
POSTER TEMPLATE BY:

www.PosterPresentations.com

For an instance x, the SMP-Rank output is represented by a pairwise
preference matrix Y. The aggregation algorithm computes the total order
given these, often conflicting, pairwise preferences. Since pairwise
preferences are not transitive in general, inferring total order of labels is not
a trivial task. We propose a novel pairwise-to-total-order aggregation
algorithm called TOUGH, which maximizes the agreement between the soft
preference matrix Y and total order π defined as follows,

TOUGH can be viewed as:

The pseudo-code of the TOUGH algorithm is given below,

We provide theoretical result that agreement of total order computed by
TOUGH algorithm is always within factor of 2 to the agreement of optimal
order. Moreover, if in Step 3 we pick random value, theoretical guarantees
remain the same with significant speed gains (called TOUGHr algorithm).

Multi-prototype Label Ranking with Novel
Pairwise-to-Total-Rank Aggregation

Mihajlo Grbovic* Nemanja Djuric*, Slobodan Vucetic
Yahoo! Labs Department of Computer and Information Sciences, Temple University

What is Label Ranking?

Soft Multi-prototype Label Ranking (SMP-Rank)

We propose a multi-prototype-based algorithm for online learning of soft
pairwise preferences over labels. The algorithm learns soft label
preferences via minimization of the proposed soft rank-loss measure, and
can learn from total orders as well as from various types of partial orders.
The soft pairwise preference algorithm outputs are further aggregated to
produce a total label ranking prediction using a novel aggregation
algorithm that outperforms existing aggregation solutions. Experiments on
synthetic and real-world data demonstrate the state-of-the-art
performance of the proposed model.

Abstract

Model is completely defined with K prototypes {(mk , Qk), k = 1, …, K}; mk is
a d-dimensional vector in input space, and Qk is the corresponding pairwise
preference matrix.

We propose the following mixture model
for the posterior probability P(Y| x).

Probability of prototype k generating instance x
is modeled based on standard Gaussian mixture.

Probability of generating a preference matrix
Y by prototype k, we assume Gaussian error
model as follows,

Preference Representation TOUGH – Rank-aggregation results

In Label Ranking, the input space is defined by a feature vector x and the
output is defined as a ranking π of L labels (e.g., π = [3 1 4 2]).
Given a sample from the underlying distribution D = {(xn, πn), n = 1,…,N},
where xn is a d-dimensional feature vector and πn is a vector containing
either a total or a partial order of a finite set Y of L class labels, the goal is
to learn a model f (x):

It is related but different from regression and (multi-class) classification,
learning to rank and collaborative filtering. Multi-label classification is a
special case – label group of preferred over other group (bipartite ranking)

Label Ranking experimental results

f(x) → π

Related work

π(i) the class label at i-th position in the order
π -1(j) the position of the yj class label in the order

Loss Function

TOUGH aggregation algorithm

Preferences as an order π

1. Map into classification:
- L (L - 1) / 2 classifiers
- a single (d x L) dimensional problem

2. k-NN based algorithms
Aggregate neighboring ranks using
Plackett-Luce or Mallows

3. Utility functions:
- Learn scoring functions
- Rank utility scores

fk : x → R, k = 1,…, L

x

π

x π

Example 1: users described by
internet activity features x (website
visits, ad clicks, purchases) predict
ranking π of L topics that reflect the
user reading preferences

Example 2: customers described by
demographic and geo features x (age,
gender, location) predict ranking π of
L products (e.g., sushis) that reflect
the costumer preferences

Preferences as a preference matrix Y
Disadvantages:
• Quadratic with L
• Memory and speed

may be an issue
• Mapping from Y to π is

not straightforward
• Preferences may not

be transitive

0.5 0NaN 00

1 00 0NaN

1 11 01

0 00 00.5

1 01 01

1

2

3
4

5

1 2 3 4 5
yj

yi

(L x L)

Label Ranking (π)

1 4 2 5 3

Disadvantages: How to handle partial
rankings, partial preferences that do
not form order, indifferences, weighted
preferences?

Given data set D = {(xn, πn), n = 1…N}, we minimize the
label ranking loss,

)}()(|)}()(:),{(),(1111
injnjninji yyyyyyd ---- >>= rrpprpt

Kendall tau distance
Counts the number of discordant label pairs,

å
= -×

×
=

N

n

nn
LR LL

d
N

loss
1)1(

)ˆ,(21 ppt

Ŷ

1

2

3
4

5

1 2 3 4 5
yj

yi

Y

0.5 00 00

1 00 01

1 11 01

0 00 00.5

1 01 01

1

2

3
4

5

1 2 3 4 5
yj

yi

Ground truth Predicted

å
= -×

-
=

N

n

Fnn

LR LLN
loss

1

2

)1(

ˆ1 YY

0.55 0.370.2 0.170

0.66 0.660 0.710.8

0.78 0.020.29 00.83

0 00.33 0.220.45

1 00.33 0.980.63

Y(i, j) >Y(j, i),
yi preferred over yj

Learning
Goal: Train a model for

in two steps f : xn → πn

Preference matrix
aggregation into full rank

Multi-prototype model for
Pairwise Preferences

1. Learn h : xn → Yn

min lossLR =
1
N

Yn − Ŷn F

2

L ⋅ (L −1)n=1

N

∑

2. Learn g : Yn→ πn

maximize

AGREE (π, Y) = Y(i, j)
i, j:π −1(i)>π −1(j)
∑

Ŷn = P(k | xn)
k=1

K

∑ Qk

Prediction is made as a linear combination of prototype
matrices based on instance distances to prototypes in
feature space.

),()|(ln
)1(

1)(2

1 1
ykn

N

n

K

k
n NxkP

LLN
l sl QY -

-×
-= å å

= =

Solution: Low-rank prototype preference matrix approximation

Learns from various types of incomplete preferences, and has preferable time
complexity O(NKL), however large L leads to large Q (of size L x L).

Work with large Qk while storing smaller Uk
Vk Σk to memory, reduces noise. Use
gradient descent to optimize for matrices.

Uk, Vk are L x m matrices,
Σk is m x m, m << L

0.55 0.370.2 0.170

0.66 0.660 0.710.8

0.78 0.020.29 00.83

0 00.33 0.220.45

1 00.33 0.980.63

5 10 15 20 25 30
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of elements

F
r
a
c
t
i
o
n

o
f

t
o
t
a
l

w
e
i
g
h
t

TOUGH O(L2 logL)
TOUGHr O(L2)
SCC + Greedy O(L2)
Randomized 1
Randomized 10
Randomized 100
QuickSort O(L logL)
Borda O(L2)
Soft Borda O(L2)
NearOpt O(ε−6L logL6)

3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

Number of elements

F
r
a
c
t
i
o
n

o
f

o
p
t
i
m
a
l

s
o
l
u
t
i
o
n

TOUGH
TOUGHr
SCC + Greedy
Randomized 1
Randomized 10
Randomized 100
QuickSort
Borda
Soft Borda
NearOpt ε=0.3

P(Y | x) = P(k | x)P(Y | k)
k=1

K

∑

P(k | x) =
exp(− x −mk

2
/ 2σ p

2)

exp(− x −mu
2
/ 2σ p

2)
u=1

K

∑

P(Y | k) = N (Y −Q,σ y
2)

Learning by minimizing the negative log-likelihood

Qkn = UkΣkVk

Table 1: Label ranking performance comparison in terms of label rank loss lossLR (m. p. - missing preferences)

complete ranking 30% missing labels 60% missing labels 30% m. p.

Data Set IB
PL

IB
Mal

Lin
LL

Lin
PL

PW
TGH

SMP
TGH

IB
PL

IB
Mal

Lin
LL

Lin
PL

PW
TGH

SMP
TGH

IB
PL

IB
Mal

Lin
LL

Lin
PL

PW
TGH

SMP
TGH

PW
TGH

SMP
TGH

fried .202 .196 .344 .347 .180 .144 .216 .219 .345 .348 .189 .171 .257 .312 .349 .350 .192 .180 .188 .175

calhous. .337 .336 .449 .435 .348 .346 .345 .348 .450 .436 .350 .347 .376 .415 .453 .437 .366 .349 .349 .345

elevators .234 .226 .306 .305 .186 .186 .238 .244 .309 .306 .221 .193 .263 .322 .311 .307 .257 .204 .219 .194

pendigits .143 .139 .364 .351 .134 .152 .152 .159 .366 .354 .143 .166 .169 .230 .368 .355 .153 .172 .142 .165
cpu .344 .336 .378 .361 .337 .336 .351 .350 .379 .369 .348 .337 .371 .408 .380 .370 .373 .342 .345 .337

segment .089 .089 .241 .227 .094 .070 .111 .117 .242 .228 .099 .084 .124 .154 .242 .226 .121 .093 .099 .097

stock .106 .108 .283 .268 .163 .091 .134 .133 .284 .269 .163 .113 .153 .169 .285 .272 .164 .142 .171 .122

vehicle .082 .079 .126 .115 .067 .064 .093 .095 .129 .118 .077 .071 .113 .131 .128 .125 .091 .082 .076 .071

authorsh. .063 .062 .182 .175 .082 .061 .068 .072 .189 .178 .086 .065 .085 .108 .200 .190 .092 .085 .109 .058

vowel .158 .148 .313 .317 .140 .112 .217 .178 .316 .318 .167 .151 .234 .240 .329 .327 .225 .191 .179 .168

housing .329 .334 .398 .385 .334 .305 .355 .357 .404 .386 .345 .328 .384 .385 .408 .391 .366 .350 .343 .335

bodyfat .442 .438 .422 .404 .417 .409 .463 .448 .430 .406 .419 .436 .466 .460 .431 .429 .426 .440 .423 .418

glass .098 .094 .107 .106 .080 .076 .107 .111 .111 .108 .085 .085 .115 .140 .124 .118 .101 .098 .107 .100

wisconsin .435 .419 .403 .401 .418 .408 .434 .427 .409 .403 .438 .431 .445 .443 .422 .412 .441 .444 .433 .400

wine .040 .036 .067 .059 .038 .034 .041 .042 .071 .064 .046 .040 .061 .077 .101 .079 .050 .041 .046 .042

iris .040 .037 .189 .171 .089 .029 .059 .066 .199 .172 .100 .037 .103 .118 .208 .174 .105 .080 .111 .048

sushi .348 .349 .459 .462 .335 .332 .363 .352 .461 .465 .344 .335 .381 .374 .463 .468 .366 .342 .339 .333

cold .386 .387 .409 .399 .370 .384 .398 .398 .410 .404 .373 .380 .424 .423 .411 .405 .406 .405 .372 .369

diau .336 .332 .350 .349 .328 .337 .338 .340 .353 .350 .331 .338 .339 .365 .360 .352 .335 .353 .322 .320

dtt .418 .417 .421 .411 .399 .409 .428 .430 .422 .417 .404 .421 .447 .442 .423 .419 .411 .422 .404 .407
heat .438 .435 .439 .438 .435 .432 .445 .433 .441 .442 .434 .433 .460 .455 .445 .443 .439 .452 .428 .419

spo .438 .433 .437 .443 .431 .430 .439 .444 .439 .445 .435 .433 .441 .455 .444 .453 .441 .440 .424 .419

average .250 .247 .322 .315 .246 .234 .263 .262 .325 .318 .255 .245 .282 .301 .331 .323 .270 .258 .256 .243

Rank with TOUGH performed better than with other aggre-
gation algorithms. Therefore, only these results are shown.

We used 22 data sets (Table 1); 17 semi-synthetic data sets
obtained by converting benchmark multi-class (A) and re-
gression data (B) from the UCI and Statlog repositories into
label ranking data, using the Naı̈ve Bayes (A) and feature-
to-label technique (B) [Cheng et al., 2009], and 6 real-world
data sets from the medical [Hüllermeier et al., 2008] and food
[Kamishima and Akaho, 2006] domains.

SMP-Rank parameter ↵0 = 0.04 and update step ↵(t) =
↵0↵T /(↵T + t) were used, where t denotes the training iter-
ation and ↵T = 5N , with N being the training set size. The
parameter �p was initialized to the value of within-data vari-
ance, and updated by schedule described in Section 3 with
�T = 5N . Validation was done using 10% of the training
data. Number of prototypes K was set to 100.

SMP-Rank was compared to simple 1-NN rule, instance-
based Mallows (IB-Mal) and Plackett-Luce (IB-PL) models,
two log-linear label ranking models (Lin-LL and Lin-PL),
and to the PW approach [Hüllermeier et al., 2008] that uses
RBF kernel SVM classifiers as base models. Preliminary re-
sults showed that using TOUGH aggregation with PW instead
of originally proposed Soft-Borda greatly improves perfor-
mance, therefore TOUGH was used with PW. For IB algo-
rithms, the neighborhood size k 2 {5, 10, 15, 20} was se-
lected through cross-validation.

Table 1 shows the results obtained using training data with
complete rankings, 30% and 60% of missing labels (partial
orders), and 30% missing preferences. The results are given
in terms of average lossLR (1) after five repetitions of a ten-
fold cross-validation. Partial orders were simulated by re-
moving uniformly at random a certain percentage of labels
from the training data. Missing preferences were simulated
by removing uniformly at random a percentage of pairwise
preferences. Since only SMP-Rank and PW can learn from
partial preferences that do not form an order, only these two

algorithms were compared in this setting. To account for
missing preferences between labels yi and yj , SMP-Rank
simply ignored fields Y(i, j) and Y(j, i) during training.

It can be observed that SMP-Ranktough achieved the best
overall accuracy and consistently outperformed the competi-
tors, particularly on large data sets and when confronted with
the missing label problem. For example, it outperforms the
best considered algorithm (PWtough) 16 out of 22 times for
60% missing labels, while the worst-performing algorithm
(Lin-LL) is outperformed 20 out of 22 times.

The dominance over the IB-based algorithms can be ex-
plained by the fact that the performance of IB algorithms is
highly dependent on the quality of the training data, since no
abstraction is made during the training phase. Clearly, it is ad-
vantageous to use a model that abstracts over more data, thus
alleviating influence of noise. If we try to achieve this by con-
sidering a larger number of neighbors in the IB algorithms,
we start ignoring distances between an instance and its neigh-
bors as a similarity measure. On the other hand, SMP-Rank
generalizes training data to produce a representation in terms
of prototype vectors, effectively utilizing distances to proto-
types as a similarity measure.

6 Conclusion

We introduced SMP-Rank algorithm for prediction of label
rankings with a novel pairwise preference aggregation algo-
rithm for which we prove the worst-case guarantee. The al-
gorithm is capable of operating in an online manner, it is
memory-efficient since it operates on predefined budget, and
it carries out pairwise preference aggregation more accurately
than the previously proposed methods. Empirical investiga-
tion indicates that SMP-Rank produces better results than
the current state-of-the-art, especially when learning from
incomplete label preferences where the performance is im-
proved by the largest margin.

to the mean of squared Frobenius norm kYn � Ŷnk
2
F of the

current model.

3.1 Low-rank preference matrix approximation

Since the preference matrix Qk is of size L ⇥ L, memory
required to store preference matrix even for a single proto-
type can be prohibitively large when number of labels L is
very high. In such cases we can resort to low-rank matrix
approximation of preference matrix using singular value de-
composition (SVD), by representing a matrix as

Qk = Uk ·⌃k ·VT
k , (8)

where Uk and Vk are L⇥m matrices, while ⌃k is a diagonal
m ⇥ m matrix for some m  L. Low-rank matrix approxi-
mation allows us to work with large matrices Qk by actually
storing Uk, ⌃k, and Vk to memory, and can also help filter
out noise from Qk. Substituting equation (8) to (6), and tak-
ing derivatives with respect to matrices Uk, ⌃k, and Vk we
can easily obtain update rules for Uk, ⌃k, and Vk to replace
the Qk updates in (7).

4 Pairwise Preference Aggregation algorithm

For an instance x, the SMP-Rank output is represented by
pairwise preference matrix Y. The aggregation algorithm
computes the total order given these, often conflicting, pair-
wise preferences. Since pairwise preferences are not transi-
tive in general, inferring total order of labels is not a trivial
task. If a measure of goodness of the total order is defined as

AGREE(⇡,Y) =
X

i,j:⇡�1(i)>⇡�1(j)

Y(i, j), (9)

where ⇡
�1(i) > ⇡

�1(j) if and only if label yi is pre-
ferred over label yj in total order ⇡, the task to find ⇡⇤ that
maximizes (9) is NP-complete [Cohen et al., 1999]. Sev-
eral heuristic methods have been proposed to obtain the ap-
proximate solution to this problem. One of the first were
Borda count [de Borda, 1781], which sorts the labels by the
counts of victories over the opponents, and Soft Borda, which
sorts by the sums of preference degrees over the opponents.
Several other sorting-by-degree methods exist [Cohen et al.,
1999; Balcan et al., 2007], as well as the approach from
[Ailon and Mohri, 2008] which we refer to as QuickSort, as
it is based on the popular sorting algorithm [Hoare, 1962]. A
recent paper [Ailon, 2012] presents a near-optimal algorithm
NearOpt with complexity O(✏�6

L logL6) for a regret of ✏

times the optimal loss.
We propose a novel aggregation algorithm, called

TOUGH, with the same worst-case theoretical guarantees as
[Cohen et al., 1999]. However, it is both simpler and more ac-
curate than current state-of-the-art, as we show in Section 5.1.
The algorithm starts with empty ordered list ⇡̂. At every iter-
ation, it expands the current ordered list by greedily adding a
new label to the position in ⇡̂ that maximizes (9). When the
list includes all labels the algorithm terminates. Algorithm 1
shows the TOUGH pseudocode.

Let us represent the preference matrix Y as a directed
graph, where each label is represented by a node, and there is
a directed edge between every i-th and j-th node with weight
Y(i, j). Then, the following lemma holds for Algorithm 1.

Algorithm 1 Total-Order-Under-Greedy-Heuristic (TOUGH)
Inputs: label instance set ⌦ = {1, 2, ..., L}, preference matrix Y
Output: approximately optimal ordering ⇡̂

1. Initialize ⇡̂ to empty list
2. while (⌦ is not empty)
3. Find highest value in Y and take the preferred label temp
4. Try every place in ⇡̂ for temp, and put in the place

maximizing (9) of ⇡̂
5. Set to 0 entries in Y between temp and other members of ⇡̂
6. Delete temp from ⌦

Lemma 1. Let ⇡̂t�1 be the total order after the first t � 1
iterations of TOUGH, and ⇡̂t be the total order after the t-
th iteration (i.e., after addition of temp, see Algorithm 1).
Furthermore, let at and dt be the sums of all outgoing and
incoming edges at the t-th iteration, respectively, from temp

to the nodes in ⇡̂t�1. Then, �t, defined as the contribution
of temp at the t-th iteration to the measure of goodness (9) is
bounded below as

�t = AGREE(⇡̂t,Y)�AGREE(⇡̂t�1,Y) �
1

2
·(at+dt).

Proof. Consider putting temp at the first place of the current
total order list, and then at the last place, which completely
reverses the chosen edges. �t for one of these two positions
must be larger than or equal to one half of the sum of all the
weights from temp to nodes in current total order, since sum
of �t of these two positions is exactly equal to the sum of all
the weights from temp to nodes in a current total order.

The lemma states that, when searching for the position for
temp (Algorithm 1, step 4), there is always a position such
that the sum of the temp’s weights that will be included in
the new measure of goodness is larger than or equal to one
half of the sum of all weights of edges that connect temp to
nodes in the current total order. Using Lemma 1, it can be
shown that the approximate solution ⇡̂ is within a factor of 2
to the optimal solution ⇡⇤.
Theorem 1. Let OPT (Y) be the weighted agreement (9)
achieved by an optimal total order ⇡⇤ for the preference ma-
trix Y, and let APPROX(Y) be the weighted agreement
achieved by output of TOUGH algorithm ⇡̂. Then,

APPROX(Y) �
1

2
OPT (Y). (10)

Proof. It is clear that APPROX(Y) =
PL

t=1 �t, where
�t is defined as in Lemma 1, and L is the number of labels
(nodes). Then, using the result of Lemma 1, it follows that
APPROX(Y) =

PL
t=1 �t �

1
2

PL
t=1(at + dt). Further,

following [Cohen et al., 1999], we have

OPT (Y) 
LX

t=1

(at + dt) =
2

2

LX

t=1

(at + dt)

 2 ·APPROX(Y).

(11)

The first inequality holds because OPT (Y) can at best in-
clude every edge in the graph, and since every edge is re-
moved exactly once (weight of edge set to 0), each edge must
contribute to some at or some dt.

We used 22 data sets; 16 semi-synthetic data sets obtained by converting
benchmark multi-class and regression data from the UCI and Statlog
repositories into label ranking data using Naive Bayes and feature-to-label
technique, and 6 real-world data sets from medical and food domains.
Algorithms compared:
1) SMP-Rank with TOUGH
2) 1-NN rule
3) Instance-based Mallows (IB-Mal)
4) Plackett-Luce (IB-PL)
5) Log-linear models (Lin-LL, Lin-PL)
6) PW (pairwise learning), RBF kernel SVM as base models
Results:
SMP-Rank using TOUGH achieved the best overall accuracy and consistently
outperformed the competitors. For example, it outperforms the best considered
algorithm (PW TOUGH) 16 out of 22 times for 60% missing labels, while the
worst-performing algorithm (Lin-LL) is outperformed 20 out of 22 times.

Learning from incomplete
preferences:
1) 30% and 60% missing labels
2) 30% missing preferences

f () = π

We compared 8 different aggregation algorithms: SCC+Greedy, Borda
count, Soft Borda, QuickSort, NearOpt, TOUGH, TOUGHr and
Randomized. Randomized algorithm is a heuristic that chooses the better
between some random order and its inverse (L, 10L and 100L random
orders were compared for each matrix).
We randomly generated 10,000 Y matrices of sizes ranging from 3 to 30,
where element Y(i, j) is sampled from [0, 1] and Y(i, j) = 1 - Y(i, j). For
smaller Y we calculated fraction of optimal solution, and for larger
matrices we calculated fraction of total weight,

AGREE(π,Y) = Y(i, j)
i, j:π −1(i)>π −1(j)
∑

max{Y(i, j)−Y(j, i), 0}
i, j:π −1(i)>π −1(j)
∑

max{Y(i, j)−Y(j, i), 0}
i, j
∑

.

