
Multi-Prototype Label Ranking with
Novel Pairwise-to-Total-Rank Aggregation

Mihajlo Grbovic∗
Yahoo! Labs, USA

mihajlo@yahoo-inc.com

Nemanja Djuric∗
Temple University, USA

nemanja.djuric@temple.edu

Slobodan Vucetic
Temple University, USA

slobodan.vucetic@temple.edu

Abstract
We propose a multi-prototype-based algorithm for
online learning of soft pairwise-preferences over la-
bels. The algorithm learns soft label preferences
via minimization of the proposed soft rank-loss
measure, and can learn from total orders as well as
from various types of partial orders. The soft pair-
wise preference algorithm outputs are further ag-
gregated to produce a total label ranking prediction
using a novel aggregation algorithm that outper-
forms existing aggregation solutions. Experiments
on synthetic and real-world data demonstrate state-
of-the-art performance of the proposed model.

1 Introduction
In the Label Ranking setup, the input space is defined by a
feature vector x ∈ X , and the output is defined as a ranking
of labels π ∈ Π (e.g., π = (3, 1, 4, 2)). Given a sample from
the underlying distribution D = {(xn , πn),n = 1, ...,N },
where xn is a d-dimensional feature vector and πn is a vector
containing either a total or a partial order of a finite set Y of
L class labels, the goal is to learn a model that maps x to a
total label order L : X → Π.

This problem has received a lot of attention in the machine
learning community and has been extensively studied [Dekel
et al., 2003; ?; ?; ?; ?]. For a survey of recent Label Ranking
algorithms see [Gärtner and Vembu, 2010]. Unlike standard
problems of classification and regression, Label Ranking is
a complex learning task, which involves prediction of strict
label-order relations, rather than single values. It differs from
the Learning to Rank setup [Cao et al., 2007], where a fea-
ture vector is formed from query features and corresponding
document features, and the output is the relevance score. It
also differs from the Collaborative Filtering setup [Zhou et
al., 2008], where the input space is a set of scores over some
of the labels, and the output is a set of scores or rankings of
the remaining labels.

There are many practical applications in which the objec-
tive is to learn exact label preference of an instance in a form
of a total order. For example, in the task of document cate-
gorization [Boley et al., 1999] where it is very likely that a

* These authors have contributed equally to this work.

document belongs to multiple topics (e.g., science, entertain-
ment, news, etc.) multi-label classification has traditionally
been used. However, one might not be interested only in dis-
tinguishing between relevant and irrelevant topics for a spe-
cific document, but also in learning how to find a total order
of the topics by relevance.

Personalization and targeting is emerging as an important
and practically relevant field. Current trend is that publish-
ers aim at personalizing their content (such as news articles,
stories, advertisements) at the fine-grain level of individual
user, or at least at the level of a user group [Grbovic et al.,
2012]. One way of achieving this is through learning user
preferences over content categories or topics (e.g., sports, fi-
nance, politics, etc.) in form of total ranking π. Since the
user reading history, such as the counts of reading sessions
per topic, is directly correlated with the user preferences, one
way of inferring ranking π is to sort the counts. However,
new users that have just sign up with the publisher have no
activity log, and the publisher must look elsewhere for predic-
tive data sources that are indicative of π. Popular cold-start
heuristics include randomly suggesting content, or suggest-
ing content popular among a new user’s age group or gender
[Park and Chu, 2009], and usually fail to initially personal-
ize beyond that. Label Ranking allows us to learn a mapping
x→ π, from existing users for which information x is avail-
able and π is known, where x is a vector created from user’s
sign-up information (e.g. age, gender, location) and/or third
party information (e.g., occupation, hobbies, political views,
religion). Since the preferences may change over time, it is
important to have a label ranking model with online learning
capabilities, such that it can be updated with daily activities
of a large user population.

We propose a soft multi-prototype algorithm (SMP-Rank)
for learning pairwise label preferences, attractive because of
an intuitive online learning process, ease of implementation,
and an ability to support various ranking structures, includ-
ing complete and incomplete rankings, bipartite and multipar-
tite ranking as well as arbitrary pairwise preferences. SMP-
Rank belongs to a class of Learning Vector Quantization [Ko-
honen, 1990] prototype-based learning algorithms, that have
previously been shown useful in classification [Seo and Ober-
mayer, 2003] and regression [Grbovic and Vucetic, 2009]
tasks. We derive its adaptation for the Label Ranking task. In
addition, we propose a new algorithm for aggregation of arbi-

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

1358

trary pairwise preferences into a total ranking. The preference
aggregation is a well-known problem in preference learning,
where numerous methods have been proposed [Cohen et al.,
1999; ?; ?]. It is challenging, since the pairwise preferences
may not be transitive. For instance, if we have three labels i, j
and k, label ranking algorithm might prefer i over j, j over k,
and finally k over i, thus inducing a cycle. The proposed ag-
gregation algorithm consistently outperforms competing al-
gorithms in this task as the number of labels L grows.

There are several existing approaches to Label Ranking.
Pairwise Comparison method (PW) [Hüllermeier et al., 2008]
trains L · (L − 1)/2 classifiers, one for each pair of labels,
and aggregates the pairwise predictions into a total order us-
ing Soft-Borda Count. Log-Linear Label Ranking (Lin-LL)
method [Dekel et al., 2003] learns mappings fk : X → R for
each label k = 1, .., L, to minimize the number of ranking
errors. Each fk(·) is modeled as a linear combination of base
ranking functions, such that fi(x) > fj (x) if x prefers label i
over j . The final rank is produced by sorting the scores fk(·).

On the other hand, instance-based Mallows (IB-Mal)
[Cheng et al., 2009] and Plackett-Luce (IB-PL) [Cheng et al.,
2010] methods use the k-Nearest Neighbor algorithm to lo-
cate neighbors in the feature space, and rely on the Mallows
[Mallows, 1967] or the Plackett-Luce [Plackett, 1975] proba-
bilistic ranking models to combine neighbors’ label rankings
into a single prediction. The instance-based methods have
been shown to outperform the competitors. However, their
success comes at a large cost associated with both memory
and time. Firstly, they require that the entire training data set
is stored in memory, which can be very costly or even im-
possible in resource-constrained applications. Secondly, the
Mallows and Plackett-Luce parameters are not learned during
training, instead they are estimated at prediction time for each
test instance separately, making it hard to achieve real-time
predictions in web-based applications such as ad targeting.

There are several main justifications for using a prototype-
based algorithm in Label Ranking. One is that it allows a
clear mechanism for designing a prototype-based ranker on
a fixed prototype budget. Unlike classification, where meth-
ods such as condensing [Hart, 1968] have been proposed for
nearest neighbor classifiers, there is no clear alternative for
building budget-based nearest neighbor and Parzen window
algorithms for Label Ranking. Another justification is that the
proposed SMP-Rank has low training cost with linear time
and constant memory scaling with training size. In particular,
gradient descent-based models, such as the proposed SMP-
Rank, are most practical when it comes to needing to update
the model with millions of examples every day, without hav-
ing to store them. This makes it attractive for online learning
applications.

There is one more property that distinguishes the proposed
algorithm from the competition. Most of the existing algo-
rithms are designed to learn from label orderings that form a
ranking, either complete or partial top-k rankings. In order
to be able to learn from arbitrary pairwise preferences that
cannot form a ranking (e.g., 1 � 5, 2 � 1, 3 � 4, where �
is read as ”is preferred over”) most of them need to impro-
vise by imputing missing comparisons, for instance, based on
conditional insertion probabilities [Lu and Boutilier, 2011].

SMP-Rank, however, handles such incomplete data directly,
without having to estimate the missing information.

We conducted thorough empirical evaluation on synthetic
and real-world data, with various data and label set sizes. The
results illustrate the usefulness of the proposed methodology
in the label ranking task, and also in the task of pairwise-to-
total-rank aggregation, where the new aggregation algorithm
outperforms the existing solutions.

2 Preliminaries
In the label ranking scenario, a single instance, described by
a d -dimensional vector x, is associated with a total order of
assigned class labels, represented as a permutation π of the set
{1, ...,L}, where L is the number of available class labels. We
define π such that π(i) is the class label at the i-th position in
the order, and π−1(j) is a position of the yj class label in the
order. The permutation can also describe incomplete ranking
{π(1), ..., π(k)} ⊂ {1, ...,L}, k < L.

In our approach we represent the label ranking for each
instance x in the following way. Instead of the total or-
der, we use a zero-diagonal preference matrix Y, where
Y(i , j) > Y(j , i) if label yi is preferred over label yj and
Y(i , j) + Y(j , i) = 1, for i , j ∈ {1, ...,L}. A value of
Y(i , j) which is close to 1 is interpreted as a strong pref-
erence that yi should be ranked before yj . Similarly, un-
certain (soft) preferences can be modeled by using values
lower than 1. For example, indifferences (ties) are repre-
sented by setting Y(i , j) = Y(j , i) = 0.5. Given potentially
incomplete permutation π, the preference matrix consistent
with it can be formed in many ways. A typical approach
is to assign Y(i , j) = 1 and Y(j , i) = 0 if yi � yj and
Y(i , j) = Y(j , i) = 0 in case of incomparable or missing
class label preferences. This representation allows us to work
with complete and top-k label rankings, bipartite and multi-
partite label rankings, as well as with arbitrary pairwise pref-
erences and indifferences.

2.1 Evaluation Metrics

Let us assume that N historical observations are collected in
a form of a data set D = {(xn,Yn), n = 1, ..., N}. The
objective in all scenarios is to train a ranking function L :
xn → π̂n that outputs a total label order.

In the Label Ranking scenario, to measure the degree of
correspondence between true and predicted rankings for the
n-th example, πn and π̂n respectively, it is common to use
the Kendall’s tau distance dn =| {(yi, yj) : π−1

n (yi) >
π−1
n (yj)∧π̂−1

n (yj) > π̂−1
n (yi)} |. To evaluate a label ranking

model, the label ranking loss on the data set D is defined as
the average normalized Kendall’s tau distance,

lossLR =
1

N

N∑
n=1

2 · dn
L · (L− 1)

. (1)

Note that the measure simply counts the number of discor-
dant label pairs and reports the average over all considered
pairwise rankings. Given the preference matrix representa-

1359

tion, assuming binary predictions Ŷn, we can rewrite (1) as

lossLR =
1

N

N∑
n=1

‖ Yn − Ŷn ‖2F
L · (L− 1)

, (2)

where ‖ · ‖F is the Frobenius norm, and entries for which
Yn(i , j) = Yn(j , i) = 0 are skipped over. For models
with soft label preference predictions Ŷn, e.g., Ŷn(i, j) =

0.7, Ŷn(j, i) = 0.3, loss (2) can be interpreted as a soft ver-
sion of (1).

In the proposed methodology, we learn the mapping L :
xn → πn in two stages. In the learning stage, function
f : xn → Yn is learned via minimizing (2). In the aggre-
gation stage, given the model predictions in a form of Yn,
the total order prediction πn is computed using a preference
aggregation h : Yn → πn.

3 SMP-Rank algorithm
The proposed method is completely defined by a set of K
prototypes {(mk,Qk), k = 1, ...,K}, where mk is a d-
dimensional vector in input space, and Qk is the correspond-
ing pairwise preference matrix.

The starting point in the design of SMP-Rank is to intro-
duce the probability P(k | x) of assigning observation xn to
the k-th prototype that is dependent on their (Euclidean) dis-
tance. Let us assume that the probability density P(xn) can
be described by a mixture model,

P(xn) =
K∑
k=1

P(xn | k) · P(k), (3)

whereK is the number of prototypes, P(k) is the prior proba-
bility that a data point is generated by the k-th prototype, and
P(xn | k) is the conditional probability that the k-th proto-
type generates particular data point xn. Let us represent the
conditional density function P(xn | k) with the normalized
exponential form P(xn | k) = θ(k) · exp(f(xn,mk)) and
consider a Gaussian mixture with θ(k) = (2πσ2

p)−1/2 and
f(xn,mk) = −‖xn−mk‖2/2σ2

p. We assume that all proto-
types have the same standard deviation σp and the same prior,
P(k) = 1/K. Given these assumptions, using the Bayes’ rule
we can write the assignment probability as

gnk ≡ P(k | xn) =
exp(−‖xn −mk‖2/2σ2

p)
K∑
u=1

exp(−‖xn −mu‖2/2σ2
p)

. (4)

For compactness we introduced the following notation,
gnk = P(k | xn).

To derive a cost function for SMP-Rank, we use the predic-
tion model that assigns data point xn to the prototypes proba-
bilistically and predicts based on the weighted average of the
prototype preference matrices. Assuming such a model we
can write the posterior probability P(Y | x) as

P(Y | xn) =
K∑
k=1

P(k | xn) ·P(Y | k) =
K∑
k=1

gnk · enk, (5)

where we introduced enk = N (Yn −Qk, σ
2
y).

The mixture model assumes the conditional independence
between xn and Y given k, P(Y | xn, k) = P(Y | k).
For P(k | xn) we assume the Gaussian distribution from (4).
For the probability of generating a preference matrix Y by
prototype k, P(Y | k), we also assume Gaussian error model
with mean (Y−Qk) and standard deviation σy . The resulting
cost function can be written as the negative log-likelihood,

losssmp = − 1

N

N∑
n=1

ln
K∑
k=1

P(k | x) · N (Y −Qk, σ
2
y). (6)

It is important to observe that, after proper normalization,
(6) reduces to (2) if examples are assigned to prototypes de-
terministically. Therefore, it can be interpreted as its soft ver-
sion. If prototype matrices Qk consisted of only 0 and 1 en-
tries (hard label preferences) (6) further reduces to (1).

The objective is to estimate the unknown model parame-
ters, namely prototype positions mk and their preference ma-
trices Qk, k = 1, ...,K. This is done by minimizing the cost
function losssmp with respect to these parameters. If online
learning capability is a requirement, one can use the stochas-
tic gradient descent method and obtain the learning rules at
the t-th iteration by calculating derivatives ∂losstsmp/∂mk

and ∂losstsmp/∂Qk for k = 1, ...,K. This results in follow-
ing rules for the n-th training example,

mt+1
k = mt

k − α(t) (Ln−enk)·gnk

Ln

(xn−mk)
σ2
p

Qt+1
k = Qt

k − α(t) enk·gnk

Ln

(Yn−Qk)
σ2
y

,
(7)

where Ln =
∑K
k=1 gnk · enk. The resulting model has train-

ing time complexity of O(NKL). Note that it is straightfor-
ward to cast the optimization into EM framework following
the procedure from [Weigend et al., 1995].

At iteration t = 0, the procedure starts by selecting first
K training points as initial prototypes. If any Qk prototype
preference matrix obtained in such manner contains empty
elements, they are replaced with 0.5 entries, as the corre-
sponding labels will initially be treated equally. Then, pro-
totype parameters are learned using the iterative procedure
(7). Learning is terminated when the loss function losssmp
stops improving (e.g., changes by less than 10−5).

During inference, rank prediction π̂u of unlabeled data
point xu is determined as an aggregated weighted average of
the prototype preference matrices Qk, π̂u = h(Ŷu), where
Ŷu = (

∑K
k=1 guk ·Qk) is the aggregated preference matrix,

and h(·) is an aggregation function presented in Section 4.
An important issue to be addressed is the choice of param-

eter σp. The update rule can be derived using the gradient de-
scent method. However, we experimentally determined that
this could lead to instabilities in the learning process. We
employ a simpler approach, and anneal σp using a specific
schedule, σp(t+ 1) = σp(0) · σT /(σT + t), where σT is the
decay parameter. However, we do not wish σp to drop to a
value near zero as that would result in possibly suboptimal
hard prototype assignments, thus we resort to using a valida-
tion data set and continue decreasing σp as long as losssmp
value is being improved on the validation set. Lastly, σ2

y is set

1360

to the mean of squared Frobenius norm ‖Yn − Ŷn‖2F of the
current model.

3.1 Low-rank preference matrix approximation
Since the preference matrix Qk is of size L × L, memory
required to store preference matrix even for a single proto-
type can be prohibitively large when number of labels L is
very high. In such cases we can resort to low-rank matrix
approximation of preference matrix using singular value de-
composition (SVD), by representing a matrix as

Qk = Uk ·Σk ·VT
k , (8)

where Uk and Vk are L×mmatrices, while Σk is a diagonal
m ×m matrix for some m ≤ L. Low-rank matrix approxi-
mation allows us to work with large matrices Qk by actually
storing Uk, Σk, and Vk to memory, and can also help filter
out noise from Qk. Substituting equation (8) to (6), and tak-
ing derivatives with respect to matrices Uk, Σk, and Vk we
can easily obtain update rules for Uk, Σk, and Vk to replace
the Qk updates in (7).

4 Pairwise Preference Aggregation algorithm
For an instance x, the SMP-Rank output is represented by
pairwise preference matrix Y. The aggregation algorithm
computes the total order given these, often conflicting, pair-
wise preferences. Since pairwise preferences are not transi-
tive in general, inferring total order of labels is not a trivial
task. If a measure of goodness of the total order is defined as

AGREE(π,Y) =
∑

i,j:π−1(i)>π−1(j)

Y(i, j), (9)

where π−1(i) > π−1(j) if and only if label yi is pre-
ferred over label yj in total order π, the task to find π∗ that
maximizes (9) is NP-complete [Cohen et al., 1999]. Sev-
eral heuristic methods have been proposed to obtain the ap-
proximate solution to this problem. One of the first were
Borda count [de Borda, 1781], which sorts the labels by
the counts of victories over the opponents, and Soft Borda,
which sorts by the sums of preference degrees over the op-
ponents. Several other sorting-by-degree methods exist [Co-
hen et al., 1999; ?], as well as the approach from [Ailon and
Mohri, 2008] which we refer to as QuickSort, as it is based
on the popular sorting algorithm [Hoare, 1962]. A recent pa-
per [Ailon, 2012] presents a near-optimal algorithm NearOpt
with complexity O(ε−6L logL6) for a regret of ε times the
optimal loss.

We propose a novel aggregation algorithm, called
TOUGH, with the same worst-case theoretical guarantees as
[Cohen et al., 1999]. However, it is both simpler and more ac-
curate than current state-of-the-art, as we show in Section 5.1.
The algorithm starts with empty ordered list π̂. At every iter-
ation, it expands the current ordered list by greedily adding a
new label to the position in π̂ that maximizes (9). When the
list includes all labels the algorithm terminates. Algorithm 1
shows the TOUGH pseudocode.

Let us represent the preference matrix Y as a directed
graph, where each label is represented by a node, and there is
a directed edge between every i-th and j-th node with weight
Y(i, j). Then, the following lemma holds for Algorithm 1.

Algorithm 1 Total-Order-Under-Greedy-Heuristic (TOUGH)
Inputs: label instance set Ω = {1, 2, ..., L}, preference matrix Y
Output: approximately optimal ordering π̂

1. Initialize π̂ to empty list
2. while (Ω is not empty)
3. Find highest value in Y and take the preferred label temp
4. Try every place in π̂ for temp, and put in the place

maximizing (9) of π̂
5. Set to 0 entries in Y between temp and other members of π̂
6. Delete temp from Ω

Lemma 1. Let π̂t−1 be the total order after the first t − 1
iterations of TOUGH, and π̂t be the total order after the t-
th iteration (i.e., after addition of temp, see Algorithm 1).
Furthermore, let at and dt be the sums of all outgoing and
incoming edges at the t-th iteration, respectively, from temp
to the nodes in π̂t−1. Then, ∆t, defined as the contribution
of temp at the t-th iteration to the measure of goodness (9) is
bounded below as

∆t = AGREE(π̂t,Y)−AGREE(π̂t−1,Y) ≥ 1

2
·(at+dt).

Proof. Consider putting temp at the first place of the current
total order list, and then at the last place, which completely
reverses the chosen edges. ∆t for one of these two positions
must be larger than or equal to one half of the sum of all the
weights from temp to nodes in current total order, since sum
of ∆t of these two positions is exactly equal to the sum of all
the weights from temp to nodes in a current total order.

The lemma states that, when searching for the position for
temp (Algorithm 1, step 4), there is always a position such
that the sum of the temp’s weights that will be included in
the new measure of goodness is larger than or equal to one
half of the sum of all weights of edges that connect temp to
nodes in the current total order. Using Lemma 1, it can be
shown that the approximate solution π̂ is within a factor of 2
to the optimal solution π∗.
Theorem 1. Let OPT (Y) be the weighted agreement (9)
achieved by an optimal total order π∗ for the preference ma-
trix Y, and let APPROX(Y) be the weighted agreement
achieved by output of TOUGH algorithm π̂. Then,

APPROX(Y) ≥ 1

2
OPT (Y). (10)

Proof. It is clear that APPROX(Y) =
∑L
t=1 ∆t, where

∆t is defined as in Lemma 1, and L is the number of labels
(nodes). Then, using the result of Lemma 1, it follows that
APPROX(Y) =

∑L
t=1 ∆t ≥ 1

2

∑L
t=1(at + dt). Further,

following [Cohen et al., 1999], we have

OPT (Y) ≤
L∑
t=1

(at + dt) =
2

2

L∑
t=1

(at + dt)

≤ 2 ·APPROX(Y).

(11)

The first inequality holds because OPT (Y) can at best in-
clude every edge in the graph, and since every edge is re-
moved exactly once (weight of edge set to 0), each edge must
contribute to some at or some dt.

1361

3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

Number of elements

F
r
a
c
t
i
o
n

o
f

o
p
t
i
m
a
l

s
o
l
u
t
i
o
n

TOUGH

TOUGHr

SCC + Greedy

Randomized 1

Randomized 10

Randomized 100

QuickSort

Borda

Soft Borda

NearOpt ε=0.3

(a) Smaller label set

5 10 15 20 25 30

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of elements

F
r
a
c
t
i
o
n

o
f

t
o
t
a
l

w
e
i
g
h
t

TOUGH O(L
2
 logL)

TOUGHr O(L
2
)

SCC + Greedy O(L
2
)

Randomized 1

Randomized 10

Randomized 100

QuickSort O(L logL)

Borda O(L
2
)

Soft Borda O(L
2
)

NearOpt O(ε
−6
L logL

6
)

(b) Larger label set

Figure 1: Comparison of pairwise preference aggregation algorithms

The time complexity of TOUGH isO(L2 logL). A simple
modification in Step 3 of Algorithm 1 that takes a random la-
bel instead of the highest preferred label results in a TOUGHr
algorithm with O(L2) time complexity. Theorem 10 holds
for TOUGHr as well and, as the results show, its performance
converges to TOUGH performance for large L.

A popular aggregation algorithm is SCC+Greedy [Cohen
et al., 1999], which first orders strongly connected compo-
nents (SCC) and then the nodes within each SCC, restricting
a node to stay in a part of the rank determined by its SCC. On
the other hand, TOUGH tries out all possible locations in the
partial ordering, which produces a more consistent total or-
dering. TOUGH is straightforward to implement, e.g., much
simpler than SCC+Greedy, which requires a preprocessing
step that finds SCC in a graph.

Finally, we note that the authors of the QuickSort algorithm
[Ailon and Mohri, 2008] prove regret bound and loss bound
seemingly better than the one we show. However, as their
algorithm is non-deterministic, the loss bound is on the ex-
pectation of loss, where expectation is over random choices
of pivot labels. In practice, it achieves bad results if pivot
is chosen poorly, performing worse than the bound we give.
Therefore, QuickSort does not have this worst-case guaran-
tee, unlike SCC+Greedy and TOUGH algorithms.

5 Empirical Evaluation
5.1 Preference Aggregation Evaluation
We compared 8 different aggregation algorithms:
SCC+Greedy, Borda count, Soft Borda, QuickSort, NearOpt,
TOUGH, TOUGHr and Randomized. Randomized algo-
rithm is a heuristic that chooses the better between some
random order and its inverse (L, 10L and 100L random
orders were compared for each matrix). We randomly
generated 10,000 Y matrices of sizes ranging from 3 to 30,
where element Y(i, j) is sampled uniformly from [0, 1] and
Y(j, i) = 1 − Y(i, j). For pairwise preference matrices of
size up to and including 10, we calculated the optimal total

ordering π∗ using exhaustive search. Given the approximate
total order π̂ we calculated the fraction of optimal solution as∑

i,j:π̂−1(i)>π̂−1(j)

max{Y(i, j)−Y(j, i), 0}∑
i,j:π−1

∗ (i)>π−1
∗ (j)

max{Y(i, j)−Y(j, i), 0}
. (12)

For matrices of size over 10 we did not calculate the optimal
total order due to high computational cost. Instead, given π̂
we calculated the fraction of total weight as∑

i,j:π̂−1(i)>π̂−1(j)

max{Y(i, j)−Y(j, i), 0}∑
i,j

max{Y(i, j)−Y(j, i), 0}
. (13)

The results of the comparison are given in Figures 1a and
1b. Despite its simplicity, TOUGH outperformed all other ag-
gregation methods, except for L ≤ 6, where Randomized100
is better because it performs exhaustive search. Note that
Randomized10 approximates the number of operations in
TOUGH and is more expensive than TOUGHr.

At the first glance, Figure 1 seems to show that the per-
formance improvement of TOUGH is not large. However,
by taking a closer look, we can see that for L = 10, frac-
tion of the optimal solution of TOUGH is 3% smaller than
the optimal brute force algorithm. SCC+Greedy is 6% worse
than the optimal (2× performance decrease when compared
to TOUGH), while the other algorithms such as QuickSort
and Borda are over 10% worse than the optimal solution.

Finally, NearOpt falls well behind TOUGH for ε = 0.3.
We have experimented with values of ε = 0.1 and 0.2 as
well. Our conclusion was that it exceeded reasonable time
requirements for bigger L, while achieving same or slightly
better performance than TOUGH. For example, the ε = 0.1
experiment for L = 10 could not finish in 1 day.

5.2 Evaluation of Label Ranking Techniques
Here we evaluate the performance of SMP-Rank on label
ranking problems. Our preliminary results showed that SMP-

1362

Table 1: Label ranking performance comparison in terms of label rank loss lossLR (m. p. - missing preferences)

complete ranking 30% missing labels 60% missing labels 30% m. p.
Data Set IB

PL
IB
Mal

Lin
LL

Lin
PL

PW
TGH

SMP
TGH

IB
PL

IB
Mal

Lin
LL

Lin
PL

PW
TGH

SMP
TGH

IB
PL

IB
Mal

Lin
LL

Lin
PL

PW
TGH

SMP
TGH

PW
TGH

SMP
TGH

fried .202 .196 .344 .347 .180 .144 .216 .219 .345 .348 .189 .171 .257 .312 .349 .350 .192 .180 .188 .175
calhous. .337 .336 .449 .435 .348 .346 .345 .348 .450 .436 .350 .347 .376 .415 .453 .437 .366 .349 .349 .345
elevators .234 .226 .306 .305 .186 .186 .238 .244 .309 .306 .221 .193 .263 .322 .311 .307 .257 .204 .219 .194
pendigits .143 .139 .364 .351 .134 .152 .152 .159 .366 .354 .143 .166 .169 .230 .368 .355 .153 .172 .142 .165
cpu .344 .336 .378 .361 .337 .336 .351 .350 .379 .369 .348 .337 .371 .408 .380 .370 .373 .342 .345 .337
segment .089 .089 .241 .227 .094 .070 .111 .117 .242 .228 .099 .084 .124 .154 .242 .226 .121 .093 .099 .097
stock .106 .108 .283 .268 .163 .091 .134 .133 .284 .269 .163 .113 .153 .169 .285 .272 .164 .142 .171 .122
vehicle .082 .079 .126 .115 .067 .064 .093 .095 .129 .118 .077 .071 .113 .131 .128 .125 .091 .082 .076 .071
authorsh. .063 .062 .182 .175 .082 .061 .068 .072 .189 .178 .086 .065 .085 .108 .200 .190 .092 .085 .109 .058
vowel .158 .148 .313 .317 .140 .112 .217 .178 .316 .318 .167 .151 .234 .240 .329 .327 .225 .191 .179 .168
housing .329 .334 .398 .385 .334 .305 .355 .357 .404 .386 .345 .328 .384 .385 .408 .391 .366 .350 .343 .335
bodyfat .442 .438 .422 .404 .417 .409 .463 .448 .430 .406 .419 .436 .466 .460 .431 .429 .426 .440 .423 .418
glass .098 .094 .107 .106 .080 .076 .107 .111 .111 .108 .085 .085 .115 .140 .124 .118 .101 .098 .107 .100
wisconsin .435 .419 .403 .401 .418 .408 .434 .427 .409 .403 .438 .431 .445 .443 .422 .412 .441 .444 .433 .400
wine .040 .036 .067 .059 .038 .034 .041 .042 .071 .064 .046 .040 .061 .077 .101 .079 .050 .041 .046 .042
iris .040 .037 .189 .171 .089 .029 .059 .066 .199 .172 .100 .037 .103 .118 .208 .174 .105 .080 .111 .048
sushi .348 .349 .459 .462 .335 .332 .363 .352 .461 .465 .344 .335 .381 .374 .463 .468 .366 .342 .339 .333
cold .386 .387 .409 .399 .370 .384 .398 .398 .410 .404 .373 .380 .424 .423 .411 .405 .406 .405 .372 .369
diau .336 .332 .350 .349 .328 .337 .338 .340 .353 .350 .331 .338 .339 .365 .360 .352 .335 .353 .322 .320
dtt .418 .417 .421 .411 .399 .409 .428 .430 .422 .417 .404 .421 .447 .442 .423 .419 .411 .422 .404 .407
heat .438 .435 .439 .438 .435 .432 .445 .433 .441 .442 .434 .433 .460 .455 .445 .443 .439 .452 .428 .419
spo .438 .433 .437 .443 .431 .430 .439 .444 .439 .445 .435 .433 .441 .455 .444 .453 .441 .440 .424 .419
average .250 .247 .322 .315 .246 .234 .263 .262 .325 .318 .255 .245 .282 .301 .331 .323 .270 .258 .256 .243

Rank with TOUGH performed better than with other aggre-
gation algorithms. Therefore, only these results are shown.

We used 22 data sets (Table 1); 17 semi-synthetic data sets
obtained by converting benchmark multi-class (A) and re-
gression data (B) from the UCI and Statlog repositories into
label ranking data, using the Naı̈ve Bayes (A) and feature-
to-label technique (B) [Cheng et al., 2009], and 6 real-world
data sets from the medical [Hüllermeier et al., 2008] and food
[Kamishima and Akaho, 2006] domains.

SMP-Rank parameter α0 = 0.04 and update step α(t) =
α0αT /(αT + t) were used, where t denotes the training iter-
ation and αT = 5N , with N being the training set size. The
parameter σp was initialized to the value of within-data vari-
ance, and updated by schedule described in Section 3 with
σT = 5N . Validation was done using 10% of the training
data. Number of prototypes K was set to 100.

SMP-Rank was compared to simple 1-NN rule, instance-
based Mallows (IB-Mal) and Plackett-Luce (IB-PL) models,
two log-linear label ranking models (Lin-LL and Lin-PL),
and to the PW approach [Hüllermeier et al., 2008] that uses
RBF kernel SVM classifiers as base models. Preliminary re-
sults showed that using TOUGH aggregation with PW instead
of originally proposed Soft-Borda greatly improves perfor-
mance, therefore TOUGH was used with PW. For IB algo-
rithms, the neighborhood size k ∈ {5, 10, 15, 20} was se-
lected through cross-validation.

Table 1 shows the results obtained using training data with
complete rankings, 30% and 60% of missing labels (partial
orders), and 30% missing preferences. The results are given
in terms of average lossLR (1) after five repetitions of a ten-
fold cross-validation. Partial orders were simulated by re-
moving uniformly at random a certain percentage of labels
from the training data. Missing preferences were simulated
by removing uniformly at random a percentage of pairwise
preferences. Since only SMP-Rank and PW can learn from
partial preferences that do not form an order, only these two

algorithms were compared in this setting. To account for
missing preferences between labels yi and yj , SMP-Rank
simply ignored fields Y(i, j) and Y(j, i) during training.

It can be observed that SMP-Ranktough achieved the best
overall accuracy and consistently outperformed the competi-
tors, particularly on large data sets and when confronted with
the missing label problem. For example, it outperforms the
best considered algorithm (PWtough) 16 out of 22 times for
60% missing labels, while the worst-performing algorithm
(Lin-LL) is outperformed 20 out of 22 times.

The dominance over the IB-based algorithms can be ex-
plained by the fact that the performance of IB algorithms is
highly dependent on the quality of the training data, since no
abstraction is made during the training phase. Clearly, it is ad-
vantageous to use a model that abstracts over more data, thus
alleviating influence of noise. If we try to achieve this by con-
sidering a larger number of neighbors in the IB algorithms,
we start ignoring distances between an instance and its neigh-
bors as a similarity measure. On the other hand, SMP-Rank
generalizes training data to produce a representation in terms
of prototype vectors, effectively utilizing distances to proto-
types as a similarity measure.

6 Conclusion

We introduced SMP-Rank algorithm for prediction of label
rankings with a novel pairwise preference aggregation algo-
rithm for which we prove the worst-case guarantee. The al-
gorithm is capable of operating in an online manner, it is
memory-efficient since it operates on predefined budget, and
it carries out pairwise preference aggregation more accurately
than the previously proposed methods. Empirical investiga-
tion indicates that SMP-Rank produces better results than
the current state-of-the-art, especially when learning from
incomplete label preferences where the performance is im-
proved by the largest margin.

1363

References
[Ailon and Mohri, 2008] Nir Ailon and Mehryar Mohri. An

Efficient Reduction of Ranking to Classification. In COLT,
pages 87–98. Omnipress, 2008.

[Ailon, 2012] Nir Ailon. An Active Learning Algorithm for
Ranking from Pairwise Preferences. Journal of Machine
Learning Research, 13(137–164), 2012.

[Balcan et al., 2007] Maria-Florina Balcan, Nikhil Bansal,
Alina Beygelzimer, Don Coppersmith, John Langford, and
Gregory B. Sorkin. Robust Reductions from Ranking to
Classification. In COLT, volume 4539 of Lecture Notes in
Computer Science, pages 604–619, 2007.

[Boley et al., 1999] Daniel Boley, Maria Gini, Robert Gross,
Eui-Hong (Sam) Han, Kyle Hastings, George Karypis,
Vipin Kumar, Bamshad Mobasher, and Jerome Moore.
Partitioning-based clustering for Web document catego-
rization. Decision Support Systems, 27(3):329–341, 1999.

[Cao et al., 2007] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-
Feng Tsai, and Hang Li. Learning to rank: From pair-
wise approach to listwise approach. Proceedings of the
24th international conference on Machine learning, pages
129–136, 2007.

[Cheng et al., 2009] Weiwei Cheng, Jens Hühn, and Eyke
Hüllermeier. Decision tree and instance-based learning for
label ranking. In Proceedings of the 26th International
Conference on Machine Learning (ICML-09), pages 161–
168, 2009.

[Cheng et al., 2010] Weiwei Cheng, Krzysztof Dem-
bczyński, and Eyke Hüllermeier. Label ranking methods
based on the Plackett-Luce model. In Proceedings of
the 27th International Conference on Machine Learning
(ICML-10), pages 215–222, 2010.

[Cohen et al., 1999] William W. Cohen, Robert E. Schapire,
and Yoram Singer. Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270, 1999.

[de Borda, 1781] Jean Charles de Borda. Memoire sur les
Élections au Scrutin. Histoire de l’Academie Royale des
Sciences, 1781.

[Dekel et al., 2003] Ofer Dekel, Christopher Manning, and
Yoram Singer. Log-Linear Models for Label Ranking. In
Advances in Neural Information Processing Systems, vol-
ume 16. MIT Press, 2003.

[Gärtner and Vembu, 2010] Thomas Gärtner and Shankar
Vembu. Label Ranking Algorithms: A Survey. In
Eyke Hüllermeier Johannes Fürnkranz, editor, Preference
Learning. Springer–Verlag, 2010.

[Grbovic and Vucetic, 2009] Mihajlo Grbovic and Slobodan
Vucetic. Regression learning vector quantization. IEEE
International Conference on Data Mining, pages 788–793,
2009.

[Grbovic et al., 2012] Mihajlo Grbovic, Nemanja Djuric,
and Slobodan Vucetic. Supervised clustering of label rank-

ing data. SIAM International Conference on Data Mining,
2012.

[Har-Peled et al., 2003] Sariel Har-Peled, Dan Roth, and
Dav Zimak. Constraint classification for multiclass clas-
sification and ranking. In Proceedings of the 16th An-
nual Conference on Neural Information Processing Sys-
tems, NIPS-02, pages 785–792. MIT Press, 2003.

[Hart, 1968] P. E. Hart. The condensed nearest neighbor rule.
IEEE Transactions on Information Theory, IT-14:515–
516, 1968.

[Hoare, 1962] Charles Hoare. Quicksort. The Computer
Journal, 5(1):10–16, 1962.

[Hüllermeier et al., 2008] Eyke Hüllermeier, Johannes
Fürnkranz, Weiwei Cheng, and Klaus Brinker. Label
ranking by learning pairwise preferences. Artificial
Intelligence, 172:1897–1916, 2008.

[Kamishima and Akaho, 2006] Toshihiro Kamishima and
Shotaro Akaho. Efficient Clustering for Orders. In
ICDM Workshops, pages 274–278. IEEE Computer Soci-
ety, 2006.

[Kohonen, 1990] Teuvo Kohonen. The self-organizing map.
Proceedings of the IEEE, 78:1464–1480, 1990.

[Lu and Boutilier, 2011] Tyler Lu and Craig Boutilier.
Learning Mallows Models with Pairwise Preferences. In-
ternational Conference on Machine Learning, 2011.

[Mallows, 1967] C. L. Mallows. Non-null ranking models.
Biometrika, 44:114–130, 1967.

[Park and Chu, 2009] Seung-Taek Park and Wei Chu. Pair-
wise preference regression for cold-start recommenda-
tion. Proceedings of the third ACM conference on Rec-
ommender systems, 2009.

[Plackett, 1975] R. L. Plackett. The analysis of permutations.
Applied Statistics, 24(2):193–202, 1975.

[Qin et al., 2010] Tao Qin, Xiubo Geng, and Tie-Yan Liu.
A New Probabilistic Model for Rank Aggregation. In
Advances in Neural Information Processing Systems 23,
pages 1948–1956. MIT Press, 2010.

[Seo and Obermayer, 2003] Sambu Seo and Klaus Ober-
mayer. Soft learning vector quantization. Neural com-
putation, 15(7):1589–1604, 2003.

[Weigend et al., 1995] Andreas S. Weigend, Morgan
Mangeas, and Ashok N. Srivastava. Nonlinear Gated
Experts for Time Series: Discovering Regimes and
Avoiding Overfitting. International Journal of Neural
Systems, 6:373–399, 1995.

[Zhou et al., 2008] Yunhong Zhou, Dennis Wilkinson,
Robert Schreiber, and Rong Pan. Large-scale parallel
collaborative filtering for the netflix prize. Algorithmic
Aspects in Information and Management, pages 337–348,
2008.

1364

