
Future/follow-up work

● Guarantee physical realism of predicted trajectories using vehicle models
● Model interaction between actors
● Learn better trajectory loss function with GANs
● Include explicit constraints on trajectory prediction (e.g. lane following,

avoiding static obstacles)
● Combine models of different actor types
● Joint Perception-Prediction models for faster inference

● Given info describing the scene around an actor and their recent history, the
task is to predict actor movement as well as its movement uncertainty

● In the following we define the loss function used to train the CNN
● For an actor i observed at time j, and assuming historical states of all actors Sj,

map data M, and model parameters Θ, define prediction error at horizon h as
an L2-displacement between predicted and ground-truth x/y location

● Let us assume the displacement loss comes from a half-Gaussian distribution

● Then, per-actor loss is a negative log-likelihood computed over all horizons H

Uncertainty-aware Short-term Motion Prediction
of Traffic Actors for Autonomous Driving

Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen,
Fang-Chieh Chou, Tsung-Han Lin, Nitin Singh, Jeff Schneider

Background and motivation

Trajectory prediction for autonomous driving with rasterization and CNN
● To ensure safe and efficient operations, an autonomous vehicle needs to

accurately predict the future motions of the traffic actors in its surroundings
● We propose to rasterize high-definition maps and surroundings of each vehicle

in vicinity of self-driving vehicle (SDV), thus providing complete context and
information necessary for accurate prediction of future trajectory

● We trained deep CNN called RasterNet to predict short-term vehicle
trajectories, while accounting for an inherent uncertainty of the traffic motion

● Large-scale evaluation on real-world data showed the system provides accurate
predictions and well-calibrated uncertainties, indicating its practical benefits

● Following extensive offline testing, the system was successfully tested
onboard self-driving vehicles

Empirical evaluation
Experimental setup
● We collected 240 hours of data by manually driving SDV in Pittsburgh, PA and Phoenix, AZ in various

traffic conditions (e.g., varying times of day, days of the week), with collection rate of 10Hz, the same
frequency the Unscented Kalman Filter (UKF) tracker was run on

● Each actor at each discrete tracking time step amounts to one data point, with overall data comprising
7.8 million examples after removing static actors

● We considered horizon of 3s (i.e., we set H = 30), and used 3:1:1 split to obtain train/validation/test data

Fig 2. RasterNet input
raster and output trajectory

Fig 1. Complex scene seen in an internal viewer

Fig 3. The proposed RasterNet architecture with
a feed-forward, fully-connected trajectory
decoder (top); an alternative LSTM-based
trajectory decoder (right-hand image)

Proposed approach

C
as

e
1:

 a
ct

or
 c

ut
tin

g
ov

er

op
po

si
te

 la
ne

s
en

te
rin

g
ro

ad

fro
m

 o
ff-

st
re

et
 p

ar
ki

ng

C
as

e
2:

 a
ct

or
 m

ak
in

g
a

rig
ht

tu

rn
 in

 a
n

in
te

rs
ec

tio
n

C
as

e
3:

 fa
st

 a
ct

or
 g

oi
ng

st

ra
ig

ht
, w

hi
le

 c
ha

ng
in

g
la

ne
s

to
 a

vo
id

 a
n

ob
st

ac
le

Case studies
● In Figure 5 we give analysis of three scenes commonly encountered in traffic. As we see, the model

provided accurate short-term trajectories, as well as reasonable and intuitive uncertainty estimates

Raster image Process (aleatoric) uncertainty Model (epistemic) unc. Sensitivity analysis

Fig 5. Analysis of the RasterNet model for three case studies

Table 1. Comparison of average prediction errors for competing methods (in meters)

How well-calibrated are the uncertainty estimates?
● We used reliability diagrams to quantify the calibration (note we are somewhat under-confident at 1s)

Fig 4. Reliability diagrams at horizons of 1s and 3s and the illustration of Gaussian distribution

Network architecture
● We train a CNN model to minimize and solve the above problem
● The proposed architecture is given below, outputting x/y-locations (total of 2H

outputs), and standard deviation for each location (additional H outputs)

In-depth error analysis using error heatmaps
● In Figure 6 we provide an additional analysis of

cross- and along-track errors
● At each timestamp of the event (x-axis), we

color-code errors at each prediction horizon up
to 3 seconds in the future (y-axis)

● The actor starts to approach the intersection at
around 1s mark, and initiates the turn at around
3s mark

● While both methods initially do not predict the
turn, MN-v2 is faster to capture the new behavior

A
lo

ng
-tr

ac
k

er
ro

r
C

ro
ss

-tr
ac

k
er

ro
r

MobileNet-v2 UKF

Fig 6. Error histograms for the second case study

