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Prediction task

e To ensure safe and efficient operations,
an autonomous vehicle needs to
accurately predict the future motions of
the traffic actors in its surrounding area
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Problem setting

e Model that predicts actor’s trajectory should take into
account surrounding objects and map constraints
e What is the best way to provide that info to the model?
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Proposed solution

e Rasterize the tracked actors and the map into a bird’s-eye
view (BEV) image, to be used as an input to the deep model

Rasterizatior>

UBER ATG



Proposed solution

e Given an input raster, predict actor’s future x/y-positions and
position uncertainty every 0.1s for a total of 3 seconds
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Architecture and loss

e \We model each trajectory point as a Gaussian sample, and
maximize log-likelihood of the entire trajectory

e We use a CNN model to extract features from the raster, and
to output x/y-position and uncertainty for each of H future
points every 0.1s for a total of 3 seconds

raster
T features

|
|
|
| flatten output
| /
CNN / 1x4096 1x2H/3H

raster |nput

fully

connected
fully

connected
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Example
output

Raster image and Process (aleatoric)

output trajectory uncertainty
Model (epistemic) Sensitivity
uncertainty analysis
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Results

e |n experiments on large-scale, real-world data we show:
o The inferred trajectories are more accurate than a
number of baselines (see Table)
o The inferred uncertainties are well-calibrated (see
Figure for 3s-prediction calibration plot)

[
e

Method Raster State Loss Displacement Along-track Cross-track g

UKF = yes = 1.46 1.21 0.57 © 0slh

Linear model - yes (2 1.19 1.03 0.43 oo

Lane-assoc - yes - 1.09 1.09 0.19 = 06l >

AlexNet w/o fading no 2) 3.14 3.11 0.35 —S ' ¥/

AlexNet w/ fading no ) 1.24 1.23 0.22 = (e

AlexNet w/o fading  yes 2) 0.97 0.94 0.21 5 ekl Vil

AlexNet w/ fading yes 2) 0.86 0.83 0.20 5

VGG-19 w/ fading yes ) 0.77 0.75 0.19 qz) 0.2 _®| ®—@ Prediction curve |]
ResNet-50 w/ fading yes 2) 0.76 0.74 0.18 é) & - - Reference line
MobileNet-v2 w/ fading yes ) 0.73 0.70 0.18 0.0 ‘ - — i .
MobileNet-v2 w/fading  yes (5 0.71 0.68 0.18 B B g S 08 LD

Predicted cummulative fraction

MobileNet-v2 LSTM  w/ fading yes 5) 0.62 0.60 0.14




Come to poster #411 to find out more!

e Paper title: Uncertainty-aware Short-term Motion
Prediction of Traffic Actors for Autonomous Driving
e More details at the poster:
o Comparison to other baselines
o Uncertainty calibration plots
o Ablation study of the model

o Further interesting visualizations
e Thank you!
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