
Supervised Clustering of Label Ranking Data

Mihajlo Grbovic∗ Nemanja Djuric∗ Slobodan Vucetic∗

Abstract

In this paper we study supervised clustering in the context

of label ranking data. Segmentation of such complex data

has many potential real-world applications. For example,

in target marketing, the goal is to cluster customers in

the feature space by taking into consideration the assigned,

potentially incomplete product preferences, such that the

preferences of instances within a cluster are more similar

than the preferences of customers in the other clusters.

We establish several heuristic baselines for this application

that make use of well-known algorithms such as K-means,

and propose a principled algorithm specifically tailored

for this type of clustering. It is based on the Plackett-

Luce (PL) probabilistic ranking model. Each cluster is

represented as a union of Voronoi cells defined by a set

of prototypes and is assigned a set of PL label scores

that determine the cluster-specific label ranking. The

unknown cluster PL parameters and prototype positions are

determined using a supervised learning technique. Cluster

membership and ranking for a new instance is determined

by membership of its nearest prototype. The proposed

algorithms were empirically evaluated on synthetic and real-

life label ranking data. The PL-based method was superior

to the heuristically-based supervised clustering approaches.

The proposed PL-based algorithm was also evaluated on the

task of label ranking prediction. The results showed that it

is highly competitive to the state of the art label ranking

algorithms, and that it is particularly accurate on data with

partial rankings.

1 Introduction

Label Ranking is emerging as an important and prac-
tically relevant field. Unlike the standard problems of
classification and regression, learning of label ranking
is a complex learning task, which involves prediction
of strict label order relations, rather than single val-
ues. Specifically, in the label ranking scenario, each
instance, which is described by a set of features x, is
assigned a ranking of labels π, that is a total (e.g.,
π = (5, 3, 1, 4, 2)) or partial (e.g., π = (5, 3, 2)) order

∗Department of Computer and Information Sciences,
Center for Data Analytics and Biomedical Informat-

ics, Temple University, {mihajlo.grbovic, nemanja.djuric,
slobodan.vucetic}@temple.edu

over a finite set of class labels Y (e.g., Y = {1, 2, 3, 4, 5}).
The label ranking problem consists of learning a model
that maps instances x to a total label order f : x→ π.
It is assumed that a sample from the underlying dis-
tribution D = {(xn , πn),n = 1, ...,N } , where xn is a
d -dimensional feature vector and πn is a vector contain-
ing a total or partial order of a finite set Y of L class
labels, is available for training.

This problem has recently received a lot of attention
in the data mining and machine learning community
and has already been extensively studied [6, 3, 14, 2, 21].
A nice survey of recent label ranking algorithms can be
found in [12].

There are many practical applications in which the
objective is to learn an exact label preference of an in-
stance in form of a total order. For example, in the case
of document categorization, where it is very likely that
a document belongs to multiple topics (e.g., sports, en-
tertainment, baseball, etc.), one might not be interested
only in predicting which topics are relevant for a specific
document, but also to rank the topics by relevance. Ad-
ditional applications include: meta-learning [24], where,
given a new data set, the task is to induce a total rank of
available algorithms according to their suitability based
on the data set properties; predicting food preferences
for new customers based on the survey results, demo-
graphics, and other characteristics of respondents [17];
determining an order of questions in a survey for a spe-
cific user based on respondent’s attributes. See [8] for
an overview of label ranking applications in economics,
operations research, and databases.

Supervised clustering of label ranking data is an
open and non-trivial problem, that has not been ad-
dressed in the data mining literature. Traditionally,
clustering techniques are unsupervised, and as such do
not take class memberships (classification) or target val-
ues (regression) into consideration. Supervised cluster-
ing [9, 10, 11], on the other hand, does. It aims at
producing desirable clusterings given the additional in-
formation (e.g., class labels). Example applications in-
clude clustering news articles by whether they refer to
the same topic. Depending on the actual application,
there is usually a specific performance measure or re-
ward to evaluate the potential clustering solution.

One can envision many potential applications of su-

pervised clustering for label ranking data. For example,
in target marketing, a company with several products
would like to cluster its customers for purposes of de-
signing cluster-specific promotional material. For each
cluster, the company can make a different catalog, by
promoting a selected subset of products and designing
a catalog in a way that best reflects the taste of its tar-
get customers. Another application would be how to
order the questions in a survey for specific target group
to maximize its success. For example, given the labeled
data of users that did finish the survey, the goal would
be to cluster these users into a predetermined number of
groups and learn the best question order for each group.

Specifically, in the supervised clustering, the goal
is to cluster the data based on both instance features
and the assigned, potentially incomplete, label rankings,
such that the label ranks of instances within a cluster
are more similar to each other than they are to the
label ranks of instances in the other clusters. If we
were to consider label ranking as classification, where
each permutation is treated as a different class, we
would have L! classes, and even more when dealing with
incomplete ranks. This would make it very hard to
apply standard supervised clustering algorithms.

Since supervised clustering of label ranking data,
to the best of our knowledge, has not been studied
before, we propose several heuristic baseline algorithms
and also propose a principled probabilistic model. The
first baseline approach uses the well-known K-means
algorithm, either by treating label rankings as one of
the features, or by first clustering based on the instance
features only and subsequently assigning label rankings
to the obtained clusters using a generalized Mallows
Model [18]. The second baseline approach first clusters
the label rankings [19], without taking the instance
features into account, to obtain a predetermined number
of classes. It then trains a multi-class classifier using the
newly formed classification data.

The proposed Plackett-Luce Mixture Model (MM-
PL) presents a general framework for label ranking
that can be used both for supervised clustering and
for prediction. It is based on a multi-prototype cluster
representation, where the underlying cluster preferences
are modeled using cluster-specific Plackett-Luce score
parameters. The model is fast, with linear training and
prediction time, constant memory scaling with number
of prototypes and is capable of efficiently working with
incomplete rankings.

2 Preliminaries

In the label ranking scenario, a single instance, de-
scribed by a d -dimensional vector x, is associated with
a total order of assigned class labels. Specifically, we

define a total order by using a transitive and asym-
metric relation �x on a finite set of labels Y, where
yi �x yj indicates that label yi precedes label yj given
x. The total order can be represented as a permuta-
tion π of the set {1, ...,L}, where L is the number of
available class labels. We define π such that π(i) is
the class label at i-th position in the order and π−1(j)
is the position of the yj class label in the order. The
permutation can also describe incomplete rankings in
form yπ(1) �x yπ(2) �x, ...,�x yπ(l), where l < L and
{π(1), ..., π(l)} ⊂ {1, ...,L}.

Let us assume that N historical observations are
collected in form of a data set D = {(xn , πn),n =
1, ...,N } and available for development of a label rank-
ing clustering model. The objective is to segment D
into K clusters, such that each cluster spans a certain
portion of feature space Sk, k = 1, ...,K and is asso-
ciated with a certain central ranking ρk, k = 1, ...,K,
both to be determined from D. Preferably, we would
like πn,xn ∈ Sk to be similar and all at a short distance
from ρk. The clustering model prediction for a new un-
labeled instance xu is is given in form of a total order
π̂u = ρm, where m is the index of the cluster that xu is
assigned to.

To evaluate the quality of potential clustering solu-
tions on previously unseen examples, we will measure
how close is the true label rank to the one predicted on
the basis of cluster membership. Intuitively, we measure
customer happiness when they receive our custom-made
catalog, i.e., how similar are their actual preferences to
the ones that we predicted based on treating them as a
part of a group.

To measure the degree of correspondence between
two label ranks π1 and π2 it is common to use the
the Kendall’s tau distance that counts the number of
discordant label pairs
(2.1)
dτ = |{(yi, yj) : π−1

1 (yi) > π−1
1 (yj)∧π−1

2 (yj) > π−1
2 (yi)}|.

Kendall’s tau distance is often normalized such that it
lies in the interval [0,1], where 1 indicates maximum
disagreement. This is done by dividing by L · (L− 1)/2.

We propose the following measure for comparing
different clustering solutions. The label ranking loss on
the data set D is defined as

(2.2) lossLR =
1

N

N∑
n=1

2 · dτ (πn, π̂n)

L · (L− 1)
,

where πn and π̂n = ρm are true and predicted rankings
for n-th example, respectively. Note that lossLR can be
used to calculate the Kendall’s tau coefficient as

(2.3) cτ = 1− 2 · lossLR.

A very similar measure can be used to evaluate cluster
compactness,

(2.4) ∆p =
1

K

K∑
k=1

∑
n∈Sk

dτ (πn, ρk)

| Sk |
,

where ρk is the k-th cluster central label ranking.

3 The Plackett-Luce Mixture Model

In this section, we first describe the details involving
the probabilistic Plackett-Luce model for ranking of
alternatives, and then describe the proposed Plackett-
Luce Mixture Model for supervised clustering of label
ranking data.

The Plackett-Luce model [20] is an extension of
the Bradley-Terry model [1] for comparisons involving
three or more alternatives. It is defined by the score
vector v = (v(1),v(2), ...,v(L)) ∈ RL+. The probability
of any ranking L labels is expressed in terms of v as

(3.5) P(π|v) =

L∏
i=1

v(π(i))
L∑
j=i

v(π(j))

.

If the score vector v is known, the ranking with
the highest posterior probability π∗ = arg maxπ(P(π|v))
can be found by simply sorting the labels in the descend-
ing order of the corresponding scores. Let us consider
a simple case with 3 labels {a, b, c}. The probability of
a specific ranking of labels (e.g., π = (c, a, b)) can be
expressed as

(3.6)

P(π = (c, a, b)|v) =
v(c)

v(c) + v(a) + v(b)
· v(a)

v(a) + v(b)
·v(b)

v(b)
,

where the first multiplier presents the probability P(c is
ranked 1st), the second presents the probability P(a is
ranked 2nd | c is ranked 1st) and the third presents
the probability P(b is ranked 3rd | c is ranked 1st∧
a is ranked 2nd). Assuming the label scores v(a) =
3, v(b) = 1 and v(c) = 5, for example, would result in
P(π = (c, a, b)|v) = 0.417.

The Plackett-Luce mixture model (MM-PL)
we propose has the following setup. The feature space
is divided into K clusters, where each cluster Sk, k =
1, ...,K, is represented as a union of Voronoi cells defined
by a set of prototypes {mp, p = 1, ..., P}, where mp is
a d-dimensional vector in input space. The k-th cluster
is assigned a Plackett-Luce label score vector vk, that
defines the cluster central ranking ρk.

The resulting model is completely defined by K ·
P prototypes and K PL vectors, {({mp}k,vk), k =
1, ...,K, p = 1, ..., P}. The optimal prototype positions
and label scores, with respect to a desired loss function,
are learned in a supervised manner. A new instance is
assigned to the cluster of its nearest prototype.

The starting point in the algorithm design is to
introduce the probability P(p | xn) of assigning n-th
observation xn to the p-th prototype that is dependent
on their (Euclidean) distance in the feature space.
Let us assume that the probability density P(xn) is
described by a mixture model

(3.7) P(xn) =

P ·K∑
p=1

P(xn | p) · P(p),

where P ·K is the total number of prototypes, P(p) is
the prior probability that a data point is generated by
a particular prototype, and P(xn | p) is the conditional
probability that p-th prototype generates data point xn.

Let us represent the conditional density func-
tion P(xn | p) with the normalized exponential form
P(xn | p) = θ(p) · exp(f(xn,mp)) and consider a Gaus-
sian mixture with θ(p) = (2πσ2

p)−1/2 and f(xn,mp) =
−‖xn−mp‖2/2σ2

p. We assume that all prototypes have
the same standard deviation (width) σp and the same
prior, P(p) = 1/(P · K). Given this, using the Bayes’
rule, we can write the assignment probability as

(3.8) P(p | xn) =
exp (−‖xn −mp‖2/2σ2

p)
P ·K∑
u=1

exp (−‖xn −mu‖2/2σ2
p)

.

Finally, to develop the cost function for label rank-
ing clustering framework we consider a probabilistic as-
signment P(k | xn) defined as the probability of assign-
ing data point xn to the k-th codeword,

(3.9) P(k | xn) =

∑
p∈Sk

exp (−‖xn −mp‖2/2σ2
p)

P ·K∑
u=1

exp (−‖xn −mu‖2/2σ2
p)

.

For the compactness of notation, we define bnp ≡ P(p |
xn) and gnk ≡ P(k | xn). We propose the following
mixture model for the posterior probability P(π | xn),

(3.10) P(π | xn) =

K∑
k=1

P(k | xn) · P(π | k),

where P(π|k) is the probability of ranking π if xn is
generated by k-th cluster. In our approach, we assume
the ranking π corresponds to the PL model, and express

P(π | k) as P(π | vk) defined in (3.5). Based on
this model, example xn is assigned to the clusters
probabilistically, and its label ranking probability is
a weighted average of ranking probabilities assigned
to the clusters [25]. The mixture model assumes the
conditional independence between xn and π given k,
P(π | xn, k) = P(π | k). For P(k | xn) we assume the
distribution from (3.9).

Given the training data set D and assuming the
mixture model (3.10), we can find the optimal model
parameters λ = {{mp}k,vk, k = 1, ...,K, σp} as the
ones that maximize the likelihood,

(3.11) P(π | λ) =

N∏
n=1

K∑
k=1

P(k | xn) ·
Ln∏
i=1

vk(πn(i))
Ln∑
j=i

vk(πn(j))

,

where Ln is the number of labels in, potentially incom-
plete, label ranking πn for n-th training instance. The
maximum likelihood estimation of λ can be found by
minimizing the negative log-likelihood function. How-
ever, because of the summation, the log-likelihood func-
tion l(λ) = lnP(π | λ) in its original form is not suit-
able for optimization. For this reason we resort to a
more natural alternative to minimization of l(λ), the
Expectation-Maximization (EM) algorithm [7]. To map
the problem onto EM, we define indicator variables Ink
as

(3.12) Ink =

{
1, if xn is generated by k-th cluster,

0, otherwise,

and replace the sum over clusters in (3.11) by a product.
After this modification, by taking the logarithm, we end
up with a simple double-sum, yielding a more tractable
log-likelihood function,

l(λ) = − ln

N∏
n=1

K∏
k=1

P(k | xn) ·
Ln∏
i=1

vk(πn(i))
Ln∑
j=i

vk(πn(j))


Ink

(3.13)

= −
N∑
n=1

K∑
k=1

Ink ln

P(k | x) ·
Ln∏
i=1

vk(πn(i))
Ln∑
j=i

vk(πn(j))

 .

In the E-step, the expected values for Ink, denoted as
hnk, are estimated assuming that the model parameters

λ are known,

E− step :

(3.14)

hnk = E[Ink | xn, πn, λ] = P(k | xn, πn) =
P(k, πn | xn)

P(πn | xn)

=
gnk · P(πn | xn, k)

P(πn | xn)
=

gnk · P(πn | xn, k)
K∑
r=1

gnr · P(πn | xn, r)
.

In the M-step, the parameters of the model are updated
assuming the Ink values are known, and replacing each
Ink in (3.14) by its expected value hnk. Note that there
exists a strict requirement that vk ∈ RL+, k = 1, ...,K
and thus we have to guarantee that all elements of v
are positive. In this setting, learning becomes a con-
strained optimization problem. Since gradient ascent
cannot be directly applied to a constrained optimization
problem, we transform the original constrained opti-
mization problem to a new optimization problem, which
is unconstrained.

Specifically, we minimize the negative log-likelihood
l(λ) with respect to log(vk) instead of vk, where
∂l(λ)/∂ log(vk) is simply vk · ∂l(λ)/∂vk [22]. This
converts the problem into the unconstrained optimiza-
tion, which can now be solved using gradient ascent ap-
proach. The summary of the resulting M-step (v.1) in
the stochastic mode is given as follows,

M− step

(3.15)

mnew
p = mold

p − γ · bnp
(1− hnk)

gnk

(xn −mp)

σ2
p

,mp ∈ Sk

log
(
vk(πn(c))new

)
= log

(
vk(πn(c))old

)
−

γ · vk(πn(c)) · hnk
(

1

vk(πn(c))
−

c∑
i=1

1
Ln∑
j=i

vk(πn(j))

)
,

where γ is a learning rate, and c = 1, ..., Ln.
An important issue to be addressed is the choice of

the parameter σp. Parameter σp controls the fuzziness
of the distribution. For σp = 0 the assignments become
deterministic, while for σp → ∞ the assignments be-
come uniform, regardless of the distance. One option
is for σp to be treated as a parameter to be optimized
such that l(λ) is minimized. However, it is not neces-
sarily the best approach. In this work, we are treating
σp as an annealing parameter that is initially set to a
large value, and is then decreased towards zero using
scheme σp(n + 1) = σp(0) · σT /(σT + n), where σT is
the decay parameter. The purpose of annealing is to

facilitate convergence towards a good local optimum of
l(λ). We note that this strategy has been used in soft
prototype approaches by other researchers [23, 13].

Let us denote by pnn the index of the nearest
prototype for instance x. As σp decreases towards
zero, the assignment probability P(pnn|x) approaches
one, and the assignment probabilities of the remaining
prototypes approach zero. As a result, p(π|x) from
(3.10) can be approximated as p(π|x) ≈ p(π|knn), where
knn is the pnn-th prototype’s cluster. Therefore, the
label rank for instance x can be predicted by using
the label score vector of its nearest prototype’s cluster.
Since the optimal ranking for any cluster πk, k =
1, ...,K, can be obtained by simply sorting the elements
of label score vector vk, it could be performed only once
at the end of the training procedure, and used in the
prediction phase to speed-up the prediction.

4 Heuristic LR Clustering Baselines

We propose the following baseline approaches for label
ranking clustering.

1-Rank is a simple method used as a true baseline.
It shows how appropriate it would be to consider all
examples as a single cluster, K = 1, and derive a single
central ranking ρK . Intuitively, this would correspond
to designing a single catalog for all customers. The
central ranking is found using the probabilistic Mallows
model [18].

The Mallows model is a distance-based probabilistic
model for permutations. The probability of any permu-
tation ρ of L labels is given in terms of a permutation
distance d̂,

(4.16) P(ρ | θ, π) =
exp (−θd̂(ρ, π))

Z(θ, π)
,

where ρ is some central ranking, π ∈ T is a candidate
permutation, θ ∈ R is a dispersion parameter, Z(θ, π) =∑
ρ∈T exp (−θd̂(ρ, π)) is a normalization constant and

d̂ is, in our case, the Kendall’s tau distance dτ . The
maximum probability is assigned to the central ranking
ρ.

Let us discuss how Mallows model can be used to
derive cluster centroids {ρk}, k = 1, ...,K for K clusters,
in general. Then, K = 1 is just a special case. Given
|Sk| label rankings {πn}, n ∈ Sk for cluster k and
assuming independence, the probability that we observe
πk = {πn}, n ∈ Sk is

(4.17) P(πk | θ, ρk) =
∏
n∈Sk

P(πn | θ, ρk).

The MLE of ρk is the one that minimizes

(4.18) lossLR(k) =
1

|Sk|
∑
n∈Sk

2 · dτ (πn, ρk)

L · (L− 1)
,

where the solution can be found by exhaustive search.
The disadvantages of the Mallows model are that it

has high computational complexity of O(L!), and that it
cannot directly model incomplete label ranks. To avoid
the first issue we make use of the approximate solution
that uses a simple Borda count algorithm [5]. Having
|Sk| label rankings {πn}, n ∈ Sk, the central rank is
found by voting. Each πn votes in the following manner.
The label which is ranked first in πn gets L votes, the
second-ranked receives L − 1 votes, etc. Finally, all
the votes from πn, n ∈ Sk, are summed up and the
label with the most votes is ranked first in ρk, the label
with the second most votes is ranked second in ρk, etc.
The approximation is valid as it has been shown [4]
that Kendall’s tau is well approximated by Spearman’s
rank correlation, whose median can be computed using
Borda.

To solve the second issue we modify Borda count
such that partial rankings πn of Ln < L labels vote in
the following manner. The label ranked j-th (j ≤ Ln)
receives (Ln − j + 1) · (L+ 1)/(Ln + 1) votes, while all
the missing labels receive (L + 1)/2 votes. Once ρk is
obtained, for each incomplete ranking πn in cluster Sk,
the most probable extension to full rank π∗n is found
such that lossLR(ρk, π

∗
n) is minimized. Finally, original

Borda count is used to find ρk from {π∗n}, n ∈ Sk. This
procedure iterates until ρk converges.

K-means →Mallows algorithm first performs K-
means clustering based on the instance features only,
without taking their label rankings into account. It then
derives central rankings ρk for each cluster from label
rankings that belong to this cluster using the Mallows
Model. This approach is expected to work well when
clusters in the feature space correspond to clusters in
the label space.

Näıve K-means In this approach, label rankings π
are treated as one of the features. This is done by adding
L additional attributes to the feature vector x, that
results in the new vector of length d+L. Value of (d+j)-
th attribute is set to jth label position in the ranking
π, or L/2 if the particular label is not available in π.
After this preprocessing stage, the newly formed data is
clustered using benchmark K-means algorithm. Central
rankings ρk for each cluster are derived from obtained
cluster centroids by sorting the last L attributes in the
ascending order. These rankings are used to predict
the label ranking of the new instance when its cluster
membership is determined by finding the nearest cluster
centroid in the original feature space.

Table 1: Data sets for label ranking (synthetic (S), semi-synthetic (SS) and real-world)

name domain N d L 1-Rank lossLR name domain N d L 1-Rank lossLR

circles S 7,000 2 6 .393 checker S 7,200 2 6 .398

authorship SS (A) 841 70 4 .269 iris SS (B) 150 4 3 .451
bodyfat SS (B) 252 7 7 .450 pendigits SS (A) 10,992 16 10 .383
calhousing SS (B) 20,640 4 4 .380 segment SS (A) 2,310 18 7 .419
cpu-small SS (B) 8,192 6 5 .431 stock SS (B) 950 5 5 .445
elevators SS (B) 16,599 9 9 .435 vehicle SS (A) 846 18 4 .335
fried SS (B) 40,769 9 5 .493 vowel SS (A) 528 10 11 .334
glass SS (A) 214 9 6 .171 wine SS (A) 178 13 3 .234
housing SS (B) 506 6 6 .412 wisconsin SS (B) 194 16 16 .485

cold biology 2,465 24 4 .401 heat biology 2,465 24 6 .464
diau biology 2,465 24 7 .348 spo biology 2,465 24 11 .441
dtt biology 2,465 24 4 .438 sushi food 5,000 11 10 .392

Unsupervised Label Ranking → SVM first
clusters the label rankings using the unsupervised label
ranking approach to obtain K classes (cluster central
rankings). It then trains a multi-class SVM classifier
with RBF kernel using the newly labeled data. When a
new instance is classified, it is assigned a ranking that
corresponds to the predicted class. We consider two
unsupervised label ranking methods as the first stage of
the described algorithm:

1) Näıve first sorts all available permutations of
L labels by the number of times they appear in the
dataset. The top K label ranks determine cluster cen-
tral rankings and define the K classes. The remaining
label ranks are assigned the class of the closest cen-
tral ranking, with respect to the normalized Kendall’s
tau distance. If incomplete label rankings are present,
we first determine their extensions by finding the most
probable positions of the missing labels using a modified
Borda count algorithm on the instance’s neighborhood
of size Kmal = 20. This approach is expected to work
well when the clusters are evenly distributed in the la-
bel space, and the top K ranks really correspond to
cluster central rankings. However, if the cluster are un-
balanced, it is not likely that this simple procedure will
discover the underlying label space centroids.

2) EBMS is a permutation clustering technique
from [19]. Based on ranking distribution in the data set
and their similarities, training permutations are divided
into K clusters, where each cluster is represented with a
central ranking. Note that the EBMS algorithm is able
to cluster incomplete rankings.

This gave rise to two methods, namely Näıve →
SVM and EBMS → SVM.

5 Experiments

In this section we evaluate the MM-PL algorithm in
both supervised clustering and label ranking scenarios.

In the clustering scenario, it was compared to the five
baselines described in the previous section. In the
traditional label ranking scenario, it was compared to
several previously proposed algorithms.

In our preliminary experiments, we experimented
with several different versions of the MM-PL algorithm.
We were interested in comparing batch vs. stochastic
prototype updates in the M-step. The main conclusions
are that the stochastic updates performed better than
batch updates. Following these results, in the following
we report the performance of MM-PL with stochastic
updates.

Let us first discuss MM-PL implementation details,
specifically, initialization and parameter selection. We
initialize the prototypes by randomly sampling from the
available training points. The label score vector vk for
each prototype was initialized by assigning ε ∼ N(1, 0.1)
to each label score. The learning rate parameter γ
was set to the initial value γ0 = 0.03, and updated
using γ(n) = γ0 · γT /(γT + n), where γT = 8N was
used in all experiments. Parameter σp was initialized
as the training data variance [23, 13] and updated
using the annealing schedule with σT = 8N . Training
was terminated when l(λ) defined in (3.14) stopped
decreasing by more than 10−5.

The data sets are described in Section 5.1. Clus-
tering results are discussed in Section 5.2. Finally, the
results in the label ranking application, together with a
brief related work overview, are shown in Section 5.3.

5.1 Data Description We collected a total of 24
data sets for evaluation of MM-PL in both supervised
clustering and label ranking prediction experiments.
These data sets were used previously [2, 3] in evaluation
of the label ranking prediction algorithms. Most of
them were obtained by converting benchmark multi-
class (A) and regression data sets (B) from the UCI and

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Attribute 1

A
ttr

ib
ut

e
2

(a) Circles data set

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

Attribute 1

A
ttr

ib
ut

e
2

(b) Checkerboard data set

Figure 1: Synthetic data sets (data point color represents lexicographic order of label ranking)

Statlog repositories into label ranking data, by using the
following Näıve Bayes (A) and feature-to-label (B) [3]
techniques. For multi-class data sets, the Näıve Bayes
classifier is first trained on the original data. Then, the
label ranking data is obtained by sorting labels with
respect to the predicted class probabilities. In case of
a tie, the label with the lowest index is ranked first.
For regression data sets, some attributes are removed
from the data set, and each one is considered as a
label. The removed attributes are standardized and
then ordered by size to obtain label ranks. Since there
exists a certain correlation between all the attributes, it
will be interesting to see to what extent can the label
ranks be correctly predicted.

In addition, we used the real-world label ranking
data from [15] and sushi preference data from [17]. The
data from the first source includes five data sets from
the medical domain. The Yeast genome consists of
2465 genes, each described by the phylogenetic profile
of length 24. The same input features with different
target rankings from five microarray experiments (spo,
heat, dtt, cold, diau) resulted in five different data sets.

The sushi preference data collection consists of data
for several different preference learning tasks (collabo-
rative filtering, object ranking and label ranking). The
data is a result of a food-chain survey in which the users,
described by 11 features, provided preferences for differ-
ent sushi dishes in terms of a five-point-scale (for collab-
orative filtering) or full sushi rankings of 10 suggested
sushis (for object and label ranking applications). In
our experiments the data version from [17] was used.
The goal is to predict how would a new customer rank
10 sushis based on his/her features. The additional fea-
tures which describe each sushi dish were excluded since
they could not be incorporated in our model.

We also generated two 2-dimensional data sets to

better characterize our model. These synthetic data
sets were separated into 3 classes, where each class has
unique label ranking with L = 6 labels (1 : 123456, 2 :
654321, 3 : 316254). Then, each point was assigned
its class’ label ranking corrupted by noise, such that
with certain probability one or more labels switch places
in total rank. The first data set (called circles) was
created by uniformly sampling 7, 000 points from a
square of width 6, centered at the origin. All points
within distance 1.5 from origin were assigned to class
1, points within distances 1.5 to 2.7 were assigned to
class 2, and the remaining points were assigned to
class 3. Finally, for every point we add label ranking
noise in the following way. One label is chosen at
random, and the second label is chosen such that it
is first label’s first neighbor in the label ranking with
probability 0.5, second neighbor with probability 0.3,
third neighbor with probability 0.15 and fourth neighbor
with probability 0.05 (if a label has only one neighbor we
pick that neighbor as a second label, otherwise we pick
one of two neighbors by throwing a fair coin). Then, we
switch these two labels with probability 0.7, otherwise
we quit noise-adding routine. If the noise was added we
pick two new labels in the same way as before and switch
them with probability 0.5, and if the second label switch
occurred we choose two new labels and switch them with
probability 0.3. The second data set (called checker)
was generated in the following way. We sampled 450
points from each of 16 Gaussian distributions centered
at the fields of 4× 4 checkerboard, and assigned points
from upper right and lower right Gaussians to classes 1
and 2, respectively, and the remaining points to class 3.
Similarly to the first data set, we assigned each point
its class’ label ranking corrupted by noise.

Two data sets are shown in Figure 1, where each
label permutation is marked with a different color. The

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Attribute 1

A
ttr

ib
ut

e
2

1 2 3 4 5 6
6 5 4 3 2 1
3 1 6 2 5 4

(a) MM
PL

, ∆p = .526

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Attribute 1

A
ttr

ib
ut

e
2

1 2 3 4 5 6
1 2 3 4 5 6
3 6 1 2 5 4

(b) Km
Mal

, ∆p = .771

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Attribute 1

A
ttr

ib
ut

e
2

1 2 3 4 5 6
1 3 2 5 4 6
3 1 2 6 5 4

(c) ebms
SV M

, ∆p = .617

Figure 2: Clustering performance comparison on checker dataset (K = 3)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Attribute 1

A
ttr

ib
ut

e
2

1 2 3 4 5 6
6 5 4 3 2 1
3 1 6 2 5 4

(a) MM
PL

, ∆p = .532

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Attribute 1

A
ttr

ib
ut

e
2

3 6 1 2 5 4
3 1 6 2 5 4
3 6 1 5 2 4

(b) Km
Mal

, ∆p = .831

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Attribute 1

A
ttr

ib
ut

e
2

1 3 6 2 5 4
6 5 4 3 2 1
3 1 6 2 5 4

(c) naive
SV M

, ∆=.552

Figure 3: Clustering performance comparison on circle dataset (K = 3)

description of data sets is given in Table 1, together
with a 1-Rank result as it is, in a sense, a property of
the data set (i.e., how well it can be represented using
a single label rank).

A common shortcoming of a collection of user-
content real-world label ranking data is missing pref-
erence information. Very often a user will only provide
a partial rank of preferred items (e.g., clothing brands).
To model incomplete ranking information, the training
data was modified such that a certain percentage of la-
bels was removed from the complete instance rankings
at random.

5.2 Application to Supervised Clustering Here
we compare MM-PL to clustering algorithms from Sec-
tion 4 in label rank clustering. The comparison is in
terms of lossLR and ∆p averaged over 5 repetitions of
a 10-fold cross-validation. Note that lossLR is used to
evaluate predictiveness, while ∆p depicts cluster com-
pactness, using the training data, which is not necessar-
ily a good measure of predictive performance. Missing
label scenario was simulated by removing a certain per-

centage of labels from the training data.
First we show the results on the synthetic checker

and circle data sets. For this purpose, the number of
clusters was set to K = 3 in order to test whether
the correct clusters can be recovered. MM-PL used
a total budget of K · P = 90 prototypes. The
results are summarized in the top two rows of Table 4
and illustrated in Figures 2 and 3. In addition,
Table 2 reports which rankings are discovered as cluster
centroids in different settings.

We can conclude that MM-PL performed the best
overall, as it was able to uncover the actual clusters
and the correct central rankings even when the clus-
ters were unbalanced (checker) and 60% of labels are
missing. It can be observed that K-means → Mal is
under-performing when the label regions have compli-
cated distributions. Näıve → SVM top K central rank-
ing selection strategy did not prove efficient. Because of
imbalance in cluster sizes and the large amount of noise,
it was not able to correctly recover all the central rank-
ings by taking the top K ones. Interestingly, nor did
EBMS → SVM. Finally, Näıve K-means showed better

Table 2: The resulting cluster central rankings (upper half, checker data, K = 3; lower half, circle data, K = 3)

complete ranking 30% missing labels 60% missing labels
Km
Mal

naive
Km

naive
SV M

ebms
SV M

MM
PL

Km
Mal

naive
Km

naive
SV M

ebms
SV M

MM
PL

Km
Mal

naive
Km

naive
SV M

ebms
SV M

MM
PL

123456 123456 123456 132654 123456 123456 123456 123456 132546 123456 123456 123456 123456 132645 123456
123456 654321 654321 653421 654321 123456 654321 654321 132645 654321 316254 654321 124356 132645 654321
361524 423516 213456 653421 316254 361254 136254 124356 132645 316254 316452 123645 123546 132546 316254
361254 123456 136254 123456 123456 361524 132654 312654 653421 123456 361524 635124 316524 316254 123456
316254 654321 654321 132546 654321 361524 654321 654321 653421 654321 361254 316254 361254 316254 654321
361524 316254 316254 312654 316254 361524 654321 316254 132654 316254 361524 316254 316254 316254 316254

−6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

1st Prinicpal Component

2nd
 P

rin
ic

pa
l C

om
po

ne
nt

1 7 2 4 10 6 9 3 8 5
5 6 8 3 1 4 7 10 9 2
2 5 6 8 3 1 9 7 10 4
8 2 3 1 9 4 7 5 6 10
8 3 1 6 2 5 9 4 7 10

(a) MM
PL

, ∆p = .641

−6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

1st Prinicpal Component

2nd
 P

rin
ic

pa
l C

om
po

ne
nt

8 3 6 1 2 9 5 4 7 10
8 3 1 6 2 5 9 4 7 10
8 3 1 2 6 4 5 9 7 10
8 3 2 5 6 1 4 9 7 10
8 3 1 5 2 6 4 9 7 10

(b) Km
Mal

, ∆p = .695

−6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

1st Prinicpal Component

2nd
 P

rin
ic

pa
l C

om
po

ne
nt

8 3 1 4 9 7 2 10 6 5
2 8 1 3 5 9 6 4 7 10
8 6 3 5 9 2 1 4 7 10
5 8 6 1 4 2 3 9 7 10
8 6 3 5 9 2 1 4 7 10

(c) ebms
SV M

, ∆p = .645

Figure 4: Clustering performance comparison on sushi dataset (K = 5)

Table 3: The resulting cluster central rankings for Sushi data set K = 5, no missing labels

1 Rank Km
Mal

naive
Km

naive
SV M

ebms
SV M

MM
PL

8 3 6 1 2 9 5 4 7 10 5 2 1 8 6 4 3 9 7 10 2 5 6 8 3 1 9 7 10 4 8 3 1 4 9 7 2 10 6 5 1 7 2 4 10 6 9 3 8 5
8 3 1 6 2 5 9 4 7 10 1 7 4 2 3 10 9 8 6 5 5 6 8 3 1 4 9 2 7 10 2 8 1 3 5 9 6 4 7 10 5 6 8 3 1 4 7 10 9 2

8 3 1 6 2 5 9 4 7 10 8 3 1 2 6 4 5 9 7 10 8 3 9 1 2 6 4 7 10 5 8 3 6 5 9 2 1 4 10 7 8 6 3 5 9 2 1 4 7 10 2 5 6 8 3 1 9 7 10 4
8 3 2 5 6 1 4 9 7 10 8 5 2 6 3 9 1 7 4 10 8 5 6 2 1 3 9 4 10 7 5 8 6 1 4 2 3 9 7 10 8 2 3 1 9 4 7 5 6 10
8 3 1 5 2 6 4 9 7 10 8 5 3 6 1 4 9 2 7 10 1 8 3 9 2 4 7 10 6 5 8 6 3 5 9 2 1 4 7 10 8 3 1 6 2 5 9 4 7 10

∆p .695 .778 .652 .645 .641

performance than K-means → Mal on the checker data
but falls behind it on the circle data.

Table 2 shows that none of the algorithms, except
MM-PL, was able to find the correct label ranking for
the smallest checker cluster.

It should be noted that, if we repeat the experiment
multiple times, K-means based algorithms are likely to
find different central rankings each time. On the other
hand, the other algorithms are consistent.

Next, we evaluate the algorithms on the real-world
sushi data set with K = 5 clusters. Figure 4, Table 3
and bottom row of Table 4 illustrate the performance.
We can make several observations. Even though K-
means → Mal partitions the feature space well, the
partitions are not descriptive enough, as all cluster
central rankings have sushis 8 and 1 at the first two
positions and 7 and 10 at the last two positions. Thus,
the cluster-specific promotional material would only
differ the in mid-part of customer preferences. EBMS
→ SVM results in the partitions that are compact in the

label space (low ∆p), but far less compact in the feature
space, thus resulting in poor generalization (Table 4).
MM-PL clusters are informative and diverse in label
space and also consistently distributed in feature space,
allowing for a simpler and more intuitive rule when
assigning new customers to clusters. For this reason
it has the best overall predictive performance.

The results on the remaining datasets are reported
in Table 4. We show results for complete ranking, 30%
and 60% missing label ranking scenarios. The number
of clusters was set to K = 10 and the total budget size
of MM-PL to P ·K = 100.

MM-PL performed the best overall in all three
scenarios. MM-PL is the best overall, while K-means→
Mal and Näıve → SVM are the second best, depending
on the data properties. If the clusters in feature space
correspond to clusters in the label space, K-means →
Mal performs well. If top K label rankings correspond
to the true cluster centroids, then Näıve → SVM is a
good fit.

Table 4: Label Ranking Supervised Clustering performance comparison in terms of lossLR

complete ranking 30% missing labels 60% missing labels

Data Set Km
Mal

naive
Km

naive
SV M

ebms
SV M

MM
PL

Km
Mal

naive
Km

naive
SV M

ebms
SV M

MM
PL

Km
Mal

naive
Km

naive
SV M

ebms
SV M

MM
PL

checker .340 .287 .287 .373 .250 .340 .300 .287 .377 .249 .342 .308 .413 .393 .260

circle .392 .444 .260 .281 .253 .392 .410 .265 .280 .258 .392 .396 .374 .395 .261

fried .413 .334 .272 .263 .226 .412 .342 .291 .340 .236 .422 .395 .317 .375 .251

calhousing .364 .424 .450 .359 .349 .365 .463 .467 .379 .352 .365 .501 .469 .390 .349
elevators .347 .300 .220 .182 .171 .334 .301 .272 .248 .210 .336 .308 .293 .271 .214

pendigits .290 .308 .148 .314 .172 .289 .287 .197 .326 .181 .291 .337 .236 .349 .202
cpu-small .362 .374 .407 .403 .356 .363 .389 .390 .399 .356 .365 .413 .407 .387 .360

segment .214 .188 .080 .185 .146 .214 .197 .115 .184 .145 .213 .229 .202 .226 .156

wisconsin .451 .443 .486 .453 .433 .455 .443 .487 .462 .435 .465 .461 .490 .469 .444
vowel .253 .274 .237 .221 .209 .255 .276 .266 .239 .211 .265 .314 .305 .256 .242

vehicle .132 .113 .095 .124 .090 .131 .165 .080 .155 .095 .136 .210 .142 .174 .109

stock .213 .218 .138 .235 .140 .217 .227 .175 .241 .148 .222 .259 .273 .310 .162
iris .091 .059 .080 .171 .061 .093 .142 .100 .174 .088 .136 .188 .196 .256 .127

glass .110 .113 .092 .112 .108 .117 .173 .098 .125 .114 .139 .211 .189 .144 .130

authorship .072 .066 .101 .175 .079 .073 .072 .109 .179 .075 .082 .077 .193 .221 .082
bodyfat .451 .454 .461 .419 .430 .455 .459 .464 .453 .436 .469 .464 .491 .458 .444

wine .050 .058 .051 .106 .047 .051 .163 .059 .122 .045 .087 .220 .104 .133 .076

housing .376 .407 .331 .366 .339 .377 .421 .381 .412 .357 .397 .436 .384 .426 .365

cold .395 .408 .416 .426 .386 .405 .404 .448 .437 .393 .404 .418 .434 .438 .398
heat .438 .453 .477 .465 .433 .440 .451 .495 .472 .437 .447 .456 .477 .485 .439

diau .336 .385 .379 .356 .327 .339 .376 .408 .366 .338 .345 .378 .362 .382 .343

dtt .416 .432 .471 .447 .410 .422 .428 .464 .449 .417 .424 .432 .466 .453 .422
spo .431 .440 .484 .463 .431 .434 .445 .487 .474 .435 .443 .471 .481 .478 .440

sushi .372 .383 .379 .366 .332 .369 .374 .414 .372 .335 .379 .394 .382 .477 .343

average .305 .307 .284 .303 .257 .306 .321 .301 .319 .264 .315 .345 .336 .348 .276

time (s) 10.1 9.3 1300 13K 234 13.5 10.9 3190 13.2K 228 13.8 11.6 3730 13.3K 188

Finally, we can observe that the Unsupervised Label
Ranking→ SVM methods are notably computationally
more demanding than the rest of the algorithms. Espe-
cially EBMS, which is very slow on large data sets.

5.3 Application to Label Ranking Prediction
The objective of label ranking is to train a single ranking
function f : xn → πn from data set D. As this
function can output any permutation of L labels, it is
not appropriate for clustering (e.g., it could result in
an infeasible number of catalogs for target marketing).
However, many other real-life tasks find this kind of
mapping desirable.

There are three principal approaches for label rank-
ing. The first decomposes label ranking problem into
one or several binary classification problems. Ranking
by pairwise comparison (PW) [15], for example, creates
L · (L− 1)/2 classification problems, one for each possi-
ble pairwise ranking. The constraint classification (CC)
[14], on the other hand, transforms the label ranking
problem into a single binary classification problem by
augmenting the data.

The second approach is to use utility functions,
where the goal is to learn mappings fk : X → R for
each label k = 1, ...,L, which assign a value fk(x) to

each label, such that fi(x) < fj (x) if x prefers label
j over i . For example, Lin-LL method proposed in
[6] represents each fk as a linear combination of base
ranking functions. The utility functions are learned
to minimize the ranking error and the final rank is
produced by sorting the utility scores.

The third approach is represented by a collection of
algorithms which use probabilistic approaches for label
ranking, such as the Mallows [18] and the Plackett-Luce
[20] models. A typical representative is the instance-
based (IB) label ranking [3, 2]. Given a new instance x,
the k-Nearest Neighbor algorithm is used to locate its
neighbors in the feature space. Then, the neighbors’
label rankings are aggregated to provide prediction.
Instance models based on the Mallows model, IB-Mal
[3] and Plackett-Luce model, IB-PL [2] exist. By setting
k = 1, the aggregation step is avoided and prediction
consists of simply copying the ranking of the nearest
neighbor. However, the 1-nearest neighbor is rather
unstable and not applicable to incomplete label ranks.

Instance-based label ranking algorithms are sim-
ple and intuitive. Furthermore, they have shown good
performance in various label ranking scenarios. How-
ever, their success comes at a large cost associated
with both memory and time. First, they require

Table 5: Label Ranking Prediction performance comparison in terms of label rank loss lossLR

complete ranking 30% missing labels 60% missing labels
Data Set 1NN IB

CPS
IB
PL

IB
Mal

Lin
LL

Lin
PL

MM
PL

IB
PL

IB
Mal

Lin
LL

Lin
PL

MM
PL

IB
PL

IB
Mal

Lin
LL

Lin
PL

MM
PL

fried .248 .201 .202 .196 .344 .347 .294 .216 .219 .345 .348 .300 .257 .312 .349 .350 .313
calhousing .386 .344 .337 .336 .449 .435 .351 .345 .348 .450 .436 .353 .376 .415 .453 .437 .356
elevators .261 .224 .234 .226 .306 .305 .244 .238 .244 .309 .306 .249 .263 .322 .311 .307 .265
pendigits .142 .140 .143 .139 .364 .351 .211 .152 .159 .366 .354 .215 .169 .230 .368 .355 .219
cpu-small .392 .347 .344 .336 .378 .361 .348 .351 .350 .379 .369 .350 .371 .408 .380 .370 .355
segment .073 .077 .089 .089 .241 .227 .132 .111 .117 .242 .228 .135 .124 .154 .242 .226 .149
wisconsin .458 .492 .435 .419 .403 .401 .413 .434 .427 .409 .403 .418 .445 .443 .422 .412 .430
vowel .110 .117 .158 .148 .313 .317 .169 .217 .178 .316 .318 .173 .234 .240 .329 .327 .231
vehicle .097 .087 .082 .079 .126 .115 .083 .093 .095 .129 .118 .093 .113 .131 .128 .125 .102
stock .107 .118 .106 .108 .283 .268 .105 .134 .133 .284 .269 .130 .154 .169 .285 .272 .151
iris .043 .049 .040 .037 .189 .171 .047 .059 .066 .199 .172 .064 .103 .118 .208 .174 .105
glass .075 .102 .098 .094 .107 .106 .090 .107 .111 .111 .108 .103 .115 .140 .124 .118 .120
authorship .080 .063 .063 .062 .182 .175 .062 .068 .072 .189 .178 .065 .085 .108 .200 .190 .081
bodyfat .472 .436 .442 .438 .422 .404 .423 .463 .448 .430 .406 .430 .466 .460 .431 .429 .439
wine .068 .039 .040 .036 .067 .059 .034 .041 .042 .071 .064 .038 .061 .077 .101 .079 .059
housing .323 .321 .329 .334 .398 .385 .330 .355 .357 .404 .386 .348 .384 .385 .408 .391 .364
cold .425 .389 .386 .387 .409 .399 .385 .398 .398 .410 .404 .387 .424 .423 .411 .405 .397
heat .446 .434 .438 .435 .439 .438 .430 .445 .433 .441 .442 .432 .460 .455 .445 .443 .435
diau .382 .336 .336 .332 .350 .349 .329 .338 .340 .353 .350 .332 .339 .365 .360 .352 .338
dtt .440 .420 .418 .417 .421 .410 .410 .428 .430 .422 .417 .414 .447 .442 .423 .419 .423
spo .440 .435 .438 .433 .437 .443 .428 .439 .444 .439 .445 .434 .441 .455 .444 .453 .436
sushi .415 .347 .348 .349 .459 .462 .337 .363 .352 .461 .465 .339 .381 .374 .463 .468 .342

average .267 .253 .250 .247 .322 .315 .255 .263 .264 .325 .318 .263 .282 .301 .331 .323 .277
avg. rank 4.73 3.23 3.41 2.55 6 5.27 2.82 2.36 2.77 4.32 3.77 1.77 2.45 3.64 3.95 3.14 1.82

that the entire training data set is stored in memory,
which can be costly or even impossible in the resource-
constrained applications. Storing the original data can
also raise privacy issues, as the data might contain
sensitive user information. Second, the prediction in-
volves costly nearest neighbor search and aggregation of
neighbors’ label rankings. The aggregation is very slow
as it requires using optimization techniques at predic-
tion time, such as Minorization-Maximization [16] (IB-
PL, O(N2 + kL logL)) or exhaustive search (IB-Mal,
O(N2 + kL!)).

There also exists a method that models the global
Plackett-Luce parameters which are linearly dependent
on the input space [2]. We will refer to it as Lin-PL.

In the following we compare the proposed MM-PL
algorithm to simple 1-NN label rank rule, IB-PL [2], IB-
Mal [3], Lin-LL [6] and Lin-PL [2]. We also implemented
an IB-CPS method which uses the recently proposed
CPS model for rank aggregation [21].

Table 5 shows the comparison of MM-PL to the
label ranking algorithms. Since the goal in this applica-
tion is to predict the label preferences as accurately as
possible, we used a special case of MM-PL. We set the
number of clusters equal to total number of prototypes,
hoping to span a much larger number of preferences and
increase our predictive power. However, not all proto-
types will necessarily learn to represent different prefer-
ences. In these experiments we set K = 100.

In the full ranking scenario, MM-PL was the second
best ranked algorithm in terms of the number of wins.
By the average accuracy measure, it was slightly less

accurate than the two IB algorithms (IB-Mal and IB-
PL), and as accurate as IB-CPS. Lin-LL and Lin-PL
were the least accurate by both measures. Accuracy of
1-NN was between Lin and IB methods. It is worth
observing that MM-PL was the most accurate on the
real-world data sets and that in some cases, due to over-
fitting, MM-PL with 10 clusters outperforms the new
version.

In the case of 30% and 60% missing label informa-
tion, MM-PL was the highest ranked algorithm. In av-
erage accuracy, MM-PL and IB-PL performed similarly.
Better performance of MM-PL in the missing label sce-
nario can be explained by the difference in utilizing the
incomplete preference information. Unlike IB methods,
which use missing labels in the prediction phase, MM-
PL prototypes capture the underlying distribution bet-
ter and alleviate missing data problem by combining
partial information during the training phase. It is also
interesting to observe that IB-PL performs better than
IB-Mal on data with missing labels, while on complete
ranking data the outcome is opposite.

6 Conclusion

In spite of having many potential real-world applica-
tions, to the best of our knowledge, this paper presents
the first attempt at supervised clustering of complex la-
bel rank data. We established several baselines for su-
pervised clustering of label ranking data and proposed a
Plackett-Luce (PL) mixture model specifically tailored
for this application. We empirically showed the strength
of the PL model by experiments on real-world and syn-

thetic data. In addition to the supervised clustering
scenario, we compared the PL model to the previously
proposed label ranking algorithms in terms of predictive
accuracy.

Our model achieved state-of-the-art clustering per-
formance and was very competitive to the previously
proposed approaches for label ranking prediction. When
faced with the missing label problem, and particularly
when a large fraction of labels is missing, the PL model
works exceptionally well. In addition to the impressive
accuracy, the PL model has a small memory footprint
making it attractive in memory-constrained scenarios.
Unlike models utilizing pairwise label preference infor-
mation, training and prediction time of PL model are
only linear in the size of label set and number of proto-
types, resulting in a very fast and efficient model. These
features make it an attractive option for label ranking.

Acknowledgments

We are grateful to Marina Meila for providing the codes
for the EBMS algorithm.

References

[1] R. A. Bradley and M. E. Terry, Rank analysis
of incomplete block designs. I. The method of paired
comparisons, Biometrika, 39 (1952), pp. 324–345.

[2] W. Cheng, K. Dembczyński, and E. Hüllermeier,
Label ranking methods based on the Plackett-Luce
model, in IEEE International Conference on Machine
Learning (ICML), 2010, pp. 215–222.

[3] W. Cheng, J. Hühn, and E. Hüllermeier, Decision
tree and instance-based learning for label ranking, in
IEEE International Conference on Machine Learning
(ICML), 2009, pp. 161–168.

[4] D. Coppersmith, L. K. Fleischer, and A. Rudra,
Ordering by weighted number of wins gives a good rank-
ing of weighted tournaments, ACM-SIAM Symposium
on Discrete Algorithms, (2006), pp. 776–782.

[5] J. C. de Borda, Memoire sur les Élections au Scrutin,
Histoire de l’Academie Royale des Sciences, 1781.

[6] O. Dekel, C. Manning, and Y. Singer, Log-Linear
Models for Label Ranking, in Advances in Neural Infor-
mation Processing Systems, vol. 16, MIT Press, 2003.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin,
Maximum likelihood from incomplete data via the EM
algorithm, Journal of Royal Statistical Society B, 39
(1977), pp. 1–38.

[8] C. Domshlak, E. Hüllermeier, S. Kaci, and
H. Prade, Preferences in AI: An overview, Artificial
Intelligence, 175 (2011), pp. 1037–1052.

[9] C. Eick, N. Zeidat, and Z. Zhao, Supervised Clus-
tering - Algorithms and Benefits, Proc. International
Conference on Tools with AI, (2011), pp. 774–776.

[10] C. F. Eick, B. Vaezian, D. Jiang, and J. Wang,
Discovery of Interesting Regions in Spatial Data Sets,
European Conference on Principles and Practice of
Knowledge Discovery in Databases, (2011).

[11] T. Finley and T. Joachims, Supervised Clustering
with Support Vector Machines, International Confer-
ence, (2005), p. 217224.

[12] T. Gärtner and S. Vembu, Label Ranking Algo-
rithms: A Survey, in Preference Learning, E. H. Jo-
hannes Fürnkranz, ed., Springer–Verlag, 2010.

[13] M. Grbovic and S. Vucetic, Regression Learning
Vector Quantization, IEEE International Conference
on Data Mining (ICDM), (2009), pp. 788–793.

[14] S. Har-Peled, D. Roth, and D. Zimak, Constraint
classification for multiclass classification and ranking,
in Proceedings of the 16th Annual Conference on
Neural Information Processing Systems, NIPS-02, MIT
Press, 2003, pp. 785–792.

[15] E. Hüllermeier, J. Fürnkranz, W. Cheng, and
K. Brinker, Label ranking by learning pairwise pref-
erences, Artificial Intelligence, 172 (2008), pp. 1897–
1916.

[16] D. R. Hunter, MM algorithms for generalized
Bradley-Terry models, The Annals of Statistics, 32
(2004), pp. 384–406.

[17] T. Kamishima and S. Akaho, Filling-in Missing
Objects in Orders, in IEEE International Conference on
Data Mining (ICDM), IEEE Computer Society, 2004,
pp. 423–426.

[18] C. L. Mallows, Non-null ranking models, Biometrika,
44 (1967), pp. 114–130.

[19] M. Meila and L. Bao, An Exponential Model for Infi-
nite Rankings, Journal of Machine Learning Research,
11 (2010), pp. 3481–3518.

[20] R. L. Plackett, The analysis of permutations, Ap-
plied Statistics, 24 (1975), pp. 193–202.

[21] T. Qin, X. Geng, and T.-Y. Liu, A New Probabilistic
Model for Rank Aggregation, in Advances in Neural
Information Processing Systems, MIT Press, 2010,
pp. 1948–1956.

[22] T. Qin, T.-Y. Liu, X. Zhang, and H. Li,
Global Ranking Using Continuous Conditional Random
Fields, in Advances in Neural Information Processing
Systems, MIT Press, 2008, pp. 1281–1288.

[23] S. Seo, M. Bode, and K. Obermayer, Soft nearest
prototype classification, IEEE Transactions on Neural
Networks, 14 (2003), pp. 390–398.

[24] R. Vilalta and Y. Drissi, A Perspective View and
Survey of Meta-Learning, Artificial Intelligence Re-
view, 18 (2002), p. 7795.

[25] A. S. Weigend, M. Mangeas, and A. N. Srivas-
tava, Nonlinear Gated Experts for Time Series: Dis-
covering Regimes and Avoiding Overfitting, Interna-
tional Journal of Neural Systems, 6 (1995), pp. 373
–399.

