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Introduction

● We address two critical tasks in self-driving technology

○ Understanding surroundings of an autonomous vehicle (AV) 

○ Predicting how these surroundings will change in the near future

● We propose a novel end-to-end model that performs both simultaneously

○ Historical lidar sweep data and map info used as inputs

○ Run detection and prediction for three actor types (vehicles, pedestrians, 

and bicyclists), with multimodal trajectory predictions for vehicles

● The method achieves state-of-the-art performance over the baselines



Autonomy System

● Typical AV system processes sensor data in a sequence of modules

○ Detection takes in sensor data and outputs detected objects and their states

○ Prediction takes in current states of traffic actors, and outputs their trajectories
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● In previous work Detection and Prediction modules running in a sequence

○ Using an end-to-end Detection/Prediction module instead?
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Joint detection/prediction

● Existing work mostly focuses on one of the tasks, without considering joint models

● Pros of joint training

○ Unified model with end-to-end training

○ Simpler online system

● Cons of joint training

○ More complex deep model



● Goal: Produce object detections, their states, and future trajectories
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Input representation

● The model takes historical lidar sweeps and current map as input

● Generate rasterized image of the world with pre-specified resolution centered on the AV

○ Different map elements are represented as a binary image and concatenated
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Lidar sweep voxelization
● Given a lidar sweep, its returns are encoded in a binary 3D occupancy image centered 

on the AV, with length L (150m), width W (100m), height V (3.2m)

○ Resolution ΔL and ΔW are set to 0.16m, ΔV to 0.2m

○ Voxel value is set to 1 if at least one lidar point falls within it, and 0 otherwise
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MultiXNet

● Raster-based end-to-end model architecture



Detection and prediction loss

● Detection/prediction losses computed for background (bg) and foreground (fg) cells

○ Existence probability, length, width, x/y position, and actor heading

● Overall loss is summed over all horizons, over all grid cells



Multi-modal prediction loss

● Multi-modal prediction loss is used in the second stage, where we assume left-turning, 

right-turning, and going-straight modes, and predict each trajectory and their probability

● During training only the mode assigned to the region where the ground-truth is located 

is updated (in this case the left-turning mode), and its probability pushed towards 1
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Uncertainty-aware loss

● Uncertainty-aware loss

○ Along-/cross-track decomposition

○ Gaussian vs. Laplace distribution

○ Negative log-likelihood vs. KL-divergence

● KL-divergence

○ Ground-truth and predicted AT/CT uncertainty

,



Results

● Comparison to the state-of-the-art baselines on nuScenes data
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Results

● Case study analysis
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Conclusion

● Joint models show great promise

● State-of-the-art performance with reduced overall system complexity

● Avenues to improve the performance

○ New sensor inputs (camera, radar)

○ Physical feasibility of trajectories

○ Stronger map constraints

● Questions?


