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(Uni-hyperplane) Multi-class SVM

® |etus assume a multi-class data set of size T

1 = {(Xt,yt),t: ].,,T}

e Task isto learn a function mapping a data point into one of M classes
e Multi-class SVM (Crammer & Singer, 2001) is of the form

f(x) = argmax g(i,x), where g(i,x) = w, x

€y
where the model is parameterized by the weight matrix
W = [w; Wy ... W]



Training of multi-class SVM

® Let us define a margin-based loss for a data point x, as

l(W; (x¢, yt)) = max (0, 1+ max g(%,x¢) — g(yt,xt))
1€Y\yt

e Then, we minimize the following overall loss using SGD

. _A 1 T
min L(W) = Z[[WIlE+ = > 1(W;(x,90)




Multi-hyperplane Machines (MMs)

e Aiolli & Sperduti (2005) extended the model to a fixed number of
weights per class

W = |:W1,1 e e W1, |W271 ce. W2,b2| 55K |WM,1 P w WM,bM]

e The per-class score for a data point is now defined as

g(i,x) =w, x_(before) g(i,x) = max w;rjx (after)
J )

e The authors propose an approximate method to train the model,
solving a convex approximation of the original loss



Adaptive MMs (AMMSs)

e The authors of (Wang et al., 2011) introduced an infinite number of
zero-weights per class, activated during training when neither of the
non-zero weights provides positive prediction

e In this way, the model adapts to the complexity of the task, and learns
an appropriate number of weights



The effect of infinite zero-weights

B

Without zero weights the well-established B1 is degraded

St = Bl

With zero-weights a new B2 weight is activated to cover the misclassified blue cluster




Growing AMMSs

e We propose a novel training procedure, where a winning weight is
duplicated at random before the SGD update is applied

e GAMM was motivated by the Growing LVQ (Fritzke, 1994; 1995), which
introduced a similar strategy for prototype duplication in LVQ method

e Proposed step during gradient step when misclassification happens:

duplication probability « fixed value (e.g., 0.2)

if (coin flip with duplication probability is successful):
duplicate the winning true-class weight and add to the model
update the duplicate weight with gradient step
decrease duplication probability



R1

Gradient step
w/o duplication

B2

Without duplication the
well-established B2 is degraded




R1

Gradient step

with duplication ==

With duplication a new B3 weight is
spawned from B2 and updated to
cover the misclassified blue cluster




Regret bound

Let W* be the optimal solution of the MM problem, p be an initial
duplication probability and f a multiplicative factor that reduces it
Then, the following regret bound holds
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Compared to AMM duplication causes an additional regret of
+ ¢)2p/((1 — p)A) (in the first term on r.h.s.), as well as regret that

vanishes as the iteration count T grows (in the second term on r.h.s.)
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Generalization bound

e Define the risk of function f : RP? — Y as

R(f) = E[{(y, f(x))], where £(y, f(x)) = Lyzs00)

e Let Ry bean empirical risk on an N-sample, # be a class of functions
that MM can implement, and ||x|| < 1 without the loss of generality

e Then, with probability of at least 1- 0, the risk of any function f € # is
bounded from above as (b, is a number of Weights for the i-th class)

KW ‘where K = 3~ b; 3" b

(W] +1
T (W) rhy

R(f) < Bn(f) + -3




Experiments on synthetic data

e We considered a number of baselines, including linear SVM, RBF-SVM,
AMM, as well as LogitBoost, Random Forest, Neural Nets, and LVQ2.1
e We used checkerboard and weights data
o weights data was generated by randomly sampling n  unit weights
and assigning a random class to each

4x4 checkerboard data weights data with n =50 (left) and n_=200 (right)



Experiments on checkerboard data

We increased data complexity by varying the nxm pattern
We can see that the GAMM performs significantly better than AMM

Pattern AMM GAMM

1x2 0.484+0.33 0.42+0.29
1x3 1.39 £0.72 1.33 £ 0.62
1x4 3.23 +£0.70  2.45+0.51
1x5 490+097 3.73+0.71
2 x2 1.49 + 0.57 1.08 £0.40
2x3 2.98 £0.85 2.20 +£0.52
2x4 10.33 £6.77 3.77 £0.89
2x5 20.79 £7.42 590+1.61
3x3 16.92 +£9.72 4.17£0.77
3x4 24.47+7.42 5.69+0.93
3 x5 34.87+4.84 7.97+1.43
4x4 35.87+3.39 7.38+1.53
4x5 35.13£5.26 13.11+1.84
5X5 43.27 £3.71 22.15+2.08
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4x4 solution of AMM (left) and GAMM (right)



Experiments on checkerboard data

e Adding noise to training data does not impact GAMM as much as AMM
e The result shows that GAMM is much more robust to noise
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Experiments on weights data

e We run experiments with different data complexities n and dimensionalities D
e The results show very good GAMM performance in both cases, outperforming
the baselines as the task is becoming more and more complex
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Experiments on real-world data

e \We evaluated GAMM on real-world data of different characteristics

# classes # train #dim | linear SVM  RBF-SVM AMM GAMM
usps 10 7,291 256 8.38 +0.23 4.81 7.32+0.35 6.28+0.19
letter 26 15,000 16 25.84 +1.12 2.02 17.47 +£0.93 11.69 &+ 0.47
ijennl 2 49,990 22 7.76 +0.19 1.31 2.58+0.21 2.16+0.20
revl 2 677,399 47,236 | 2.31+0.03! Dl i 2.294+0.09! 2.11 +0.09!
mnist 9 8,000,000 784 | 24.18 4 0.392 0.432 3.40 £0.332 2.84 4+ 0.022

Lrevl training times: 1.5s (linear SVM); 20.2h (RBF-SVM); 9s (AMM); 32s (GAMM)
2mnist training times: 1.1min (linear SVM); 4min (AMM); 19min (GAMM); RBF-SVM
accuracy reported after 2 days of P-packSVM training on 512 processors (Zhu et al., 2009)

e GAMM consistently outperformed the AMM algorithm, in all cases by a
significant margin, while inheriting very favorable scalability of AMM

e Compared to RBF-SVM, on some tasks GAMM comes close while
requiring significantly less time to train



Thank you for your attention!

o Key takeaway:
GAMM occupies an important niche: computational cost comparable
to linear SVMs with accuracy approaching that of kernel SVMs

Test it yourself at https://github.com/djurikom/BudgetedSVM !



https://github.com/djurikom/BudgetedSVM

