YAHOO!! LABs

Abstract

We propose a multi-prototype-based algorithm for online learning of soft
pairwise preferences over labels. The algorithm learns soft label
preferences via minimization of the proposed soft rank-loss measure, and
can learn from total orders as well as from various types of partial orders.
The soft pairwise preference algorithm outputs are further aggregated to
produce a total label ranking prediction using a novel aggregation
algorithm that outperforms existing aggregation solutions. Experiments on
synthetic and real-world data demonstrate the state-of-the-art
performance of the proposed model.

What is Label Ranking?

In Label Ranking, the input space is defined by a feature vector x and the
output is defined as a ranking 7t of L labels (e.g., w=[3142]).

Given a sample from the underlying distribution D = {(x,,, =), n = 1,...,N},
where x,, is a d-dimensional feature vector and 7, is a vector containing
either a total or a partial order of a finite set Y of L class labels, the goal is

to learn a model f'(x): f(X) T

It is related but different from regression and (multi-class) classification,
learning to rank and collaborative filtering. Multi-label classification is a
special case — label group of preferred over other group (bipartite ranking)

Example 2: customers described by
demographic and geo features x (age,
gender, location) predict ranking 7 of
L products (e.g., sushis) that reflect
the costumer preferences

Example 1: users described by
internet activity features x (website
visits, ad clicks, purchases) predict
ranking 7 of L topics that reflect the
user reading preferences

@ EWe @ E @
B E 0@ e

Related work

1. Map into classification:
- L (L-1)/2 classifiers
- a single (d x L) dimensional problem

2. k-NN based algorithms
Aggregate neighboring ranks using
Plackett-Luce or Mallows

3. Utility functions:
- Learn scoring functions

: R k=1,...,L
- Rank utility scores Jeix =

Mihajlo Grbovic*
Yahoo! Labs

Preference Representation

Preferences as an order 77
(i) the class label at i-th position in the order
7 ~1(7) the position of the y; class label in the order

‘ Label Ranking ()

Preferences as a preference matrix Y

Disadvantages: How to handle partial
rankings, partial preferences that do
not form order, indifferences, weighted
preferences?

Disadvantages:

 Quadratic with L

* Memory and speed
may be an issue

* Mapping fromY toxz is
not straightforward

O O R ER I (. x) - Preferences may not

be transitive

Soft Multi-prototype Label Ranking (SMP-Rank)

Model is completely defined with K prototypes {(m, , Q,), k=1, ..., K}: m,is
a d-dimensional vector in input space, and Q, is the corresponding pairwise
preference matrix.

We propose the following mixture model P(Yx)= i P(k1x)P(Y | k)
for the posterior probability P(Y| x). —

Probability of prototype k generating instance X px (x) - KeXP(‘Hx"’”kH /20))

Multi-prototype Label Ranking with Novel
Pairwise-to-Total-Rank Aggregation

Kendall tau distance
Counts the number of discordant label pairs,

d, (7. p)=[{0n): 7, G > 7,) e) > 2 ()

Given data set D = {(x,,), n=1...N}, we minimize the
label ranking loss,

is modeled based on standard Gaussian mixture. Yexp(-[x—m,| /20?)
u=1

Probability of generating a preference matrix
Y by prototype k, we assume Gaussian error
model as follows,

P(Y | k)= N(Y -Q,0°)

Learning by minimizing the negative log-likelihood

I & & 2
N-L(L—l)nz_;lnkZ_;P(Hxn)N(Yn -Q,.07})

Prediction is made as a linear combination of prototype . K
matrices based on instance distances to prototypesin Y, = EP (k1x,)Q;
feature space. k=1

[(A) = -

Learns from various types of incomplete preferences, and has preferable time
complexity O(NKL), however large L leads to large Q (of size L x L).

Solution: Low-rank prototype preference matrix approximation
Q. =U, 2V,

U,, V, are L x m matrices,
2 ismxm, m<<lL

Work with large Q, while storing smaller U,
V, 2, to memory, reduces noise. Use
gradient descent to optimize for matrices.

Nemanja Djuric*, Slobodan Vucetic
Department of Computer and Information Sciences, Temple University

Loss Function Learning

Goal: Train a model for
f:x,— m, intwo steps

T.Learn h:x,—>Y,

Multi-prototype model for

1&2-d.(x,.7,) Pairwise Preferences

loss, , =
anl L(L_l) 1 N‘Y—?z
Ground truth Y Predicted ? min lOSSLR - E -
& N4« L-(L-1)
v 1 2 3 4 5
Mo o2 [o17 oss 51
.Learn g:Y, —
los |0 [o71 |oes o6 o
Ol 0.83 020 [0 [078 [002 Preference matrix
+ | N N O aggregation into full rank
5 0.63 0.33 0.98 - I.
maximize
Y, 7)>Y(J, i), AGREE(m,Y)= Y Y(.))
y; preferred over y; @ ()

TOUGH aggregation algorithm

For an instance x, the SMP-Rank output is represented by a pairwise
preference matrix Y. The aggregation algorithm computes the total order
given these, often conflicting, pairwise preferences. Since pairwise
preferences are not transitive in general, inferring total order of labels is not
a trivial task. We propose a novel pairwise-to-total-order aggregation
algorithm called TOUGH, which maximizes the agreement between the soft
preference matrix Y and total order 7t defined as follows,

AGREE(m.Y)= Y Y(i.j)

i,jn (D> ()

TOUGH can be viewed as: f (

o e o Jo Joor

oo [0 [or [ow [ow
o o [0 o o

o Joo o [|
EEE N O O

The pseudo-code of the TOUGH algorithm is given below,
Algorithm 1 Total-Order-Under-Greedy-Heuristic (TOUGH)

Inputs: label instance set 2 = {1, 2, ..., L}, preference matrix Y
Output: approximately optimal ordering 7

— 7

1. Initialize 7 to empty list

2. while ({2 is not empty)

3. Find highest value in Y and take the preferred label temp

4. Try every place in 7 for temp, and put in the place
maximizing (9) of 7

5. Set to 0 entries in Y between temp and other members of 7

6. Delete temp from ()

We provide theoretical result that agreement of total order computed by
TOUGH algorithm is always within factor of 2 to the agreement of optimal
order. Moreover, if in Step 3 we pick random value, theoretical guarantees
remain the same with significant speed gains (called TOUGHTr algorithm).

TOUGH - Rank-aggregation results

—=—TOUGH O(L> logL)
10" TOUGHr O(L%)

"% SCC + Greedy O(Lz) I
¢ Randomized 1

" QuickSort O(L logL) ||
Borda O(L?)
Soft Borda O(Lz)

"# —®—NearOpt O(¢ °L logL®)

We compared 8 different aggregation algorithms: SCC+Greedy, Borda
count, Soft Borda, QuickSort, NearOpt, TOUGH, TOUGHr and
Randomized. Randomized algorithm is a heuristic that chooses the better
between some random order and its inverse (L, 10L and 100L random
orders were compared for each matrix).
We randomly generated 10,000 Y matrices of sizes ranging from 3 to 30,
where element Y(/, j) is sampled from [0, 1] and Y(;, j)) =1 - Y(i, j). For
smaller Y we calculated fraction of optimal solution, and for larger
matrices we calculated fraction of total weight,
max{Y (/) - Y(j,0),0}
ijo” (> ())
2, max{¥(i. /)= Y(j.i).0}

l,]

Label Ranking experimental results

We used 22 data sets; 16 semi-synthetic data sets obtained by converting
benchmark multi-class and regression data from the UCI and Statlog
repositories into label ranking data using Naive Bayes and feature-to-label
technique, and 6 real-world data sets from medical and food domains.

Algorithms compared: Learning from incomplete

1) SMP-Rank with TOUGH preferences:

2) 1-NN rule 1) 30% and 60% missing labels
3) Instance-based Mallows (I1B-Mal) 2) 30% missing preferences

4) Plackett-Luce (IB-PL)

5) Log-linear models (Lin-LL, Lin-PL)

6) PW (pairwise learning), RBF kernel SVM as base models

Results:

SMP-Rank using TOUGH achieved the best overall accuracy and consistently
outperformed the competitors. For example, it outperforms the best considered
algorithm (PW TOUGH) 16 out of 22 times for 60% missing labels, while the
worst-performing algorithm (Lin-LL) is outperformed 20 out of 22 times.

Table 1: Label ranking performance comparison in terms of label rank loss lossy g (m. p. - missing preferences)

complete ranking 30% missing labels 60% missing labels 30% m. p.

Data Set IB IB Lin Lin PW SMP | IB IB Lin Lin PW SMP| IB IB Lin Lin PW SMP| PW SMP
PL Mal LL PL TGH TGH | PL Mal LL PL TGH TGH | PL Mal LL PL TGH TGH | TGH TGH
fried 202 196 .344 347 .180 144 216 219 345 348 .189 171 257 312 349 350 .192 180 188 175
calhous. 337 336 449 435 348 .346 345 348 450 .436 .350 347 376 415 453 437 .366 349 349 .345
elevators 234 226 .306 .305 .186 .186 238 244 309 .306 .221 193 263 322 311 .307 .257 204 219 .1%4
pendigits 143 139 364 351 .134 152 152 159 366 354 .143 .166 169 230 368 .355 .153 172 Jd42 165
cpu 344 336 378 361 .337 336 351 350 379 369 .348 337 371 408 .380 .370 .373 342 345 337
segment 089 .089 .241 .227 .094 070 A11 117 242 228 .099 084 124 154 242 226 .121 .093 099 .097
stock 106 108 .283 .268 .163 091 134 133 284 269 .163 113 JA53 169 285 272 .164 142 A71 0 122
vehicle 082 .079 .126 .115 .067 064 093 .095 .129 .118 .077 071 13 131 128 125 .091 082 076 071
authorsh. 063 .062 .182 .175 .082 061 068 .072 .189 .178 .086 065 085 .108 .200 .190 .092 085 109 .0S8
vowel A58 148 313 317 .140 Jd12 217 178 316 318 .167 51 234 240 329 .327 225 191 179 .168
housing 329 334 398 385 .334 305 355 357 404 386 .345 328 384 385 408 .391 .366 350 343 335
bodyfat 442 438 422 404 417 409 463 448 430 .406 .419 436 466 460 431 429 .426 440 423 418
glass 098 .094 .107 .106 .080 076 107 111 111 .108 .085 085 15 140 124 118 .101 .098 107 - .100
wisconsin 435 419 403 401 418 408 434 427 409 403 438 431 445 443 422 412 441 444 433 .400
wine 040 .036 .067 .059 .038 034 041 .042 .071 .064 .046 040 061 .077 .101 .079 .050 041 046 .042
iris 040 .037 .189 .171 .089 029 059 .066 .199 .172 .100 037 103 118 208 .174 .105 .080 A11 048
sushi 348 349 459 462 .335 332 363 352 461 465 .344 335 381 374 463 468 .366 342 339 333
cold 386 387 .409 .399 .370 384 398 398 410 404 .373 .380 424 423 411 405 .406 405 372 .369
diau 336 332 350 .349 .328 337 338 340 .353 .350 .331 338 339 365 .360 .352 .335 353 322 .320
dtt 418 417 421 411 .399 409 428 430 422 417 404 421 447 442 423 419 411 422 404 407
heat 438 435 439 438 435 432 445 433 441 442 434 433 460 455 445 443 439 452 428 419
spo 438 433 437 443 431 430 439 444 439 445 435 433 441 455 444 453 441 440 424 419

average | 250 247 322 315 246 234 | 263 262 325 318 255 245 | 282 301 .331 .323 .270 258 | 256 .243

