BioSense

Motivation

- Advances in blueberry production create the need for bush detection
- Existing applications focus on tree trunk detection for orchard guidance, more complex structures are not yet explored
- Bush detection is important in: agriculture (berry production) o forestry (wildfire prevention)

Dataset

- 2000 RGB images captured using a robotic platform and OAK-D devices
- Single orchard in Babe village, Serbia
- Three dates during the growing season
- 20 image sequences for autonomous movement (translation and rotation)
- Two classes of objects: bushes and poles

Blueberry orchard location

Robot and OAK-D device

Translation sequence example

Rotation sequence example

Dataset statistics: acquisition dates, object numbers, positions and shapes

Bush Detection for Vision-based UGV Guidance in Blueberry Orchards: Data Set and Methods

Vladan Filipović, Dimitrije Stefanović, Nina Pajević, Željana Grbović, Nemanja Đurić, Marko Panić BioSense Institute, Novi Sad, Serbia

Dataset features and variability

Link to the dataset on Zenodo: FlexiGroBots Ground-level Blueberry Orchard Dataset v1 - RGB Bush Detection Dataset

Labeling procedure

Difference in annotations between 5 different annotators

Baseline model

Results and conclusion

• Bushes have undefined borders (unlike cars, cats, and dogs) • Focus on the base of the plant (inverted triangle, contact with the ground) • To converge to the standard bush shape, 400 images are labeled by 10 annotators and used to train the initial model, which is later used as a starting point for further labeling (semi-autonomous procedure) • The whole dataset is then relabeled and corrections are done manually

• YOLOv5 🜮 model is used in 3 complexity levels: nano, small, and medium • Train/val/test split is done based on sequences to prevent data leakage • Augmentation: horizontal flipping, HSV scaling, and mosaic augmentation

• Decent model performance in most cases, including shadows, weeds, and occlusions (ex. 1-4); trouble with ambiguity in annotations, far away objects and image rotation (ex. 5-7); good generalization abilities with unseen objects (ex. 8); detection speed suitable for real-time applications. • Models achieved promising metrics, setting a good basis for further work

Resulting detection metrics

Examples of resulting detections