty parking space, and drivers’ utility function.

Abstract

Introduction

ParkAssistant

Parking search is a complex decision problem under uncertainty,

where it is possible that several approaches are viable. To compute

the optimal one, ParkAssistant first acquires parking instructions

from a driver:

• current car location (origin);

• location of destination;

• parking preferences (intended parking duration, time flexibility,

price elasticity, and willingness to walk).

The parking preferences are converted into an appropriate utility

function. ParkAssistant then uses the obtained parking instructions

to recommend a parking route defined as a sequence of M

consecutive road segments starting from the current location,

where each segment is labeled either as PARK or NO PARK (see

Figure 2). The driver is instructed to drive along the parking route

and to park at the first available parking spot along road segments

labeled with PARK, while ignoring potentially available parking

spots at NO PARK segments (e.g., the segment may be far from

the destination and driver’s willingness to walk is low).

Finding the optimal route

In order to quantify the goodness of a route, we propose to measure it

using a utility function. Let us denote the utility function that quantifies

drivers’ satisfaction with parking and reaching the destination from the

origin in t minutes as U(t). In Figure 3 we illustrate two utility functions

which have the maximum value of 1 when t = 0, and equal to 0 for t > 20

min. The first function is constant until t = 20 min, while the second

function gradually decreases towards zero. The first utility function may

correspond to a driver who must reach the destination in 20 minutes

because of an important business meeting, where the utility drops

significantly as the meeting time approaches, thus favoring parking as soon

and as close as possible. The second utility function may correspond to a

driver interested in going to a theater with friends, where arriving any time

before the theater door closes is acceptable, thus allowing less-constrained

search and more room for exploration. Given the function U(t), it is

possible to calculate the utility of parking at any particular parking spot.

Lower bound Ulower on the expected utility of a route is found using the

recursive formula (Td - driving time, Tw - walking time, i1 … iM - parking

segments, park1…parkM - parking indicators, P(im) - parking probability),

To get an optimistic estimate, we calculate an upper bound Uupper as,

Then, we can use a greedy Algorithm 1 to find an optimal route.

Proposed approach Experimental results

We generated 10,000 parking instances and for each we randomly

selected an origin location in downtown San Francisco and a

destination such that it is within 0.15 miles of the origin (roughly

equivalent to 5 city blocks). For each instance we uniformly at

random selected a starting time between 4pm and 5pm, when

parking spots are in high demand. We then calculated parking

routes for each parking instance using four algorithms:

1. “Uninformed driver” that simulates uninformed driver who drives

around the desired destination;

2. “All 0.9” that uses ParkAssistant where 90% parking probability is

assumed on all street segments;

3. “Park 0.9” that uses ParkAssistant where 90% parking probability is

assumed on segments equipped with the sensors, and 0 elsewhere;

4. ”Historical” that uses ParkAssistant where parking probabilities are

estimated from the training data.

• We found that the average parking times were 17.08 minutes for

“Uninformed driver”, 12.46 minutes for “All 0.9”, 7.31 minutes for

“Park 0.9”, and 6.24 minutes for “Historical” approach.

• Moreover, the figure shows that “Uninformed driver” finds a parking

spot in less than 5 minutes in only 18% of parking instances, while

“Historical” manages to do this in 42% of the instances.

• Interestingly, the average parking time difference between “Park 0.9”

and “Historical” is only around one minute, although “Park 0.9” did not

consider any historical training data. In addition, “Historical” method is

significantly more difficult and expensive to implement in practice.

To illustrate differences between approaches, in Figure 7 we show routes

by “All 0.9” and “Historical” for the same parking instance.

• Since “All 0.9” was not aware of the historical probabilities, the method

suggested the route that led a user to circle around the destination and

search for parking where the parking probabilities were very low.

• “Historical” suggested a route that covers many segments with

relatively higher probability of finding a parking spot, while keeping the

user as close as possible to the destination to minimize walking time.

To better understand the

complexity of parking decision-

making from the perspective of

drivers, let us look at all the

relevant information that one

should consider. Let us assume

a car is approaching its

destination and its driver needs

to decide where to search for a

parking spot. The first piece of

information is where the

parking is permitted in the

neighborhood of the destination

and what the prices are. The

second piece of information is

current availability of parking

at the permitted locations. In

particular, it is appropriate to

think about the availability in

terms of probability of finding

an open parking spot at a time
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Figure 2. Example output of ParkAssistant

of the arrival. The third piece of information that impacts the

time needed to find parking are traffic conditions; in particular,

the speed of traffic. The fourth piece of information is related to

the driver’s parking preferences. This is related to questions

such as the purpose of the trip, the time constraints, driver’s

willingness to walk, their budget, and the comfort with on-street

parking (e.g., parallel parking may be an issue for some drivers).

Importantly, even if all that diverse and complex information

were available, it is not clear how to present it to the driver to

facilitate the parking search. Due to the uncertain nature of

parking search, processing all the available information and

reasoning about it to make parking decisions could be a daunting

task for any driver. In practice, the parking information is likely

to be incomplete and uncertain, which further exacerbates the

complexity of the parking decision-making process.

Figure 3. Examples of utility functions U(t) that simulate: (a) driver going                                 

to an important business meeting; (b) driver going to a theater with friends

20 minutes

Figure 1. ParkAssistant helps 

drivers with parking headache
We used a public SFPark API to collect minute-by-minute parking

occupancy information obtained from SFpark sensors at 247

blocks in downtown San Francisco. For this study we considered

occupancy data from 4 consecutive Thursdays in August 2013. The

first three Thursdays were used as training data, while the last

Thursday was used for testing. For segments not covered by the

sensors we assumed that parking is not available.

Data set

Figure 4. Recursive algorithm for finding an optimal parking route

Figure 5. Locations 

of parking sensors 

in downtown SF

Figure 6. Comparison of various approaches to compute parking route

Figure 7. Parking routes (shown in blue) by: a) "All 0.9"; b) "Historical"; 

circle is an origin and a destination, red, yellow, and green denote historical 

availabilities (<33%, 33-66%, and >66% parking spots available, respectively)
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