Uncertainty-aware Short-term Motion Prediction of Traffic Actors for Autonomous Driving

Nemanja Djuric, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh Chou, Tsung-Han Lin, Nitin Singh, Jeff Schneider

ATG

UBER

Prediction task

UBER ATG

 To ensure safe and efficient operations, an autonomous vehicle needs to accurately predict the future motions of the traffic actors in its surrounding area

Problem setting

- Model that predicts actor's trajectory should take into account surrounding objects and map constraints
- What is the best way to provide that info to the model?

Proposed solution

 Rasterize the tracked actors and the map into a bird's-eye view (BEV) image, to be used as an input to the deep model

UBER ATG

Proposed solution

 Given an input raster, predict actor's future x/y-positions and position uncertainty every 0.1s for a total of 3 seconds

UBER ATG

Architecture and loss

- We model each trajectory point as a Gaussian sample, and maximize log-likelihood of the entire trajectory
- We use a CNN model to extract features from the raster, and to output *x/y*-position and uncertainty for each of *H* future points every 0.1s for a total of 3 seconds

Example output

Raster image and output trajectory

uncertainty

UBER ATG

Process (aleatoric) uncertainty

Sensitivity analysis

Results

- In experiments on large-scale, real-world data we show:
 - The inferred *trajectories are more accurate* than a number of baselines (see Table)
 - The inferred *uncertainties are well-calibrated* (see Figure for 3s-prediction calibration plot)

Method	Raster	State	Loss	Displacement	Along-track	Cross-track
UKF	_	yes	_	1.46	1.21	0.57
Linear model	_	yes	(2)	1.19	1.03	0.43
Lane-assoc	-	yes	—	1.09	1.09	0.19
AlexNet	w/o fading	no	(2)	3.14	3.11	0.35
AlexNet	w/ fading	no	(2)	1.24	1.23	0.22
AlexNet	w/o fading	yes	(2)	0.97	0.94	0.21
AlexNet	w/ fading	yes	(2)	0.86	0.83	0.20
VGG-19	w/ fading	yes	(2)	0.77	0.75	0.19
ResNet-50	w/ fading	yes	(2)	0.76	0.74	0.18
MobileNet-v2	w/ fading	yes	(2)	0.73	0.70	0.18
MobileNet-v2	w/ fading	yes	(5)	0.71	0.68	0.18
MobileNet-v2 LSTM	w/ fading	yes	(5)	0.62	0.60	0.14

Come to poster #411 to find out more!

- Paper title: Uncertainty-aware Short-term Motion Prediction of Traffic Actors for Autonomous Driving
- More details at the poster:
 - Comparison to other baselines
 - Uncertainty calibration plots
 - Ablation study of the model
 - Further interesting visualizations
- Thank you!

UBER ATG