MultiXNet: Multiclass Multistage Multimodal Motion Prediction

Djuric, N., Cui, H., Su, Z., Wu, S., Wang, H., Chou, F.-C., San Martin, L., Feng, S., Hu, R., Xu, Y., Dayan, A., Zhang, S., Becker, B. C., Meyer, G. P., Vallespi-Gonzalez, C., Wellington, C. K.

UBER

ATG

Introduction

- We address two critical tasks in self-driving technology
 - Understanding surroundings of an autonomous vehicle (AV)
 - Predicting how these surroundings will change in the near future
- We propose a novel end-to-end model that performs both simultaneously
 - Historical lidar sweep data and map info used as inputs
 - Run detection and prediction for three actor types (vehicles, pedestrians, and bicyclists), with multimodal trajectory predictions for vehicles
- The method achieves state-of-the-art performance over the baselines

Autonomy System

- Typical AV system processes sensor data in a sequence of modules
 - Detection takes in sensor data and outputs detected objects and their states
 - Prediction takes in current states of traffic actors, and outputs their trajectories

32nd IEEE INTELLIGENT VEHICLES

Autonomy System

• In previous work Detection and Prediction modules running in a sequence

Using an end-to-end Detection/Prediction module instead?

32nd IEEE INTELLIGENT VEHICLES

Joint detection/prediction

• Existing work mostly focuses on one of the tasks, without considering joint models

32nd IEEE INTELLIGENT VEHICLES

- Pros of joint training
 - Unified model with end-to-end training
 - Simpler online system
- Cons of joint training
 - More complex deep model

• Goal: Produce object detections, their states, and future trajectories

• Goal: Produce object detections, their states, and future trajectories

32nd IEEE INTELLIGENT VEHICLES SYMPOSIUM

• Goal: Produce object detections, their states, and future trajectories

• Goal: Produce object detections, their states, and future trajectories

Input representation

- The model takes historical lidar sweeps and current map as input
- Generate rasterized image of the world with pre-specified resolution centered on the AV
 - Different map elements are represented as a binary image and concatenated

Lidar sweep voxelization

• Given a lidar sweep, its returns are encoded in a binary 3D occupancy image centered on the AV, with length *L* (150m), width *W* (100m), height *V* (3.2m)

32nd IEEE INTELLIGEN VEHICLES

- Resolution Δ_L and Δ_W are set to 0.16m, Δ_V to 0.2m
- Voxel value is set to 1 if at least one lidar point falls within it, and 0 otherwise

MultiXNet

UBER ATG

• Raster-based end-to-end model architecture

32nd IEEE INTELLIGENT VEHICLES SYMPOSIUM

Detection and prediction loss

- Detection/prediction losses computed for background (bg) and foreground (fg) cells
 - Existence probability, length, width, x/y position, and actor heading

$$\mathcal{L}_{bg} = \ell_{focal}(1-\hat{p}) \qquad \mathcal{L}_{fg(h)} = \ 1_{h=0} \Big(\ell_{focal}(\hat{p}) + \ell_1(\hat{l}-l) + \ell_1(\hat{w}-w) \Big) + \\ \ell_1(\hat{c}_{xh} - c_{xh}) + \ell_1(\hat{c}_{yh} - c_{yh}) + \\ \ell_1(\sin\hat{\theta}_h - \sin\theta_h) + \ell_1(\cos\hat{\theta}_h - \cos\theta_h) \Big)$$

21 32nd IEEE INTELLIGENT VEHICLES

• Overall loss is summed over all horizons, over all grid cells

$$\mathcal{L} = 1_{\text{bg cell}} \mathcal{L}_{bg} + 1_{\text{fg cell}} \sum_{h=0}^{H} \lambda^{h} \mathcal{L}_{fg(h)}$$

Multi-modal prediction loss

• Multi-modal prediction loss is used in the second stage, where we assume left-turning, right-turning, and going-straight modes, and predict each trajectory and their probability

• During training only the mode assigned to the region where the ground-truth is located is updated (in this case the left-turning mode), and its probability pushed towards 1

Uncertainty-aware loss

- Uncertainty-aware loss
 - Along-/cross-track decomposition
 - Gaussian vs. Laplace distribution
 - Negative log-likelihood vs. KL-divergence
- KL-divergence

UBER ATG

• Ground-truth and predicted AT/CT uncertainty

$$Laplace(0, b_{AT}), \ b_{AT}(t) = \alpha_{AT} + \beta_{AT}t$$

$$Laplace(\hat{e}_{AT}, \hat{b}_{AT})$$

$$KL_{AT} = \log \frac{\hat{b}_{AT}}{b_{AT}} + \frac{b_{AT} \exp\left(-\frac{|\hat{e}_{AT}|}{b_{AT}}\right) + |\hat{e}_{AT}|}{\hat{b}_{AT}}$$

32nd IEEE INTELLIGEN VEHICLES

• Comparison to the state-of-the-art baselines on nuScenes data

		Vehicles		Pe	edestria	ns	Bicyclists			
Method	AP	DE	СТ	AP	DE	СТ	AP	DE	СТ	
SpAGNN	-	145.0	-	-	-	-	-	-	-	
IntentNet (DE)	61.0	117.4	37.7	64.4	83.5	47.3	30.9	184.6	73.7	
IntentNet (AT/CT)	60.3	118.3	37.8	63.4	83.6	46.8	31.8	173.0	70.2	
MultiXNet	60.6	105.0 (104.2)	29.7 (29.1)	66.1	80.1	43.8	32.6	203.1	54.8	

				Vehicles	Pedestrians		Bicyclists				
Unc.	2nd	Mm.	AP	DE	СТ	AP	DE	СТ	AP	DE	СТ
			83.9	90.4	26.0	88.4	61.8	32.9	83.2	51.7	23.5
KL-L			84.1	91.9	22.8	88.2	57.1	30.4	84.6	49.9	21.1
	✓		84.6	82.2	22.2	88.7	63.2	33.2	84.3	51.0	23.8
KL-L	\checkmark		84.4	83.3	20.4	88.4	57.6	30.6	83.9	52.0	21.7
	\checkmark	\checkmark	84.0	82.4 (81.4)	22.4 (21.8)	88.5	62.6	33.0	84.2	51.2	23.7
KL-L	\checkmark	✓	84.2	83.1 (82.1)	20.2 (19.8)	88.4	57.2	30.5	84.6	48.5	20.7
KL-G	✓	\checkmark	85.0	84.5 (83.4)	20.6 (19.7)	88.7	58.1	31.3	84.7	50.4	20.6
NL-L	\checkmark	\checkmark	84.6	85.3 (84.0)	20.2 (19.8)	88.4	58.4	31.0	83.9	50.4	20.9
NL-G	1	\checkmark	84.5	88.5 (87.7)	21.1 (20.7)	88.6	59.3	32.0	83.5	51.8	21.0
KL-L	no rot.	1	84.4	86.9 (86.0)	21.9 (21.2)	88.6	57.3	30.7	84.0	50.4	21.5

• Ablation study on ATG4D data

				Vehicles		Pe	edestria	ns	E	Bicyclist	S
Unc.	2nd	Mm.	AP	DE	СТ	AP	DE	СТ	AP	DE	СТ
			83.9	90.4	26.0	88.4	61.8	32.9	83.2	51.7	23.5
KL-L			84.1	91.9	22.8	88.2	57.1	30.4	84.6	49.9	21.1
	\checkmark		84.6	82.2	22.2	88.7	63.2	33.2	84.3	51.6	23.8
KL-L	✓		84.4	83.3	20.4	88.4	57.6	30.6	83.9	52.0	21.7
	\checkmark	\checkmark	84.0	82.4 (81.4)	22.4 (21.8)	88.5	62.6	33.0	84.2	51.2	23.7
KL-L	\checkmark	\checkmark	84.2	83.1 (82.1)	20.2 (19.8)	88.4	57.2	30.5	84.6	48.5	20.7
KL-G	✓	✓	85.0	84.5 (83.4)	20.6 (19.7)	88.7	58.1	31.3	84.7	50.4	20.6
NL-L	\checkmark	\checkmark	84.6	85.3 (84.0)	20.2 (19.8)	88.4	58.4	31.0	83.9	50.4	20.9
NL-G	\checkmark	\checkmark	84.5	88.5 (87.7)	21.1 (20.7)	88.6	59.3	32.0	83.5	51.8	21.0
KL-L	no rot.	\checkmark	84.4	86.9 (86.0)	21.9 (21.2)	88.6	57.3	30.7	84.0	50.4	21.5

			Vehicles			Pe	edestria	ns	E	Bicyclist	ts
Unc.	2nd	Mm.	AP	DE	СТ	AP	DE	СТ	AP	DE	СТ
			83.9	90.4	26.0	88.4	61.8	32.9	83.2	51.7	23.5
KL-L			84 1	91 9	22.8	88.2	57.1	30.4	84.6	49.9	21.1
	\checkmark		84.6	82.2	22.2	88.7	63.2	33.2	84.3	51.6	23.8
KL-L	\checkmark		84.4	83.3	20.4	88.4	57.6	30.6	83.9	52.0	21.7
	1	1	84.0	82.4 (81.4)	22.4 (21.8)	88.5	62.6	33.0	84.2	51.2	23.7
KL-L	√	✓	84.2	83.1 (82.1)	20.2 (19.8)	88.4	57.2	30.5	84.6	48.5	20.7
KL-G	\checkmark	\checkmark	85.0	84.5 (83.4)	20.6 (19.7)	88.7	58.1	31.3	84.7	50.4	20.6
NL-L	\checkmark	\checkmark	84.6	85.3 (84.0)	20.2 (19.8)	88.4	58.4	31.0	83.9	50.4	20.9
NL-G	\checkmark	\checkmark	84.5	88.5 (87.7)	21.1 (20.7)	88.6	59.3	32.0	83.5	51.8	21.0
KL-L	no rot.	1	84.4	86.9 (86.0)	21.9 (21.2)	88.6	57.3	30.7	84.0	50.4	21.5

32nd IEEE INTELLIGENT VEHICLES SYMPOSIUM

• Ablation study on ATG4D data

				Vehicles		Pe	edestria	ns	E	Bicyclist	S
Unc.	2nd	Mm.	AP	DE	СТ	AP	DE	СТ	AP	DE	СТ
			83.9	90.4	26.0	88.4	61.8	32.9	83.2	51.7	23.5
KL-L			84.1	91.9	22.8	88.2	57.1	30.4	84.6	49.9	21.1
	\checkmark		84.6	82.2	22.2	88.7	63.2	33.2	84.3	51.6	23.8
KL-L	\checkmark		84.4	83.3	20.4	88.4	57.6	30.6	83.9	52.0	21.7
	1	1	84.0	82 4 (81 4)	22.4 (21.8)	88 5	62.6	33.0	84 2	51.2	23.7
KL-L	1	1	84.2	83.1 (82.1)	20.2 (19.8)	88.4	57.2	30.5	84.6	48.5	20.7
KL-G	\checkmark	\checkmark	85.0	84.5 (83.4)	20.6 (19.7)	88.7	58.1	31.3	84.7	50.4	20.6
NL-L	\checkmark	\checkmark	84.6	85.3 (84.0)	20.2 (19.8)	88.4	58.4	31.0	83.9	50.4	20.9
NL-G	1	\checkmark	84.5	88.5 (87.7)	21.1 (20.7)	88.6	59.3	32.0	83.5	51.8	21.0
KL-L	no rot.	✓	84.4	86.9 (86.0)	21.9 (21.2)	88.6	57.3	30.7	84.0	50.4	21.5

• Case study analysis

Ground-truth trajectoryPredicted trajectory

Conclusion

- Joint models show great promise
- State-of-the-art performance with reduced overall system complexity
- Avenues to improve the performance
 - New sensor inputs (camera, radar)
 - Physical feasibility of trajectories
 - Stronger map constraints
- Questions?

32nd IEEE INTELLIGENT VEHICLES