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Overview

● Intro to Multi-hyperplane Machines (MMs) 
● Adaptive MMs (AMMs) extension
● Proposed approach: Growing AMMs
● Regret and generalization bounds
● Experimental results



(Uni-hyperplane) Multi-class SVM

● Let us assume a multi-class data set of size T

● Task is to learn a function mapping a data point into one of M classes
● Multi-class SVM (Crammer & Singer, 2001) is of the form

where the model is parameterized by the weight matrix



Training of multi-class SVM

● Let us define a margin-based loss for a data point xt as

● Then, we minimize the following overall loss using SGD



Multi-hyperplane Machines (MMs)

● Aiolli & Sperduti (2005) extended the model to a fixed number of 
weights per class

● The per-class score for a data point is now defined as

                                (before)                        (after)

● The authors propose an approximate method to train the model, 
solving a convex approximation of the original loss



Adaptive MMs (AMMs)

● The authors of (Wang et al., 2011) introduced an infinite number of 
zero-weights per class, activated during training when neither of the 
non-zero weights provides positive prediction

● In this way, the model adapts to the complexity of the task, and learns 
an appropriate number of weights



The effect of infinite zero-weights
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Without zero weights the well-established B1 is degraded

With zero-weights a new B2 weight is activated to cover the misclassified blue cluster



Growing AMMs

● We propose a novel training procedure, where a winning weight is 
duplicated at random before the SGD update is applied

● GAMM was motivated by the Growing LVQ (Fritzke, 1994; 1995), which 
introduced a similar strategy for prototype duplication in LVQ method

● Proposed step during gradient step when misclassification happens:

duplication probability ← fixed value (e.g., 0.2)
if (coin flip with duplication probability is successful):

- duplicate the winning true-class weight and add to the model
- update the duplicate weight with gradient step
- decrease duplication probability



Gradient step
w/o duplication
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Gradient step
with duplication
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Regret bound

● Let W* be the optimal solution of the MM problem, p be an initial 
duplication probability and β a multiplicative factor that reduces it

● Then, the following regret bound holds

● Compared to AMM duplication causes an additional regret of              (2 
+ c)2p/((1 − β)λ) (in the first term on r.h.s.), as well as regret that 
vanishes as the iteration count T grows (in the second term on r.h.s.)



Generalization bound

● Define the risk of function                      as

                                         , where

● Let        be an empirical risk on an N-sample, F  be a class of functions 
that MM can implement, and ||x|| ≤ 1 without the loss of generality

● Then, with probability of at least 1 − δ, the risk of any function f ∈F  is 
bounded from above as (bi is a number of weights for the i-th class) 

,   , where



Experiments on synthetic data

● We considered a number of baselines, including linear SVM, RBF-SVM, 
AMM, as well as LogitBoost, Random Forest, Neural Nets, and LVQ2.1

● We used checkerboard and weights data
○ weights data was generated by randomly sampling nw unit weights 

and assigning a random class to each

4×4 checkerboard data weights data with nw=50 (left) and nw=200 (right)



Experiments on checkerboard data

● We increased data complexity by varying the n×m pattern
● We can see that the GAMM performs significantly better than AMM

4×4 solution of AMM (left) and GAMM (right)



Experiments on checkerboard data

● Adding noise to training data does not impact GAMM as much as AMM
● The result shows that GAMM is much more robust to noise



Experiments on weights data

● We run experiments with different data complexities nw and dimensionalities D
● The results show very good GAMM performance in both cases, outperforming 

the baselines as the task is becoming more and more complex

Increasing D as nw = 50 Increasing nw as D = 20



Experiments on real-world data

● We evaluated GAMM on real-world data of different characteristics

● GAMM consistently outperformed the AMM algorithm, in all cases by a 
significant margin, while inheriting very favorable scalability of AMM

● Compared to RBF-SVM, on some tasks GAMM comes close while 
requiring significantly less time to train



Thank you for your attention!

● Key takeaway: 
GAMM occupies an important niche: computational cost comparable 
to linear SVMs with accuracy approaching that of kernel SVMs

Test it yourself at https://github.com/djurikom/BudgetedSVM !

https://github.com/djurikom/BudgetedSVM

