
Growing Adaptive Multi-Hyperplane Machines

Nemanja Djuric 1 Zhuang Wang 2 Slobodan Vucetic 3

Abstract

Adaptive Multi-hyperplane Machine (AMM)
is an online algorithm for learning Multi-
hyperplane Machine (MM), a classification
model which allows multiple hyperplanes per
class. AMM is based on Stochastic Gradient De-
scent (SGD), with training time comparable to
linear Support Vector Machine (SVM) and sig-
nificantly higher accuracy. On the other hand,
empirical results indicate there is a large accu-
racy gap between AMM and non-linear SVMs.
In this paper we show that this performance gap
is not due to limited representability of the MM
model, as it can represent arbitrary concepts. We
set to explain the connection between the AMM
and Learning Vector Quantization (LVQ) algo-
rithms, and introduce a novel Growing AMM
(GAMM) classifier motivated by Growing LVQ,
that imputes duplicate hyperplanes into the MM
model during SGD training. We provide theoret-
ical results showing that GAMM has favorable
convergence properties, and analyze the general-
ization bound of the MM models. Experiments
indicate that GAMM achieves significantly im-
proved accuracy on non-linear problems, with
only slightly slower training compared to AMM.
On some tasks GAMM comes close to non-linear
SVM, and outperforms other popular classifiers
such as Neural Networks and Random Forests.

1. Introduction
Support Vector Machines (SVMs) with non-linear ker-
nels (Cortes & Vapnik, 1995) can solve very complex,
highly non-linear problems. Unfortunately, this strength of
SVM is offset by high computational cost of SVM train-
ing, which led to development of a number of methods

1Uber ATG, Pittsburgh, PA, USA 2Facebook, Menlo Park,
CA, USA 3Temple University, Philadelphia, PA, USA. Corre-
spondence to: Nemanja Djuric <nemanja@temple.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

to make SVM more scalable, either by proposing algo-
rithmic speed-ups (Platt, 1998; Kivinen et al., 2002; Vish-
wanathan et al., 2003; Tsang et al., 2005; Rai et al., 2009),
or through parallelization approaches (Graf et al., 2004;
Chang et al., 2007; Zhu et al., 2009). Representing ker-
nel matrix through low-rank approximations is a popular
line of research (Si et al., 2017; Horn et al., 2018), with a
number of recent methods using Nÿstrom-based approx-
imations to speed up training and inference time (Hsieh
et al., 2014; Musco & Musco, 2017). However, scalabil-
ity of non-linear SVM training is inherently constrained
by the linear growth of model size with training data size
(Steinwart, 2003), making the methods not easily applica-
ble to extremely large problems. This is a seriously limiting
constraint, and the trend of ever-growing data collections
will further continue to pose new algorithmic challenges to
large-scale machine learning.

Linear SVMs, which have a single hyperplane per class
in multi-class classification, have been very popular when
working with large-scale data (Joachims, 2006; Shalev-
Shwartz et al., 2007). This is due to their very favor-
able properties of linear training time and constant mem-
ory scaling. However, scalability of linear SVMs comes
at a price of a limited representational power. While lin-
ear SVMs have been successfully applied to many large-
scale problems, there are many applications where learn-
ing a single separating hyperplane per class may not be
sufficient. Thus, there is a significant gap in scalability
and representational power between linear and non-linear
SVMs. Multi-hyperplane Machine (MM) (Aiolli & Sper-
duti, 2005), which allows several hyperplanes per class,
provides an intriguing avenue towards closing this gap.
Along similar lines, Kantchelian et al. (2014) proposed
a large-margin variant of the algorithm. The MM meth-
ods can be trained very efficiently, as described in the
Adaptive MM (AMM) algorithm (Wang et al., 2011) that
learns MMs in linear time using Stochastic Gradient De-
scent (SGD). The authors showed that the approach is only
slightly slower than linear SVM, while achieving signifi-
cantly higher accuracies (Wang et al., 2011).

In Wang et al. (2011) the authors show that the AMM algo-
rithm converges to an optimal solution and prove the gen-
eralization bounds for separable problems. However, em-
pirical results indicate that there is still a significant gap

Growing Adaptive Multi-Hyperplane Machines

between AMM and non-linear SVMs on many data sets.
Considering this empirical evidence, it is an open question
whether accuracy of MM algorithm is limited by repre-
sentability of MM models or by optimization issues. In this
paper we set to explore this question, and show that MM
models can represent arbitrarily complex concepts, thus es-
tablishing that further improvements of the MM algorithms
could be possible. We show a connection between MM
and Learning Vector Quantization (LVQ) models (Koho-
nen, 1995), and use this insight to propose a novel AMM al-
gorithm called Growing AMM (GAMM), motivated by the
highly-influential work on Growing LVQ (Fritzke, 1994;
1995). The GAMM method imputes duplicates of exist-
ing hyperplanes into the MM model, leading to significant
accuracy gains over AMM. We prove that the proposed
method with weight duplication retains favorable conver-
gence properties of the AMM algorithm. Moreover, by us-
ing theoretical results on Rademacher complexity applied
to SVMs, we derive the generalization bounds of the MM
models for non-separable problems as well.

2. Preliminaries and background
In this section we introduce the notation and provide back-
ground on hyperplane-based classification methods. In par-
ticular, we first describe the multi-class SVM, followed by
discussion of the MM and AMM algorithms.

2.1. Multi-class SVM

Let us assume a training dataD = {(xt, yt), t = 1, . . . , T}
is given, where instance xt ∈ RD is a D-dimensional fea-
ture vector and yt ∈ Y = {1, . . . ,M} is a multi-class la-
bel. The goal is to learn a function f : RD → Y that accu-
rately predicts a label of new instances. In multi-class SVM
(Crammer & Singer, 2001), model f(x) is of the form

f(x) = arg max
i∈Y

g(i,x), where g(i,x) = w>i x, (1)

and is parameterized by the weight vector wi ∈ RD of
the ith class. Thus, the predicted label of x is the class of
weight vector that achieves the maximum value g(i,x). By
concatenating all class-specific weight vectors, we can con-
struct the model matrix

W = [w1 w2 . . . wM]

as the D×M weight matrix representing f(x). Under this
setup, the multi-class SVM problem was defined in (Cram-
mer & Singer, 2001) as

min
W
L(W) ≡ λ

2
||W||2F +

1

T

∑T

t=1
l
(
W; (xt, yt)

)
, (2)

where λ > 0 is a regularization parameter that trades off the
model complexity defined as the Frobenius norm on W,

||W||2F =
∑

i∈Y
||wi||2,

and the margin-based training loss is defined as

l
(
W; (xt, yt)

)
= max

(
0, 1 + max

i∈Y\yt
g(i,xt)− g(yt,xt)

)
.

(3)
It can be seen from (3) that the loss is zero if the predic-
tion from the correct class is larger by a margin of at least
one than the maximal prediction from the incorrect classes;
otherwise, a linear penalty is used.

2.2. Multi-hyperplane Machines

In order to increase expressiveness of the classifier in (1),
Aiolli & Sperduti (2005) extended the multi-class SVM
by allowing multiple weights per class. They showed that
this may lead to improved accuracy as compared to linear
SVMs (Crammer & Singer, 2001).

Let us denote the jth weight of the ith class by wi,j , and let
us assume that the ith class has a total of bi weights. By
redefining g(i,x) from (1) as

g(i,x) = max
j

w>i,jx, (4)

the classifier f(x) from (1) returns the associated class of
the weight with the maximal prediction, and the resulting
algorithm is called the Multi-hyperplane Machine (MM).
With this modification to multi-class SVM, the training loss
(3) equals zero if the maximal prediction from the weights
of the correct class is by at least one larger than any pre-
diction from weights of the incorrect classes. We can now
concatenate all weights and define

W =
[
w1,1 . . .w1,b1 |w2,1 . . .w2,b2 | . . . |wM,1 . . .wM,bM

]
,

(5)
where b1, . . . , bM are the numbers of weights assigned to
each of the classes, and each of M blocks in (5) corre-
sponds to a set of class-specific weights.

The model is learned by solving the equation (2) where
g(i,x) is defined as in (4), with model complexity com-
puted using W from (5). However, the cost functionL(W)
is non-convex, and finding the global optimum cannot be
guaranteed. Thus, Aiolli & Sperduti (2005) proposed to
solve an approximate convex problem,

min
W
L(W|z) ≡ λ

2
||W||2F+

1

T

∑T

t=1
lcvx

(
W; (xt, yt); zt

)
,

(6)
where the non-convex loss function l

(
W; (xt, yt)

)
in (2) is

replaced by its convex upper bound,

lcvx
(
W; (xt, yt); zt

)
=

max
(
0, 1 + max

i∈Y\yt
g(i,xt)−w>yt,ztxt

)
,

(7)

that replaces the non-convex term −g(yt,xt) in (3) with
the convex term −w>yt,ztxt. Element zt of vector z =

Growing Adaptive Multi-Hyperplane Machines

[z1 . . . zT] determines which weight belonging to the class
of the tth example is used to calculate (7).

Solving the convex problem (6) to train MM proceeds in
rounds. At the rth round, the problem (6) with fixed z(r) is
solved to find the optimal W∗(r). Then, matrix W∗(r) is
fixed and vector z(r+1) is calculated as

z
(r+1)
t = arg max

k

(
w
∗(r)
yt,k

)>
xt, (8)

which is an index of the correct-class weight with the high-
est prediction. The iterative procedure of optimizing W
using SGD and reassigning z is repeated until convergence
to a local optimum. However, the computational cost of the
proposed batch MM algorithm is still the same as for non-
linear SVM training, thus reducing its practical appeal.

2.3. Adaptive Multi-hyperplane Machine (AMM)

In order to address high computational cost of MM training
from Aiolli & Sperduti (2005), Adaptive Multi-hyperplane
Machine was proposed (Wang et al., 2011). The SGD-
based training of AMM allows learning highly accurate
MM models in time comparable to linear SVMs. Fur-
ther, as defined in equation (4), the MM classifier allows
using different number of weights (i.e., bi) for different
classes. However, due to practical difficulties in determin-
ing these numbers, in Aiolli & Sperduti (2005) all classes
are assigned the same, pre-specified number of weights b.
This can be suboptimal, since, depending on their distri-
bution, different classes might require different numbers
of weights. In AMM, the definition of weight matrix W
in (5) is extended to allow infinite number of weights per
class. The AMM algorithm starts by assigning an infinite
number of zero-weights to each class, and lets zero-weights
become non-zero during learning. To be practically imple-
mentable, AMM does not store the zero-weights. Experi-
mental results show that the number of generated non-zero
weights adapts to the complexity of the classification prob-
lem (Wang et al., 2011).

AMM algorithm uses SGD algorithm to solve the convex
optimization problem (6). The SGD is initialized with the
zero-matrix (i.e., W(0) = 0), followed by observing ex-
amples one by one and modifying the weight matrix ac-
cordingly. Upon receiving example (xt, yt) ∈ S at the tth

round, W(t) is updated as

W(t+1) = W(t) − η(t)∇(t), (9)

where ∇(t) is the sub-gradient of the instantaneous objec-
tive on the tth example defined as

L(t)(W|z) ≡ λ

2
||W||2F + lcvx

(
W; (xt, yt); zt

)
, (10)

and η(t) = 1/(λt) is the learning rate. As can be seen, the
instantaneous objective differs from equation (6) in that it

only calculates the convex loss on the tth example. The out-
come of the update can be summarized as follows. At every
round all model weights are reduced towards zero by mul-
tiplying them with (1−1/t). In addition, if the convex loss
on the tth example is positive, then the class weight from
the true class indexed by zt (i.e., w(t)

yt,zt) is moved towards
xt by adding η(t)xt to the weight, while the class weight
with the maximum prediction from the remaining classes
w

(t)
it,jt

is moved away from xt by subtracting η(t)xt from
the weight. If the updated weight is zero-weight it becomes
non-zero, thus increasing the number of active weights for
that class by one. In this way, complexity of the AMM
model adapts to the complexity of the problem at hand,
and the number of weights bi for each class is automati-
cally learned during training.

3. Representability of MM models
The empirical results from Wang et al. (2011) indicate that
AMM is more accurate than linear SVM, but less accurate
than non-linear SVMs. The question is whether the reduced
performance is due to limited representability of the MM
model, or due to limitations of the MM learning algorithms.
The following theorem answers this question by showing
that MM can indeed represent any given concept.

Theorem 1. Assume that we are given a training set D =
{(xt, yt), t = 1, . . . , T}, in which there are no two ex-
amples with identical feature vectors and different labels.
Then, there exists an MM classifier of the form (1) with
g(i,x) defined as in equation (4), that perfectly classifies
the training set.

Proof sketch. We give a proof by construction. Let us
choose any strictly convex function h : RD → R. For each
xt find a tangent to h(x) at xt, include the tangent into the
weight matrix W, and label it with yt. Then, MM with
weight matrix W perfectly classifies the training set, since,
due to the strict convexity of h(·), among all other tangents
the tangent at xt has the maximal value for the tth example
and it returns the correct label yt of the tth example.

Following the proof, Figure 1a illustrates how MM can be
constructed given a training data with 1-D examples. How-
ever, MM trained using the construction from the proof
is not practical, as it would require one weight vector
per training example and would be prone to overfitting.
Nevertheless, the result shows that the number of hyper-
planes should be allowed to grow according to the data,
and for more complex data distributions the model com-
plexity should increase. In the extreme case where positive
and negative examples keep alternating as shown in Figure
1a, the number of hyperplanes required to fit the training
data would increase as O(T).

Growing Adaptive Multi-Hyperplane Machines

Strictly convex

function

Feature value

Weight

prediction

Tangents

0

20

40

60

Feature value

Decision boundaries
Weights

Red wins Red wins Red winsBlue wins Blue wins Blue winsBlue wins

Figure 1. (a) Visualizing the proof of Theorem 1; (b) GAMM model trained on 1× 7 XOR-like data (best seen in color)

Similar argument to Theorem 1 can be given to show that
MM can represent an arbitrarily complex concept. For any
partitioning of the feature space into classes, we can split
the space into a fine grid, find a tangent to the center of each
grid cell, and assign the tangent to a dominant class of its
grid cell. The classification error could be made arbitrarily
small by increasing the grid density. However, for high-
dimensional feature spaces the size of the resulting MM
model would be prohibitively large for practical purposes.

An interesting experimental observation is that the MM
models learned by our proposed GAMM algorithm form
a convex envelope whose minimum is close to the center of
the training data. This is a desired outcome because, in ad-
dition to a good training loss, it also benefits the model size.
To illustrate this, in Figure 1b we show the model trained
by GAMM on 1× 7 XOR-like data. As can be seen, active
hyperplanes of the model indeed form a convex-shaped en-
velope with a minimum close to the central red block. For
completeness, we note that the resulting model also con-
tains several inactive hyperplanes below the envelope.

4. Connection between MM and LVQ models
By considering Figure 1b and the proof of Theorem 1, we
can observe that the weights of MM model define a parti-
tion of the input space into disjoint one-class regions. This,
along with the prototype-based nature of MM, indicates a
connection between the MM models and the well-known
LVQ algorithm (Kohonen, 1995) which finds a Voronoi tes-
sellation of the input space. Interestingly, the connection
between LVQ and large-margin classifiers has been estab-
lished before by Crammer et al. (2002), where the authors
showed that LVQ is a large-margin classifier that attempts
to minimize loss function L(t)

LV Q defined in terms of margin

θ
(t)
LV Q for a current training example xt,

L(t)
LV Q = max(0, 1− θ(t)LV Q),

where θ(t)LV Q =
1

2
(‖xt − µ−‖2 − ‖xt − µ+‖2), (11)

and µ+ and µ− are the closest LVQ prototypes to the ex-
ample xt belonging to correct and one of incorrect classes,
respectively. Note that the loss function L(t)

LV Q does not
include regularization term, and, considering LVQ training
scheme (Kohonen, 1995), it is not readily obvious how to
regularize the LVQ model.

Let us introduce an alternative definition of a margin as
θ
(t)
MM = µ>+xt − µ>−xt. Then, if we choose µ+ to be

a correct-class MM weight assigned to xt according to z,
and µ− is an incorrect-class weight maximizing equation
(4), we can rewrite the loss (10) as

L(t)(W|z) = max(0, 1− θ(t)MM) + regularization term.
(12)

We can see that the instantaneous loss functions L(t)
LV Q

from (11) and L(t)(W|z) from (12) are equivalent up to
a definition of margin θ and the addition of MM regular-
ization. However, if we expand θ(t)LV Q as follows,

θ
(t)
LV Q =

1

2

(
‖xt − µ−‖2 − ‖xt − µ+‖2

)
=
(
µ>+xt − µ>−xt

)
+

1

2

(
‖µ−‖2 − ‖µ+‖2

)
= θ

(t)
MM +

1

2

(
‖µ−‖2 − ‖µ+‖2

)
,

(13)

it becomes clear that the LVQ margin θ
(t)
LV Q can be ex-

pressed as the sum of MM-type margin θ(t)MM and an ad-
ditional term involving norms of the prototypes. In other
words, LVQ can be viewed as the MM model without
explicit regularization that maximizes the margin θ

(t)
MM

at each training step, where the regularization is implicit
through the additional margin term forcing the prototypes
to have similar norms. Having emphasized these ties be-
tween MM and LVQ models, we note that there remains
a difference in a way the distance measure between pro-
totypes and example xt is defined. Unlike MM that uses
linear kernel, LVQ uses Euclidean distance, thus exhibiting
limited performance in high-D spaces due to the curse of
dimensionality (Hastie et al., 1995; Verleysen et al., 2003).

Growing Adaptive Multi-Hyperplane Machines

Algorithm 1 Training algorithm for GAMM
Inputs: Train set D, regularization param. λ, duplication params. p, β
Output: Trained model matrix W(t)

1. Initialize W(0) ← 0, t← 1, r ← 0, and randomly initialize z(0)

2. repeat
3. repeat
4. if

(
lcvx

(
W(t); (xt, yt); z

(r)
t

)
> 0
)

then
5. if

(
rand() < p

)
then

6. duplicate weight w(t)

yt,z
(r)
t

;

7. decrease duplication probability as p← βp;
8. compute W(t++) using (9);
9. until (enough epochs)
10. compute z(++r) using (8), and set t← 1;
11. until

(
z(r+1) = z(r) or enough epochs

)

5. Growing AMM model
Both MM and LVQ can represent arbitrarily complex con-
cepts, as shown in Theorem 1 and (Hornik et al., 1989),
respectively. However, in practice they might obtain lim-
ited results due to constraints of their respective training
procedures, as illustrated in the experimental section. Sig-
nificant efforts have been invested to address this prob-
lem for LVQ, resulting in the highly-influential work on
Growing Self-Organizing Networks (Fritzke, 1994; 1995).
These growing networks obtained significant performance
improvements over the competing LVQ methods through
insertion of prototypes into the model that are a linear com-
bination of the existing ones. Considering the correspon-
dence between LVQ and MM and inspired by the ideas
from (Fritzke, 1994; 1995) shown to increase representabil-
ity of LVQ, we present a novel MM method with sig-
nificantly improved performance over the aforementioned
AMM approach. Higher accuracy is achieved by allow-
ing MM weights to be duplicated during the SGD training.
In particular, in addition to pushing the true-class weight
closer to a misclassified example, a duplicate of that weight
is made with some probability p. As we discuss later, the
proposed method retains favorable convergence properties
of the MM algorithms.

The pseudocode of the proposed Growing AMM (GAMM)
algorithm is shown in Algorithm 1. The GAMM training
closely follows the training procedure of AMM. However,
unlike in the original AMM, when a convex classification
loss is incurred at the tth training iteration (line 4), with
probability p we duplicate the true-class weight assigned
to the observed example (xt, yt) (lines 5 and 6). Since
we expect that the weights will eventually stabilize as the
training continues, and to prevent unnecessary generation
of duplicate weights in later stages of training, the algo-

rithm gradually decreases the probability p by multiplying
with a positive constant β < 1 after every insertion (line
7; in the experiments we used β = 0.99). GAMM is a
generalization of AMM algorithm, since by setting p = 0
we obtain the original AMM algorithm. Note that we can
trade-off between exploration and exploitation strategies by
manipulating the value of p. By using higher p we explore
a larger hypothesis space, possibly leading to discovery of
more powerful classifiers but also to overfitting.

The SGD training from Algorithm 1 can result in many
non-zero weights, leading to higher complexity of the
model. This could negatively impact the generalization of
AMM, as shown by Theorem 2 from (Wang et al., 2011)
which indicates that the generalization error directly de-
pends on the complexity of the model. In order to reduce
the complexity, as well as training and prediction times,
pruning of weights was introduced in (Wang et al., 2011).
GAMM uses the same pruning approach, formulated as

W(t+1) ←W(t+1) −∆W(t), (14)

where ∆W(t) is a sparse matrix of the same size as
W(t+1), whose non-zero columns correspond to removed
weights. For example, if w(t)

i,j is removed, then ∆w
(t)
i,j =

w
(t)
i,j , while all other columns of ∆W(t) are zero. After

defining pruning constant c ≥ 0, pruning (14) is performed
by sorting the weights by their norms and deleting as many
as possible of those with smaller norms such that the condi-
tion ‖∆W(t)‖ ≤ c/

(
(t−1)λ

)
is not violated. Note that the

removal of small weights can be viewed as an online ver-
sion of the additional `1-regularization of the MM model
(Langford et al., 2009). Thus, by deleting rarely-winning
weights when their norm becomes too small, as described
by Wang et al. (2011), we adopt an intuitive, theoretically
sound approach to lower the model complexity.

Growing Adaptive Multi-Hyperplane Machines

5.1. Theoretical analysis of GAMM

As shown by Wang et al. (2011), the pruning step described
above does not considerably affect a convergence of the
AMM algorithm to the solution of problem (6). If we treat
weight duplication as model degradation, we can use a sim-
ilar argument to Theorem 2 in Wang et al. (2011) to charac-
terize convergence of GAMM that uses both weight prun-
ing and weight duplication.

Theorem 2. Let W∗ be the solution of (6), and T be the
total number of training iterations. Further, let the pruning
be performed as described above, p be a starting probabil-
ity of weight duplication, and 0 < β < 1 is a multiplicative
factor that reduces p after every weight duplication. Then,

1

T

T∑
t=1

(
L(t)(W(t)|z)− L(t)(W∗|z)

)
≤

(2 + c)2
(
2 + p/(1− β)

)
λ

+

(2 + c)2
(
2 + p/(1− β)

)2
2Tλ

(p(2β + 3)

(1− β)2
+ ln(T) + 1

)
.

(15)

The proof is given in the Appendix. The theorem shows
that weight duplication causes an additional constant regret
of (2 + c)2p/

(
(1−β)λ

)
(in the first term on r.h.s.), as well

as initially larger regret that vanishes as the iteration count
T grows (in the second term on r.h.s.). While the regret
bound (15) is not tight, it nevertheless highlights a useful
trade-off between model accuracy and its complexity.

Let us discuss the generalization error of a learned MM
model. We assume that the product RD × Y is a measur-
able space endowed with an unknown probability measure
P, and let random pair (x, y) ∈ RD × Y be distributed ac-
cording to P. Define the risk of function f : RD → Y as

R(f) = E[`
(
y, f(x)

)
], (16)

where `(y, f(x)) = 1y 6=f(x), and let R̃N denote the corre-
sponding empirical risk on a data sample of size N . Then,
the following theorem holds.

Theorem 3. Let F be a class of functions that MM can
implement, and ‖x‖ ≤ 1 without the loss of generality.
Then, with probability of at least 1 − δ, the risk of any
function f ∈ F is bounded from above as

R(f) ≤ R̃N (f) +
4 + 4K‖W‖√

N
+ (‖W‖+ 1)

√
ln 1

δ

2N
,

(17)

where K =
M∑
i=1

bi
M∑
j 6=i

bj , and bi is the number of weights

for the ith class.

The proof, following Guermeur (2010), is given in the Ap-
pendix. Note that the generalization bound is tight as K is
bounded because the norm of W is bounded, as shown in

equation (3) of the proof of Theorem 2 in the Appendix.
Theorem 3 shows that the true model risk R(f) is closer to
the empirical risk R̃(f) if the MM model is less complex,
with smaller number of weights (smaller K). This finding
justifies the weight pruning used both in Wang et al. (2011)
and in our current work. We can also see that if pruning is
too aggressive (resulting in smaller ‖W‖) the bound grows
tighter, however the empirical risk of the model will suffer.
Thus, the theorem indicates a trade-off between complexity
and the generalization power of the MM models.

5.2. Online GAMM

Due to the requirement to compute z using (8) at each
epoch on the entire data set, the GAMM algorithm as pre-
sented in Algorithm 1 is applicable to cases where the data
resides on the disk and multiple data scans are permitted.
Moreover, additional memory is required to compute and
store the assignment vector z at the end of each epoch.
This leads to increased memory and latency overhead, as
discussed in Wang et al. (2011) in the context of AMM.

To address this issue, we follow Wang et al. (2011) and pro-
pose an online version of GAMM that achieves comparable
accuracy with higher efficiency. In particular, for example
(xt, yt) we compute an instantaneous assignment zt as

zt = arg max
k

w>yt,kxt, (18)

thus using the best matching true-class weight to compute
the loss (7). While this change renders the loss non-convex,
it also results in faster and simpler training procedure, and
allows a single-pass training. In addition, our experiments
show that the model trained in such online fashion achieves
similar performance to the original batched approach. As a
result, we use online versions of both AMM and GAMM in
the empirical evaluation presented in the following section.

6. Experiments
We implemented GAMM in C++ using open-source tool-
box BudgetedSVM1 (Djuric et al., 2013) and compared
it to linear SVM solver Pegasos (Shalev-Shwartz et al.,
2007), kernel SVM solver LibSVM (Chang & Lin, 2011),
as well as AMM (Wang et al., 2011). We also compared to
LogitBoost (Friedman et al., 2000), Random Forest (RF)
(Breiman, 2001), Neural Networks (NNs), and LVQ2.1
(Kohonen, 1995) using their scikit-learn implementations.

6.1. Detailed analysis of GAMM performance

In this section we present results on synthetic data sets
that provide detailed characterization of and insight into the

1The GAMM implementation is available for download at
https://github.com/djurikom/BudgetedSVM.

https://github.com/djurikom/BudgetedSVM

Growing Adaptive Multi-Hyperplane Machines

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) Test data set

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) AMM (35.87% error rate)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) GAMM (7.38% error rate)

Figure 2. Experiments on synthetic 4× 4 checkerboard data

MM models. We run experiments on data of varying char-
acteristics to measure accuracy of the proposed method,
and to estimate its robustness to noise.

6.1.1. EXPERIMENTS ON THE checkerboard DATA

We first considered 4×4 checkerboard data, and compared
performance of AMM and GAMM. The data is not linearly
separable, providing an excellent benchmark for showing
the benefits of the proposed GAMM. We created a bal-
anced, two-class training set with 15,000 examples, as well
as a test set with 5,000 examples illustrated in Figure 2a.
We set parameters to their default values, c = 10 for AMM
and c = 50 for GAMM (due to more frequent introduction
of new weights), p = 0.2, β = 0.99, set λ through cross-
validation, and trained the models for 15 epochs. As can
be seen from the results in Figures 2b and 2c, AMM could
not solve this difficult non-linear problem, while GAMM
achieved near-perfect class separation. We note that SVM
with RBF kernel (RBF-SVM) is very accurate on this data,
reaching nearly 99.9% accuracy (Wang et al., 2012).

To get a better insight into representational power and sta-
bility of AMM, we ran experiments on checkerboard data
sets of different complexity. We changed the number of
rows and columns of the grid from 1 to 5, and in Table 1 re-
port mean and standard deviation of classification error rate
after 10 repetitions. We can see that AMM could not solve
2× 4 and 3× 3 checkerboards. On the other hand, GAMM
achieved significantly higher accuracy and was much more
stable than AMM in all the cases.

To further explore robustness of AMM, we added label
noise to 4×4 checkerboard training data. We increased the
fraction of noisy examples (to which we assigned a class la-
bel at random) from 0 to 1 in increments of 0.05, repeating
each experiment 10 times. The accuracy and confidence
intervals indicating two standard deviations computed on
noise-free test data are shown in Figure 3a. We see that
GAMM is very robust to noise, significantly outperform-
ing AMM until noise levels become prohibitively high.

Table 1. Error rate as a function of the checkerboard pattern
Pattern AMM GAMM
1× 2 0.48± 0.33 0.42± 0.29
1× 3 1.39± 0.72 1.33± 0.62
1× 4 3.23± 0.70 2.45± 0.51
1× 5 4.90± 0.97 3.73± 0.71
2× 2 1.49± 0.57 1.08± 0.40
2× 3 2.98± 0.85 2.20± 0.52
2× 4 10.33± 6.77 3.77± 0.89
2× 5 20.79± 7.42 5.90± 1.61
3× 3 16.92± 9.72 4.17± 0.77
3× 4 24.47± 7.42 5.69± 0.93
3× 5 34.87± 4.84 7.97± 1.43
4× 4 35.87± 3.39 7.38± 1.53
4× 5 35.13± 5.26 13.11± 1.84
5× 5 43.27± 3.71 22.15± 2.08

6.1.2. EXPERIMENTS ON THE weights DATA

In the next set of experiments we compared the MM mod-
els to a wide range of classifiers on a number of synthetic
weights data sets of varying complexity. The data set was
generated as follows: for a given number of features D and
complexity nw, we first generated nw weights of dimen-
sionalityD+1 (including the bias term) by uniformly sam-
pling each dimension from a [0, 1] range, normalized each
weight to unit length, and uniformly at random assigned
each weight to either positive or negative class. Then, we
created 15,000 training and 5,000 test examples by uni-
formly sampling each dimension from a [0, 1] range. We
assigned each example a class using equation (4); see Fig-
ures 4a and 4b for examples of the weights data. It is worth
noting that although the synthetic data sets were generated
according to the MM models, similar data could be gener-
ated according to the SVM model by choosing a number
of support vectors and randomly assigning a class label to
each. We set AMM and GAMM parameters as in the pre-
vious experiments, λ for Pegasos and C and γ parameters

Growing Adaptive Multi-Hyperplane Machines

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Fraction of noisy examples

A
c
c
u
r
a
c
y

GAMM

AMM

(a) AMM and GAMM on noisy
4× 4 checkerboard data set

5 10 15 20 25 30 35 40 45 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Data dimensionality D

A
c
c
u
r
a
c
y

linear SVM

RBF−SVM

NN

AMM

GAMM

(b) Accuracy of the baseline classifiers
on the weights data set (nw = 50)

20 40 60 80 100 120 140 160 180 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Data complexity n
w

A
c
c
u
r
a
c
y

linear SVM

RBF−SVM

NN

AMM

GAMM

(c) Accuracy of the baseline classifiers
on the weights data set (D = 20)

Figure 3. Accuracy of the baseline classifiers on the synthetic data sets of varying characteristics

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) nw = 50

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) nw = 200

Figure 4. Examples of 2-D weights data of different complexity

of SVM through cross-validation, and used NN with one
hidden layer comprising 2.5D nodes (found through cross-
validation to give the best NN results for this specific task).

We observed that for larger D and nw the baselines Log-
itBoost, RF, and LVQ2.1 had accuracy slightly better than
a random guess (the results are not listed). Thus, in Fig-
ures 3b and 3c we show accuracies of NN, linear SVM,
and RBF-SVM. In Figure 3b we give results on the weights
data where we set nw = 50, and increased D from 5 to 50
in increments of 5, showing mean accuracy and error bars
representing two standard deviations after 10 repetitions.
We can see that AMM, NN, and RBF-SVM classifiers per-
formed much better than linear SVM, which was expected
because the problems were highly non-linear. For D = 5
RBF-SVM performed slightly better than GAMM; how-
ever, as the dimensionality increased, both NN and RBF-
SVM performance dropped sharply, while GAMM still at-
tained very stable, high accuracy. Interestingly, for higher
D the AMM accuracy slowly reached that of GAMM. This
can be explained by the fact that as the values of nw and
D become closer, the number of alternating classes along a
randomly chosen direction decreases, which poses an eas-
ier task for AMM. For a similar effect compare the results
of AMM and GAMM for 2×2 vs. 3×3 vs. 4×4 checker-

board data in Table 1, where the gap increases superlinearly
with larger complexity. In Figure 3c we provide results on
the weights data where we set D = 20, and increased the
number of weights nw from 10 to 200 in increments of 10
(i.e., we increased “non-linearity” of the data set), showing
mean accuracy and error bars representing two standard de-
viations after 10 repetitions. We can see that GAMM con-
sistently outperformed NN and SVM, while AMM perfor-
mance dropped sharply as the data complexity increased.

6.2. Performance on real-world data sets

We evaluated the algorithms on 5 real-world data sets2 of
very different sizes, dimensions, and complexities3. The
results are presented in Table 2. We used the same pa-
rameter settings as before, and trained for 15 epochs on
the first three smaller data sets, for 5 epochs on medium-
sized rcv1, and 1 epoch on large mnist data set. To bet-
ter illustrate scalability we evaluated the algorithms on the
lower-end Intel R© E7400 with 2.80GHz processor and 4GB
RAM, and we excluded data loading time when reporting
training times. We can see that GAMM consistently out-
performed the AMM algorithm, in all cases by a signif-
icant margin. GAMM inherits very favorable scalability
of AMM, and is only slightly slower due to weight dupli-
cation. Compared to RBF-SVM, on some tasks GAMM
comes close while requiring significantly less time to train,
thus further closing the representability and scalability gap
between MM and SVM models. For example, on rcv1 data
set it took nearly a whole day to train RBF-SVM on our ma-
chine, while GAMM achieved similar accuracy after train-
ing for only half a minute. Furthermore, RBF-SVM could
not be trained in a reasonable time on the very large, high-
dimensional mnist data set (the reported accuracy was ob-

2https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/, last accessed June 2020.

3Binary mnist data set was obtained by classifying round
{3, 6, 8, 9, 0} vs. non-round digits {1, 2, 4, 5, 7}.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Growing Adaptive Multi-Hyperplane Machines

Table 2. Error rates of the baseline classifiers on real-world data sets
classes # train # dim linear SVM RBF-SVM AMM GAMM

usps 10 7,291 256 8.38± 0.23 4.81 7.32± 0.35 6.28± 0.19
letter 26 15,000 16 25.84± 1.12 2.02 17.47± 0.93 11.69± 0.47
ijcnn1 2 49,990 22 7.76± 0.19 1.31 2.58± 0.21 2.16± 0.20
rcv1 2 677,399 47,236 2.31± 0.031 2.171 2.29± 0.091 2.11± 0.091

mnist 2 8,000,000 784 24.18± 0.392 0.432 3.40± 0.332 2.84± 0.022

1rcv1 training times: 1.5s (linear SVM); 20.2h (RBF-SVM); 9s (AMM); 32s (GAMM)
2mnist training times: 1.1min (linear SVM); 4min (AMM); 19min (GAMM); RBF-SVM

accuracy reported after 2 days of P-packSVM training on 512 processors (Zhu et al., 2009)

tained after 2 days of P-packSVM training on 512 proces-
sors (Zhu et al., 2009)), while GAMM was trained within
minutes and reached reasonable accuracy.

Lastly, let us consider size of the learned MM models,
taking the smaller data sets trained for the same number
of epochs as an example. After completing 15 epochs of
GAMM training the number of hyperplanes for usps was
on average 36 per class, 11 per class for letter, and 140 per
class for ijcnn1, correlated with the training times of 8.6s,
2.7s, and 9.1s, respectively. When it comes to AMM, after
15 epochs the average hyperplane counts per class were 3,
2, and 6, with the training times of 1.2s, 0.6s, and 0.7s, re-
spectively. While AMM had somewhat faster training and
resulted in less complex model, its accuracy was substan-
tially lower than the proposed GAMM. As discussed pre-
viously, the model complexity adapts to complexity of the
problem at hand, where higher-dimensional and bigger data
sets resulted in larger models for both AMM and GAMM.

7. Conclusion
We presented a novel GAMM algorithm that significantly
improves accuracy of learned MM models, while retaining
very favorable scalability of AMM. We showed that by du-
plication of hyperplanes during SGD training the resulting
MM model can solve highly non-linear problems. In ad-
dition, we provided theoretical proofs indicating that MM
models can represent arbitrarily complex concepts. More-
over, we showed that GAMM convergence does not signif-
icantly suffer due to weight duplication, and provided in-
sightful generalization bounds for non-separable problems
for a general class of MM models. Experiments indicate
that GAMM achieves significantly improved accuracy over
AMM on non-linear problems, with slightly slower train-
ing. On some tasks GAMM performed similarly to the
state-of-the-art RBF-SVM, suggesting that GAMM rep-
resents an efficient and scalable alternative to non-linear
SVMs. The results indicate that GAMM occupies an im-
portant niche: having computational cost comparable to
linear SVMs with accuracy approaching kernel SVMs.

References
Aiolli, F. and Sperduti, A. Multi-class classification with

multi-prototype Support Vector Machines. Journal of
Machine Learning Research, 6(1):817, 2005.

Breiman, L. Random forests. Machine learning, 45(1):
5–32, 2001.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for sup-
port vector machines. ACM Transactions on Intelligent
Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Chang, E., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., and
Cui, H. Psvm: Parallelizing support vector machines on
distributed computers. Advances in Neural Information
Processing Systems, 20:16, 2007.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

Crammer, K. and Singer, Y. On the algorithmic implemen-
tation of multi-class kernel-based vector machines. Jour-
nal of Machine Learning Research, 2:265–292, 2001.

Crammer, K., Gilad-Bachrach, R., Navot, A., and Tishby,
N. Margin analysis of the LVQ algorithm. Advances
in Neural Information Processing Systems, 15:462–469,
2002.

Djuric, N., Lan, L., Vucetic, S., and Wang, Z. Budget-
edsvm: A toolbox for scalable svm approximations. The
Journal of Machine Learning Research, 14(1):3813–
3817, 2013.

Friedman, J., Hastie, T., and Tibshirani, R. Additive logis-
tic regression: A statistical view of boosting. The Annals
of Statistics, 28(2):337–407, 2000.

Fritzke, B. Growing cell structures - A self-organizing net-
work for unsupervised and supervised learning. Neural
Networks, 7(9):1441–1460, 1994.

Growing Adaptive Multi-Hyperplane Machines

Fritzke, B. A growing neural gas network learns topolo-
gies. Advances in Neural Information Processing Sys-
tems, 7:625–632, 1995.

Graf, H., Cosatto, E., Bottou, L., Dourdanovic, I., and Vap-
nik, V. Parallel Support Vector Machines: The cascade
SVM. Advances in Neural Information Processing Sys-
tems, 17:521–528, 2004.

Guermeur, Y. Sample complexity of classifiers taking val-
ues in RQ, application to multi-class SVMs. Communi-
cations in Statistics - Theory and Methods, 39(3):543–
557, 2010.

Hastie, T., Simard, P., and Säckinger, E. Learning proto-
type models for tangent distance. Advances in Neural
Information Processing Systems, pp. 999–1006, 1995.

Horn, D., Demircioğlu, A., Bischl, B., Glasmachers, T.,
and Weihs, C. A comparative study on large scale kernel-
ized support vector machines. Advances in Data Analy-
sis and Classification, 12(4):867–883, 2018.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

Hsieh, C.-J., Si, S., and Dhillon, I. S. Fast prediction for
large-scale kernel machines. In Advances in Neural In-
formation Processing Systems, pp. 3689–3697, 2014.

Joachims, T. Training linear SVMs in linear time. In ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 217–226, 2006.

Kantchelian, A., Tschantz, M. C., Huang, L., Bartlett, P. L.,
Joseph, A. D., and Tygar, J. D. Large-margin convex
polytope machine. In Advances in Neural Information
Processing Systems, pp. 3248–3256, 2014.

Kivinen, J., Smola, A. J., and Williamson, R. C. Online
learning with kernels. IEEE Transactions on Signal Pro-
cessing, 52(8):2165–2176, 2002.

Kohonen, T. Learning vector quantization. In Arbib, M.
(ed.), The Handbook of Brain Theory and Neural Net-
works, pp. 537–540. MIT Press, Cambridge, MA, 1995.

Langford, J., Li, L., and Zhang, T. Sparse online learn-
ing via truncated gradient. Journal of Machine Learning
Research, 10(Mar):777–801, 2009.

Musco, C. and Musco, C. Recursive sampling for the nys-
trom method. In Advances in Neural Information Pro-
cessing Systems, pp. 3833–3845, 2017.

Platt, J. Fast training of Support Vector Machines using
Sequential Minimal Optimization. Advances in kernel
methods - support vector learning, MIT Press, 1998.

Rai, P., Daumé III, H., and Venkatasubramanian, S.
Streamed learning: one-pass SVMs. In International
Joint Conference on Artificial Intelligence, pp. 1211–
1216. Morgan Kaufmann Publishers Inc., 2009.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pegasos:
Primal estimated sub-gradient solver for SVM. In Inter-
national Conference on Machine Learning, pp. 807–814,
2007.

Si, S., Hsieh, C.-J., and Dhillon, I. S. Memory efficient
kernel approximation. The Journal of Machine Learning
Research, 18(1):682–713, 2017.

Steinwart, I. Sparseness of support vector machines. Jour-
nal of Machine Learning Research, 4:1071–1105, 2003.

Tsang, I. W., Kwok, J. T., and Cheung, P.-M. Core vector
machines: Fast SVM training on very large data sets.
Journal of Machine Learning Research, 6(1):363, 2005.

Verleysen, M., François, D., Simon, G., and Wertz, V. On
the effects of dimensionality on data analysis with neu-
ral networks. In Artificial Neural Nets Problem solving
methods, pp. 105–112. Springer, 2003.

Vishwanathan, S. V. N., Smola, A. J., and Murty, M. N.
SimpleSVM. In International Conference on Machine
Learning, 2003.

Wang, Z., Djuric, N., Crammer, K., and Vucetic, S.
Trading representability for scalability: Adaptive multi-
hyperplane machine for nonlinear classification. In ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, 2011.

Wang, Z., Crammer, K., and Vucetic, S. Breaking the curse
of kernelization: Budgeted stochastic gradient descent
for large-scale svm training. Journal of Machine Learn-
ing Research, 13(Oct):3103–3131, 2012.

Zhu, Z. A., Chen, W., Wang, G., Zhu, C., and Chen, Z. P-
packSVM: parallel primal gradient descent kernel SVM.
In IEEE International Conference on Data Mining, pp.
677–686, 2009.

