
Growing Adaptive
Multi-Hyperplane Machines

Nemanja Djuric, Zhuang Wang, Slobodan Vucetic
Uber ATG Facebook Temple University

Overview

● Intro to Multi-hyperplane Machines (MMs)
● Adaptive MMs (AMMs) extension
● Proposed approach: Growing AMMs
● Regret and generalization bounds
● Experimental results

(Uni-hyperplane) Multi-class SVM

● Let us assume a multi-class data set of size T

● Task is to learn a function mapping a data point into one of M classes
● Multi-class SVM (Crammer & Singer, 2001) is of the form

where the model is parameterized by the weight matrix

Training of multi-class SVM

● Let us define a margin-based loss for a data point xt as

● Then, we minimize the following overall loss using SGD

Multi-hyperplane Machines (MMs)

● Aiolli & Sperduti (2005) extended the model to a fixed number of
weights per class

● The per-class score for a data point is now defined as

 (before) (after)

● The authors propose an approximate method to train the model,
solving a convex approximation of the original loss

Adaptive MMs (AMMs)

● The authors of (Wang et al., 2011) introduced an infinite number of
zero-weights per class, activated during training when neither of the
non-zero weights provides positive prediction

● In this way, the model adapts to the complexity of the task, and learns
an appropriate number of weights

The effect of infinite zero-weights

B1

B1

B1B2

R1 R1

R1
B1

B2

R1

After
SGD

After
SGD

Without zero weights the well-established B1 is degraded

With zero-weights a new B2 weight is activated to cover the misclassified blue cluster

Growing AMMs

● We propose a novel training procedure, where a winning weight is
duplicated at random before the SGD update is applied

● GAMM was motivated by the Growing LVQ (Fritzke, 1994; 1995), which
introduced a similar strategy for prototype duplication in LVQ method

● Proposed step during gradient step when misclassification happens:

duplication probability ← fixed value (e.g., 0.2)
if (coin flip with duplication probability is successful):

- duplicate the winning true-class weight and add to the model
- update the duplicate weight with gradient step
- decrease duplication probability

Gradient step
w/o duplication

B1

R1

A
fter

SG
D

Without duplication the
well-established B2 is degraded

B2

R1

B1

R1 B2

R1

Gradient step
with duplication

B1

R1

A
fter

SG
DWith duplication a new B3 weight is

spawned from B2 and updated to
cover the misclassified blue cluster

B2

R1

B1

R1 B2

R1

B3

Regret bound

● Let W* be the optimal solution of the MM problem, p be an initial
duplication probability and β a multiplicative factor that reduces it

● Then, the following regret bound holds

● Compared to AMM duplication causes an additional regret of (2
+ c)2p/((1 − β)λ) (in the first term on r.h.s.), as well as regret that
vanishes as the iteration count T grows (in the second term on r.h.s.)

Generalization bound

● Define the risk of function as

 , where

● Let be an empirical risk on an N-sample, F be a class of functions
that MM can implement, and ||x|| ≤ 1 without the loss of generality

● Then, with probability of at least 1 − δ, the risk of any function f ∈F is
bounded from above as (bi is a number of weights for the i-th class)

, , where

Experiments on synthetic data

● We considered a number of baselines, including linear SVM, RBF-SVM,
AMM, as well as LogitBoost, Random Forest, Neural Nets, and LVQ2.1

● We used checkerboard and weights data
○ weights data was generated by randomly sampling nw unit weights

and assigning a random class to each

4×4 checkerboard data weights data with nw=50 (left) and nw=200 (right)

Experiments on checkerboard data

● We increased data complexity by varying the n×m pattern
● We can see that the GAMM performs significantly better than AMM

4×4 solution of AMM (left) and GAMM (right)

Experiments on checkerboard data

● Adding noise to training data does not impact GAMM as much as AMM
● The result shows that GAMM is much more robust to noise

Experiments on weights data

● We run experiments with different data complexities nw and dimensionalities D
● The results show very good GAMM performance in both cases, outperforming

the baselines as the task is becoming more and more complex

Increasing D as nw = 50 Increasing nw as D = 20

Experiments on real-world data

● We evaluated GAMM on real-world data of different characteristics

● GAMM consistently outperformed the AMM algorithm, in all cases by a
significant margin, while inheriting very favorable scalability of AMM

● Compared to RBF-SVM, on some tasks GAMM comes close while
requiring significantly less time to train

Thank you for your attention!

● Key takeaway:
GAMM occupies an important niche: computational cost comparable
to linear SVMs with accuracy approaching that of kernel SVMs

Test it yourself at https://github.com/djurikom/BudgetedSVM !

https://github.com/djurikom/BudgetedSVM

