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Abstract This paper studies supervised clustering in the context of label ranking data. The
goal is to partition the feature space into K clusters, such that they are compact in both
the feature and label ranking space. This type of clustering has many potential applica-
tions. For example, in target marketing we might want to come up with K different offers
or marketing strategies for our target audience. Thus, we aim at clustering the customers’
feature space into K clusters by leveraging the revealed or stated, potentially incomplete
customer preferences over products, such that the preferences of customers within one clus-
ter are more similar to each other than to those of customers in other clusters. We establish
several baseline algorithms and propose two principled algorithms for supervised cluster-
ing. In the first baseline, the clusters are created in an unsupervised manner, followed by
assigning a representative label ranking to each cluster. In the second baseline, the label
ranking space is clustered first, followed by partitioning the feature space based on the cen-
tral rankings. In the third baseline, clustering is applied on a new feature space consisting
of both features and label rankings, followed by mapping back to the original feature and
ranking space. The RankTree principled approach is based on a Ranking Tree algorithm pre-
viously proposed for label ranking prediction. Our modification starts with K random label
rankings and iteratively splits the feature space to minimize the ranking loss, followed by
re-calculation of the K rankings based on cluster assignments. The MM-PL approach is a
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multi-prototype supervised clustering algorithm based on the Plackett-Luce (PL) probabilis-
tic ranking model. It represents each cluster with a union of Voronoi cells that are defined
by a set of prototypes, and assign each cluster with a set of PL label scores that determine
the cluster central ranking. Cluster membership and ranking prediction for a new instance
are determined by cluster membership of its nearest prototype. The unknown cluster PL pa-
rameters and prototype positions are learned by minimizing the ranking loss, based on two
variants of the expectation-maximization algorithm. Evaluation of the proposed algorithms
was conducted on synthetic and real-life label ranking data by considering several measures
of cluster goodness: (1) cluster compactness in feature space, (2) cluster compactness in
label ranking space and (3) label ranking prediction loss. Experimental results demonstrate
that the proposed MM-PL and RankTree models are superior to the baseline models. Fur-
ther, MM-PL is has shown to be much better than other algorithms at handling situations
with significant fraction of missing label preferences.

Keywords Label ranking · Supervised clustering · Preference learning

1 Introduction

Label Ranking is emerging as an important and practically relevant field. Unlike the stan-
dard problems of classification and regression, learning of label ranking is a complex learn-
ing task, which involves prediction of strict label order relations, rather than single values.
Specifically, in the label ranking scenario, each instance, which is described by a set of
features x, is assigned a ranking of labels π , that is a total (e.g., π = (5,3,1,4,2)) or par-
tial (e.g., π = (5,3,2)) order over a finite set of class labels Y (e.g., Y = {1,2,3,4,5}).
The label ranking problem consists of learning a model that maps instances x to a total
label order f : x → π . It is assumed that a sample from the underlying distribution D =
{(xn,πn), n = 1, . . . ,N} , where xn is a d-dimensional feature vector and πn is a vector con-
taining a total or partial order of a finite set Y of L class labels, is available for training. This
problem has recently received a lot of attention in the machine learning community and has
been extensively studied (Dekel et al. 2003; Cheng et al. 2009, 2010; Har-Peled et al. 2003;
Qin et al. 2010). A survey of recent label ranking algorithms can be found in Gärtner and
Vembu (2010).

There are many practical applications in which the objective is to learn a label preference
of an instance. For example, in the case of document categorization, where it is very likely
that a document belongs to multiple topics (e.g., sports, entertainment, baseball, etc.), multi-
label classification has traditionally been used. However, one might not be interested only
in distinguishing between relevant and irrelevant topics for a specific document, but also
in learning how to find a total order of the topics by relevance. Label ranking models can
be trained to perform such task, given document training data that contains topic orderings
or topic scores. Note that the existence of such training data is what distinguishes a label
ranking problem from a multi-label classification one, as in both cases the output may be in
a form of a total order of labels. Other examples of label ranking applications include train-
ing models to predict food preferences (Kamishima and Akaho 2009). Given historical data
about customers’ food rankings, customer demographics and other characteristics, a label
ranking model that takes customer features (e.g., age, gender, etc.) as an input and predicts
food rankings as an output can be trained. Similarly, label ranking can be used for ranking
of tags in images by relevance (Zhuang and Hoi 2011), given training data in form of image
features and top-k tag ranks for each image. Additional applications include: meta-learning
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(Vilalta and Drissi 2002), where, given a new data set, the task is to induce a total rank of
available algorithms according to their suitability based on the data set properties; ranking
of movie suggestions for new members of a movie website based on user features; deter-
mining an order of questions in a survey for a specific user based on respondent’s attributes.
See Domshlak et al. (2011) for an overview of label ranking applications in economics,
operations research, and databases.

In this paper we investigate supervised clustering of label ranking data, which is an open
and non-trivial problem that has not been addressed in the machine learning literature. The
goal is to cluster the data based on both instance features x and the assigned, potentially
incomplete, label rankings π , such that the label ranks of instances within a cluster are
compact, meaning that they are more similar to each other than they are to the label ranks of
instances in other clusters. Simultaneously, we aim at producing clusters that are compact
in the feature space, such that simple rules can be used to assign new examples to clusters
based on feature information only.

The problem can be formally stated as follows. Using data D = (xi , πi), i = 1, . . . ,N

the goal is to find K clusters, by learning cluster representation in the feature space μk and
cluster central rankings ρk . The k-th cluster is defined as Sk = (μk, ρk), where depending
on the actual clustering algorithm used, μk represents a cluster centroid, a set of Voronoi
cells, or any other feature abstraction, e.g., Decision Tree. Previously unobserved instance
can be assigned to a cluster based on its feature vector xu, e.g., by calculating the Euclidean
distance de(xu,μk). The output πu can therefore take only one of K possible rankings, i.e.,
cluster central rankings. This clearly differentiates supervised clustering of label ranking
from supervised label ranking, where the output is not limited to a set of K rankings. Instead,
the cardinality of the output space is L!.

To evaluate the clustering solution, we use both internal and external clustering mea-
sures. The external measures employ ground truth about rankings of cluster members, while
the internal measures just consider the cluster features. To measure the within-cluster com-
pactness of label rankings we propose to use a measure based on the average Kendall tau
distance. To measure the compactness in the feature space we use several standard internal
cluster goodness measures.

One can envision many potential applications of supervised clustering for label ranking
data. For example, in customer segmentation and targeted marketing applications, a com-
pany with several products would like to cluster its customers based on their product pref-
erences for purposes of designing cluster-specific promotional material. It is assumed that
the company has access to customer product preferences, which are either stated in a survey
or extracted from purchase history, based on which it can cluster data in feature space. For
each cluster, the company can make a different catalog, by promoting a selected subset of
products and designing a catalog in a way that best reflects the taste of its target customers.
Another application would be how to order the questions in K versions of the same survey
to be mailed to specific target groups, given historical data about people that filled out the
survey on-line, in such manner that they were allowed to choose the order of questions they
answer, i.e., which questions to answer first and which to leave for last or not to answer.

Traditionally, clustering techniques are unsupervised. The term supervised clustering re-
lates to using additional information other than instance features when performing cluster-
ing, such as class memberships (classification), target values (regression), or, in our case,
label rankings. It can be found in some related literature (Eick et al. 2006, 2011; Finley
and Joachims 2005), where instance class labels where used to ensure maximum cluster
class purity. However, it would be very hard to apply these algorithms to the problem of
label ranking directly, since treating label ranking as classification could result in having L!
different classes.
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Fig. 1 Clustering of label ranking data toy example

It should be noted that unsupervised clustering of label rankings themselves has been
studied before in slightly different setting (Kamishima and Akaho 2009; Meilă and Bao
2010). There it was assumed that each instance is described with a ranking πn, and that fea-
tures do not exist. As opposed to that work, we study the problem of clustering of instances
in the feature space that takes into account information about label rankings. For example,
if we wished to produce K marketing catalogs based on customer preferences, we could
cluster the label rankings into K cluster central rankings. However, we would not have a
way of assigning catalogs to new customers for whom we only have feature information,
nor would we be able to examine the feature representation of clusters.

To illustrate the problem of supervised clustering of label ranking data, let us consider a
toy example in Fig. 1. We show a synthetic label ranking data set with 2 features (x and y

axis) and 5 labels that are ranked in a specific order for each instance. To visualize the as-
signed label rankings we use the following color scheme. We sort all the rankings based on
the Kendall distance from reference rank (1,2,3,4,5). Then colors of ranks (1,2,3,4,5)

and (5,4,3,2,1) will be in two different ends of the color spectrum. More specifically, we
set the color of the closest rank to white, color of the furthest to black, and the remaining
colors are obtained by linearly interpolating between these two extremes. If the goal was
to make K = 3 clusters, Fig. 1a and Fig. 1b show examples of potential partitions that un-
supervised clustering methods would produce. Even though both configurations are equally
good from the unsupervised clustering perspective, we would prefer the one in Fig. 1a, as its
clusters are more compact in the label ranking space. For example, if instances correspond
to customers and clusters correspond to catalogs, the partitions in Fig. 1a would make cus-
tomers more inclined towards buying the products when the catalogs arrive at their doorstep.
Therefore, the supervised clustering methods should aim at utilizing instance label rankings
to produce partitions such as the ones in Fig. 1a.

Since supervised clustering of label ranking data, to the best of our knowledge, has not
been studied before, we propose several heuristic baseline algorithms and principled models
specifically tailored for this type of clustering.

The first proposed baseline approach uses a simple assumption that the clusters in feature
space should correspond to clusters in the label space. For example, it assumes that all
women ages 20 to 25 have similar product preferences. Therefore, in this approach, we
first find K clusters in the feature space, e.g., by using the well-known K-means algorithm,
followed by assigning label rankings to the obtained clusters using a generalized Mallows
model (Mallows 1957) or Placket-Luce model (Plackett 1975).
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In the second baseline approach we first find clusters in the label ranking space using
algorithms such as those from Kamishima and Akaho (2009) and Meilă and Bao (2010),
without taking the features into account. Once the cluster central rankings have been found,
we establish cluster representation in the feature space. This step is needed so we could
assign new examples to clusters based on their features. For example, we could keep all
cluster instances in memory and use 1-nearest neighbor rule, or we could train a decision
tree that assigns instances to one of the K clusters.

In the third baseline approach, we create a new feature space by adding label rankings to
the original features and use standard unsupervised clustering. This is followed by process-
ing of the obtained clusters to map clusters back to the original feature and label ranking
space.

The first principled model, the Plackett-Luce Mixture Model (MM-PL) is based on a
multi-prototype cluster representation, where the underlying cluster preferences are modeled
using cluster-specific Plackett-Luce score parameters. In this model, the k-th cluster, Sk =
(μk, ρk), is represented in the feature space as a union of Voronoi cells and in the label
ranking space using a Plackett-Luce score vector. The model is fast, with linear training
and prediction time, constant memory scaling with number of prototypes and is capable of
efficiently working with incomplete rankings.

The second principled model, the RankTree model (RT) for clustering is an extension
of previously proposed Decision Tree algorithm for label ranking (Cheng et al. 2009). It
performs supervised clustering by iteratively growing a tree to assign instances to clusters
based on the current cluster central rankings, and recalculating cluster central rankings based
on new assignments.

The paper is organized as follows. Section 2 describes the problem setup and the met-
rics against which different label ranking clustering methods can be compared. Section 3
presents heuristic baselines for this problem. Section 4 describes RankTree algorithm for
supervised clustering of label ranking data. The proposed Mixture Model label ranking ap-
proach based on the PL model is covered in Sect. 5. Finally, in Sect. 7, we report results of
the comprehensive experiments on both synthetic and real-world data sets, including suc-
cess rates of uncovering simulated cluster central rankings in synthetic data, influence of
number of clusters on accuracy and cluster compactness and influence of partial rankings on
different algorithms.

2 Preliminaries

2.1 Problem setup

In the label ranking scenario, a single instance, described by a d-dimensional vector x, is
associated with a total order of assigned class labels. Specifically, we define a total order
by using a transitive and asymmetric relation �x on a finite set of labels Y , where yi �x yj

indicates that label yi precedes label yj given x. The total order can be represented with a
permutation π of the set {1, . . . ,L}, where L is the number of available class labels. We
define π such that π(i) is the index of the class label at i-th position in the order and π−1(j)

is the position of yj in the order. The permutation can also describe incomplete rankings in
form yπ(1) �x yπ(2) �x, . . . ,�x yπ(l), where l < L and {π(1), . . . , π(l)} ⊂ {1, . . . ,L}.

Let us assume that N independent historical observations are collected in form of a data
set D = {(xn,πn), n = 1, . . . ,N}, that we wish to cluster in the feature space using assigned
label ranks. The objective is to segment D into K clusters Sk , k = 1, . . . ,K , such that each
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cluster spans a certain portion of feature space determined by some abstraction μk and is
associated with a certain central ranking ρk, k = 1, . . . ,K , both to be determined from D.
Preferably, we would like all label rankings πn of xn ∈ Sk to be similar and all at a short
distance from ρk . A new unlabeled instance xu is assigned to m-th cluster by utilizing cluster
feature space abstractions μk, k = 1, . . . ,K and as such is assigned ranking π̂k = ρm.

To measure the degree of correspondence between two label ranks π1 and π2 it is com-
mon to use the Kendall tau distance that counts the number of discordant label pairs

dτ = ∣
∣
{

(yi, yj ) : π−1
1 (yi) > π−1

1 (yj ) ∧ π−1
2 (yj ) > π−1

2 (yi)
}∣
∣. (1)

Kendall tau distance is often normalized such that it lies in the interval [0,1], where 1 indi-
cates maximum disagreement. This is done by dividing (1) by L · (L − 1)/2.

2.2 Evaluation metrics

The validation of clustering results has always been the most difficult and frustrating part of
any cluster analysis (Jain and Dubes 1988). This holds for evaluation no matter whether or
not a ground truth (e.g., class labels) is available against which to compare the clustering re-
sult. The evaluation measures can strictly be categorized into external and internal measures
(Brun et al. 2007; Kremer et al. 2011), depending on whether or not they use ground truth
in evaluation.

Evaluation of potential label ranking data clustering solutions as such is not a trivial
task as well. Firstly, we would prefer the clusters to be pure in the label ranking space,
thus ensuring that the central cluster rankings are good representatives of cluster members.
Secondly, we would prefer the clusters to be compact in the feature space so that we can
use simple and intuitive rules to divide our population. Finally, and in some applications
most importantly, we would like to measure the quality of potential clustering solutions on
previously unseen examples, i.e., how close is the true label rank to the one predicted on
basis of cluster membership. Intuitively, this would be analogous to measuring customer
happiness when they receive our custom-made catalog, i.e., how similar are their actual
preferences to the ones that we predicted based on treating them as a part of a group.

2.2.1 External measure

We propose the following external measure for comparing different clustering solutions,

Δrank = 1

K

K
∑

k=1

∑

n∈Sk
dτ (πn, ρk)

| Sk | , (2)

where ρk is the k-th cluster central label ranking. If Δrank is low it means that the clusters
are pure in terms of label rankings, i.e., that the Kendall tau distances within each cluster are
low.

2.2.2 Internal measures

One of the most common internal measures used is the within-cluster sum of squares
(WCSS) (Han and Kamber 2001),

df eat = 1

K

K
∑

k=1

∑

n∈Sk

‖xn − μk‖2, (3)
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where μk is the mean of points in Sk . Note that K-means algorithm directly minimizes this
measure. The main disadvantage of this measure is that it assumes globular clusters that
have well defined centers. In contrast, in many real life applications we can encounter to
non-globular clusters, such as chainlike and banana clusters, that would have high WCSS.

Due to limitations of WCSS, other measures have been proposed that measure how well
the data point is matched to its cluster or the immediate neighboring points in its cluster, such
as the Silhouette coefficient (Kaufmann and Rousseeuw 1990) or recently proposed average
k-neighborhood distance measure dknh (Kremer et al. 2011). The dknh is obtained by simply
calculating the average distance of each example xn from cluster Sm to its k neighbors in Sm,

dknh(n,Sm) = 1

k

∑

i∈knh(n,Sm)

‖xn − xi‖2, (4)

followed by calculating the average distance for a cluster Sm as dknh(Sm) =
1

|Sm|
∑

n∈Sm
dknh(n,Sm), and averaging over all K clusters

dknh = 1

K

K
∑

k=1

∑

n∈Sk
dknh(n,Sm)

|Sk| . (5)

One of the main conclusions in Kremer et al. (2011) was that the choice of k only has
marginal influence on dknh effectiveness. Following this conclusion, we used k = 3 in our
evaluation.

2.2.3 Prediction measure

In applications such as target marketing, it is important to measure the quality of prediction
on new examples for which we do not have customer preferences. Assuming, new examples
xn are assigned to one of the K cluster based on their features, we can measure the cluster
prediction performance using the label ranking loss, defined as

lossLR = 1

N

N
∑

n=1

2 · dτ (πn, π̂n)

L · (L − 1)
, (6)

where πn and π̂n = ρm are true and predicted rankings for n-th example, respectively. The
predicted ranking is the central ranking of the assigned cluster, where the assignment has
been done using cluster abstractions μk , e.g., based on distances from cluster means μk .
Note that lossLR can be used to calculate the Kendall’s tau coefficient

cτ = 1 − 2 · lossLR. (7)

Directly minimizing the Kendall tau loss (6) is hard, since it is not a smooth function.
For this reason in the proposed clustering algorithms we assumed, and the experiments con-
firmed it, that likelihood maximization is an appropriate proxy criterion. Similar directions
were taken in several other label ranking algorithms (Cheng et al. 2009, 2010).

2.2.4 Discussion

To give insight into the performance measures, let us illustrate and analyze them on two
different types of toy data. We will show that in some cases clustering solution with the
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Fig. 2 Clustering of label ranking data toy example 1

Fig. 3 Clustering of label ranking data toy example 1—simulation

lower Δrank leads to better predictive performance (lossLR), while in other cases clustering
solution with lower df eat performs better in terms of lossLR .

The first data type we investigated is shown in Fig. 2a. In Fig. 2b we show a potential
clustering solution which clustered the data based on features only, without taking label
rankings into account. This clustering solution has low df eat and high Δrank . The new ob-
servations can be assigned to clusters based on distances from cluster means μk .

On the other hand, in Fig. 2c we show a potential clustering solution which clustered
the data based on label rankings only, without taking features into account. The new obser-
vations can then be assigned to clusters based on 1-nearest neighbor rule.1 This clustering
solution has high df eat and low Δrank , since we do not cluster in the feature space.

To further analyze different clustering solutions, we generated data of the described type
(Fig. 3a) and performed actual feature clustering (using K-means) and label ranking clus-
tering (using K-o’means (Kamishima and Akaho 2009)). We evaluated results in terms of
df eat and Δrank on original data and lossLR on test data, generated in a same way as the
original data. By observing results in Fig. 3b and Fig. 3c and considering the ground truth
we can conclude that in this particular case clustering solution with lower Δrank resulted in
lower lossLR .

Further, let us consider a different type of data, as depicted in Fig. 4. Once again, clus-
tering in feature space would result in low df eat and high Δrank , while clustering in label
ranking space would lead to high df eat and low Δrank . Interestingly, this time the outcome
of testing on simulated data is different (Fig. 5), as the clustering solution with lower df eat

leads to better performance in terms of lossLR .

1In this case the cluster feature space representation μk consists of all of its points, instead of the cluster
mean. Using cluster means would lead to poor performance.
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Fig. 4 Clustering of label ranking data toy example 2

Fig. 5 Clustering of label ranking data toy example 2—simulation

We can conclude that low df eat and/or low Δrank on their own are not necessarily the
best indicators of the predictive performance in terms of lossLR . However, they can give us
valuable insights into the quality of clustering in both feature and output spaces, which is
of great interest to, e.g., retailers in customer segmentation applications. As such we report
all measures in our experiments. We have found that an algorithm with reasonable trade-off
between Δrank and df eat does best in practice.

3 Heuristic baselines for Label Ranking Clustering

We propose several baseline strategies for solving the Label Ranking Clustering problem.
Some of the baselines models and the models described in the following sections use the
probabilistic models for permutations such as the Mallows model (Mallows 1957) and the
Plackett-Luce model (Plackett 1975; Luce 1959) to calculate the cluster central rankings
given the rankings of the cluster instances. Therefore, in this section we first describe these
ranking models, followed by description of the clustering baseline methods.

3.1 Ranking models

The Mallows model is a distance-based probabilistic model for permutations. The prob-
ability of any permutation ρ of L labels is given in terms of a permutation distance d as
follows

P(ρ | θ,π) = exp (−θ d(π,ρ))

Z(θ,ρ)
, (8)
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where ρ ∈ T is candidate permutation, π is central ranking, θ ∈ R is dispersion parameter,
Z(θ,π) = ∑

ρ∈T exp (−θ d(ρ,π)) is a normalization constant, and d is, in our case, the
Kendall’s tau distance dτ . The maximum probability is assigned to the central ranking π .

Given N independent label rankings {πn}, n = 1, . . . ,N , the Mallows model can find a
central ranking using the maximum likelihood principle. Let us discuss how it can be used
to derive cluster centroids {ρk}, k = 1, . . . ,K for K clusters, in general. Given |Sk| label
rankings {πn},xn ∈ Sk for cluster k and assuming independence, the probability that we
observe π k = {πn},xn ∈ Sk is

P(π k | θk, ρk) =
∏

n∈Sk

P(πn | θk, ρk). (9)

The maximum likelihood estimate (MLE) of k-th cluster central ranking ρk is the one that
minimizes

lossLR(k) = 1

|Sk|
∑

n∈Sk

2 · dτ (πn,ρk)

L · (L − 1)
, (10)

where the solution can be found by exhaustive search. The MLE of θk is found from the
mean observed distance from ρk , 1

|Sk |
∑

n∈Sk
dτ (πn, ρk) by line search.

The disadvantages of the Mallows model are that it has high computational complexity of
O(L!), and that it cannot directly model incomplete label ranks. However, there are several
papers (Cheng et al. 2009; Dwork et al. 2001; Lu and Boutilier 2011) that address these
issues by introducing fast approximations which scale linearly with L, work well in practice,
and can deal with partial rankings (Cheng et al. 2009) and pairwise preferences (Lu and
Boutilier 2011).

To mitigate the first issue we make use of the approximate solution (Cheng et al. 2009)
that uses a simple Borda count algorithm (de Borda 1781). Having |Sk| label rankings
{πn},xn ∈ Sk , the central rank is found by voting. Each πn votes in the following man-
ner. The label which is ranked first in πn gets L votes, the second-ranked receives L − 1
votes, etc. Finally, all the votes from πn,xn ∈ Sk are summed up and the label with the most
votes is ranked first in ρk , the label with the second most votes is ranked second in ρk , etc.
The approximation is valid as it has been shown that Kendall’s tau is well approximated
by Spearman’s rank correlation (Coppersmith et al. 2006), whose median can be computed
using Borda.

To solve the second issue Borda count is modified (Cheng et al. 2009) such that partial
rankings πn of Ln < L labels vote in the following manner. The label ranked j -th (j ≤ Ln)
receives (Ln −j +1) · (L+1)/(Ln +1) votes, while all the missing labels receive (L+1)/2
votes. Once ρk is obtained, for each incomplete ranking πn in cluster Sk , the most probable
extension to full rank π∗

n is found such that lossLR(ρk,π
∗
n ) is minimized. Finally, original

Borda count is used to find ρk from {π∗
n },xn ∈ Sk . This procedure iterates until ρk converges.

The Plackett-Luce model is an extension of the Bradley-Terry model (Bradley and Terry
1952) for comparisons involving three or more alternatives. It is defined by the score vector
v = (v(1),v(2), . . . ,v(L)) ∈ R

L+. The probability of any ranking of L labels is expressed in
terms of v as

P(π | v) =
L

∏

i=1

v(π(i))
∑L

j=i v(π(j))
. (11)

If the score vector v is known, the ranking with the highest posterior probability π∗ =
arg maxπ (P(π |v)) can be found by simply sorting the labels in the descending order of the
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corresponding scores. Let us consider a simple case with 3 labels {a, b, c}. The probability
of a specific ranking of labels (e.g., π = (c, a, b)) can be expressed as

P
(

π = (c, a, b)|v) = v(c)

v(c) + v(a) + v(b)
· v(a)

v(a) + v(b)
· v(b)

v(b)
, (12)

where the first multiplier presents the probability P(c is ranked 1st), the second presents
the probability P(a is ranked 2nd | c is ranked 1st) and the third presents the probability
P(b is ranked 3rd | c is ranked 1st ∧ a is ranked 2nd). For example, assuming the label
scores v(a) = 3, v(b) = 1 and v(c) = 5, and plugging the scores back to (12) we get P(π =
(c, a, b)|v) = 0.417.

One of the properties of the PL distribution is that it is internally consistent. As shown
in Guiver and Snelson (2009), given two sets of labels A and B, B ⊂ A, the probability
of a particular ordering of labels in B, marginalized over all possible unknown positions of
the labels in A \ B, is exactly the same as the Plackett-Luce probability of ordering labels
from B independently from A. Thus, the probability of a particular ordering of labels does
not depend on the subset from which the labels are assumed to be drawn (Hunter 2004).
This gives the Plackett-Luce model the ability to model partial rankings of only some of the
labels, or rankings of the top few labels. The probability of partial ranking with only some
of the labels, yπ(1) �x yπ(2) �x, . . . ,�x yπ(Lt ), is given by an expression of exactly the same
form as (11), except that the number of elements is Lt instead of L, where Lt ≤ L,

P(π | v) =
Lt∏

i=1

v(π(i))
∑Lt

j=i v(π(j))
. (13)

The disadvantage of the PL model is that it cannot learn from arbitrary pair-wise prefer-
ences that cannot form a permutation (e.g., 1 � 5,2 � 1,3 � 4). One solution worth inves-
tigating could be to split the instance with such preferences into several instances that form
a permutation, i.e., one with ranking 2 � 1 � 5 and another with 3 � 4, where instances
generated in such way would share the same features.2 By modifying data in this way, the
PL model could be directly applied.

Given N independent label ranking observations {πn}, n = 1, . . . ,N , the Plackett-Luce
model can find a central ranking using the maximum likelihood principle (Cheng et al.
2010). Let us discuss how it can be used to derive cluster centroids {ρk}, k = 1, . . . ,K .
Given |Sk| label rankings {πn} associated with |Sk| feature vectors xn ∈ Sk , and assuming
independence between observations, the probability that we observe π k = {πn},xn ∈ Sk can
be written as

P(π k | vk) =
∏

n∈Sk

Ln∏

i=1

vk(π(i))
∑Ln

j=i vk(π(j))
. (14)

The k-th cluster PL vector vk , and thus the central ranking ρk , can be found by maximum
likelihood principle, where the optimal vk is the one which maximizes the log-likelihood
function

l(vk) =
∑

n∈Sk

Ln∑

i=1

(

log vk

(

π(i)
) − log

Ln∑

j=i

vk

(

π(j)
)

)

. (15)

2We thank one of the reviewers for pointing out this idea.
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3.2 Baselines

We propose three types of baseline approaches for label ranking clustering. In addition we
will measure how accurately the data can be represented using a single cluster. We will refer
to this method as 1-Rank.

1-Rank serves to show how appropriate it would be to consider all examples as a single
cluster, K = 1. Intuitively, this would correspond to designing a single catalog for all cus-
tomers. In this approach we use the Mallows model to derive a single central ranking ρK

using entire data. Note that it is straightforward to use PL model for this purpose as well.

3.2.1 Feature clustering → central rank

K-means → central rank algorithm first performs K-means clustering based on the in-
stance features only, without taking their label rankings into account. This forms cluster
representation in feature space in terms of cluster centroids μk . It then derives central rank-
ings ρk for each cluster from label rankings that belong to this cluster using the Mallows
model (KmMal) or the Plackett-Luce model (KmP l). This approach is expected to work
well when clusters in the feature space correspond to clusters in the label space.

3.2.2 Rank clustering → feature rule

Rank clustering → FR first clusters the label rankings using the unsupervised label ranking
approach to obtain K clusters in label ranking space, by assigning each instance xn to one
central rankings ρk, k = 1, . . . ,K . After this, it remains to form a feature rule (FR), i.e., an
abstraction of the formed clusters in the feature space μk that will be used and to assign new
instances to clusters based on features only. For example, μk could be formed by storing all
the points for that cluster and using a 1-nearest neighbor rule for assignments, or μ could be
a decision tree that splits the feature space based on the obtained central rankings.

We consider three rank clustering methods for the first stage of the described algorithm:
(1) Naïve first sorts all available permutations of L labels by the number of times they

appear in the data set. The top K label ranks determine cluster central rankings and define
the K classes. The remaining label ranks are assigned the class of the closest central rank-
ing, with respect to the normalized Kendall tau distance. If incomplete label rankings are
present, we first determine their extensions by finding the most probable positions of the
missing labels using a modified Borda count algorithm on the instance’s neighborhood of
size Kmal = 20. This approach is expected to work well when the clusters are evenly dis-
tributed in the label space and top K ranks really correspond to cluster central rankings.
However, if the clusters are unbalanced, it is not likely that this simple procedure will dis-
cover the underlying label space centroids.

(2) EBMS is a permutation clustering technique from Meilă and Bao (2010). Based on
ranking distribution in the data set and their similarities, training permutations are divided
into K clusters, where each cluster is represented with a central ranking. Note that the EBMS
algorithm is able to cluster incomplete rankings.

(3) K-o’means (Kamishima and Akaho 2009). Data set is randomly split into K clusters,
then for each cluster the central ranking is found using Borda count on the label ranks.
Data points are then reassigned to clusters such that Kendall’s tau distance between data
point’s label ranking and cluster’s central ranking is minimized. The procedure repeats until
there are no more reassignments or maximum number of iterations is reached. Incomplete
rankings are tackled using modified Borda count.
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For the second stage of the described algorithm, we use a Decision Tree algorithm. After
the K central rankings are found, we grow a decision tree with these rankings at leafs.
Beginning with the entire data set T , we choose the split into T + and T − by trying out each
of the K candidate ranks for ρT + and ρT − , and decide on the split that minimizes overall
loss (18). This gave rise to three methods, namely NaïveRT , ebmsRT and K-o’mRT .

We also experimented with multi-class kernel SVM with K classes instead of the De-
cision Trees in the second stage. This approach performed well in some cases but poorly
in others, due to over-fitting based on the assigned classes. Moreover, the resulting clusters
were not compact in the feature space due to use of kernel. Mostly because of the second
issue we abandoned the SVM approach in this stage.

3.2.3 Naïve K-means

In this baseline approach, label rankings π are treated as one of the features. This is done
by adding L additional attributes to the feature vector x, that results in the new vector of
length d + L. Value of (d + j )-th attribute is set to j th label position in the ranking π , or
L/2 if the particular label is not available in π . After this preprocessing stage, the newly
formed data is clustered using benchmark K-means algorithm. Central rankings ρk for each
cluster are derived from obtained cluster centroids by sorting the last L attributes in the
ascending order. These rankings are used to predict the label ranking of the new instance
when its cluster membership is determined by finding the nearest cluster centroid in the
original feature space.

4 RankTree label ranking clustering algorithm

Decision Trees (Breiman et al. 1984) are one of the most popular classification and regres-
sion algorithms, extensively studied and used due to their good performance, intuitive nature
and desirable training times.

Several recent papers (Cheng et al. 2009; Yu et al. 2010) proposed to use Decision Trees
with binary splits for solving Label Ranking problems. For example, in Cheng et al. (2009),
the authors propose to recursively grow a decision tree by finding optimal splits that make
the subsets as pure as possible in terms of label rankings at each stage. The resulting leaf
nodes are associated with label rankings which can potentially be incomplete (if not all
labels are present in the partitioned subset of data).

Formally, given current iterate data subsample T , it is split into two subsets T + and
T − by fitting a Mallows model to each subset and measuring the variance of ranks in each
subset. The results are the subset central rankings ρ+ and ρ− and the spread parameters θ+
and θ− that estimate the variance. The optimal split is the one that maximizes

|T |−1
(∣
∣T +∣

∣θT + + ∣
∣T −∣

∣θT −
)

. (16)

Comparing our method to the RankTree algorithm from Cheng et al. (2009) was not directly
possible, as the algorithm is not limited to K possible outputs. We therefore proposed two
ways of modifying the algorithm such that it can perform the supervised clustering task.
The first modification includes pruning the constructed tree until it has distinct K ranking
in leafs. The second modification we propose as a new algorithm includes iteratively setting
K possible rankings in advance and growing the tree until loss measure stops improving.

The first modification can be achieved by growing the tree until the stopping criteria is
met, followed by pruning until the pruning criteria is met. The stopping criteria is satisfied
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when all the instances in T have the same label ranks or the node becomes very small (e.g.,
it contains less than 5 instances). The pruning criteria is met either when there are no more
than K different label rankings in the tree leafs, or the number of leafs is K . We refer to this
RankTree algorithm for supervised clustering as RTprune .

The tree is grown using the same procedure as in Cheng et al. (2009), followed by pruning
the tree using same data used for growing. This is done by greedy removal of splits which
contribute to accuracy the least. We keep track of the rank losses at each node T and remove
the leafs of parent node with minimum value of

∑

n∈T

dτ (πn, ρT ) −
(

∑

n∈T +
dτ (πn,ρT +) +

∑

n∈T −
dτ (πn,ρT +)

)

. (17)

Note that it is possible for ρT + and ρT − to be partial ranks. In this case, these rankings
are expended to full ranks based on the predecessor label rank as proposed by Cheng et al.
(2009). The disadvantage of this strategy is that the final tree will have small number of
splits (in the worst case K − 1), which may not be enough to adequately cluster the feature
space.

For this reason we propose the second type of RankTree algorithm, which can use ar-
bitrary number of splits. It uses an idea of iterative encoder and decoder design in General
Source Coding (Lam and Reibman 1993; Megalooikonomou and Yesha 2000). The algo-
rithm starts by randomly selecting K ranks and growing a tree limited to assigning one of
the K ranks to the leafs. Data set T is iteratively split into two data subsets T + and T − by
trying each of the K rankings for the subset central rankings ρ+ and ρ− and selecting the
split which minimizes

∑

n∈T +
dτ (πn,ρT +) +

∑

n∈T −
dτ (πn,ρT −). (18)

Once the tree is grown, the K ranks are recalculated by finding a central ranking of examples
assigned to each of the K clusters using the modified Borda count (Cheng et al. 2009). The
procedure then continues to growing a new tree, etc. The iterative procedure is terminated
when the training set lossLR converges, e.g., stops decreasing by more than 10−4. Optional
pruning step can be performed after every iteration if a validation data set is available, which
is separate from training data. Starting at the leafs, a split at node a is removed if the result
of (17) on pruning data is negative. The pseudo code is given in Algorithm 1. We will refer
to this algorithm as RTiter .

Algorithm 1 RTiter algorithm for Supervised Clustering of Label Ranking Data
Input: train data D = (xn,πn), n = 1, . . . ,N , valid. (optional) De = (x′

n,π ′
n), n = 1, . . . ,Ne , K

Output: K clusters Sk = (μ, ρk), k = 1, . . . ,K , where μ is the Decision Tree
1. Initialize ρk, k = 1, . . . ,K to random total orders of L labels
2. while (lossLR decreases by more than 10−4 )
3. Grow decision tree μ recursively starting from T = D

3.1. For every possible split across each feature dimension of T

3.2. Try each ρk, k = 1, . . . ,K for ρT + and ρT −
3.3. Split in the place minimizing

∑

n∈T + dτ (πn,ρT + ) + ∑

n∈T − dτ (πn,ρT − )

3.4. Stop when ρT + = ρT − or |T | ≤ 5
5. Prune RankTree μ using De (optional)
6. Recalculate ρk, k = 1, . . . ,K , by finding central rankings of {πn,n ∈ Sk} (Mallows)
7. Calculate lossLR
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5 The Plackett-Luce Mixture Model

In this section, we describe the details involving the proposed Plackett-Luce Mixture Model
for supervised clustering of label ranking data.

5.1 Model specification

The Plackett-Luce Mixture Model (MM-PL) has the following setup. The feature space
is divided into K clusters, where each cluster Sk = (μk, ρk), k = 1, . . . ,K , is represented
as a union of Voronoi cells μk defined by a set of prototypes μk = {mp,p = 1, . . . ,P },
where mp is a d-dimensional vector in input space. In the label ranking space each cluster is
represented by a cluster central ranking ρk , defined as a Plackett-Luce label score vector vk .
The model is based on the assumption that the feature space can be well decomposed using
a Voronoi diagram.

The resulting model is completely defined by K · P prototypes and K Plackett-Luce
score vectors, {({mp}k,vk), k = 1, . . . ,K,p = 1, . . . ,P }. The optimal prototype positions
and label score vectors, with respect to a desired loss function, are learned in a supervised
manner using a set of N independent observations D = {(xn,πn), n = 1, . . . ,N}.

The starting point in the algorithm design is to introduce the probability P(p | xn) of
assigning observation xn to the p-th prototype that is dependent on their (Euclidean) distance
in the feature space. Let us assume that the probability density P(xn) is described by a
mixture model

P(xn) =
P ·K
∑

p=1

P(xn | p) · P(p), (19)

where P · K is the total number of prototypes, P(p) is the prior probability that a data point
is generated by a particular prototype, and P(xn | p) is the conditional probability that p-th
prototype generates data point xn.

Let us represent the conditional density function P(xn |p) with the normalized ex-
ponential form P(xn |p) = θ(p) · exp(f (xn,mp)) and consider a Gaussian mixture with
θ(p) = (2πσ 2

p)−1/2 and f (xn,mp) = −‖xn − mp‖2/2σ 2
p . We assume that all prototypes

have the same standard deviation (width) σp and the same prior, P(p) = 1/(P · K). Given
this, using the Bayes’ rule, we can write the assignment probability as

wnp ≡ P(p | xn) = exp (−‖xn − mp‖2/2σ 2
p)

∑P ·K
v=1 exp (−‖xn − mv‖2/2σ 2

p)
. (20)

Finally, to develop the cost function for label ranking clustering framework we consider
a probabilistic assignment P(k | xn) defined as the probability of assigning data point xn to
the k-th cluster,

gnk ≡ P(k | xn) =
∑

p∈Sk
exp (−‖xn − mp‖2/2σ 2

p)
∑P ·K

v=1 exp (−‖xn − mv‖2/2σ 2
p)

. (21)

For the compactness of notation, we defined wnp ≡ P(p | xn) and gnk ≡ P(k | xn). We pro-
pose the following mixture model for the posterior probability P(π | xn).

Assuming that the clusters are mutually exclusive, i.e., that the probability of two differ-
ent clusters generating an instance ranking π given the input xn is zero, we can write the



206 Mach Learn (2013) 93:191–225

overall probability as

P(π | xn) =
K

∑

k=1

P(k | xn) · P(π | k,xn), (22)

where P(π | k,xn) is the probability of ranking π if xn is generated by k-th cluster. In our
approach, we assume the ranking π corresponds to the PL model, and express P(π | k,xn)

as P(π | vk,xn) defined in (11).

enk ≡ P(π | k,xn) = P(π | vk,xn) =
Ln∏

i=1

vk(πn(i))
∑Ln

j=i vk(πn(j))
. (23)

Based on the model in (11), example xn is assigned to the clusters probabilistically and
its label ranking probability is a weighted average of ranking probabilities assigned to the
clusters. Similar competition between the experts in the regression setting is modeled in
Weigend et al. (1995). Note that the mixture model assumes the conditional independence
between xn and π given k, P(π | k,xn) = P(π | k).

5.2 Model learning

Given the training data set D and assuming the mixture model (22), we can find the op-
timal model parameters λ = {{mp}k,vk, k = 1, . . . ,K,σp} as the ones that maximize the
likelihood,

P(π | λ) =
N

∏

n=1

K
∑

k=1

P(k | xn) ·
Ln∏

i=1

vk(πn(i))
∑Ln

j=i vk(πn(j))
=

N
∏

n=1

K
∑

k=1

gnkenk, (24)

where Ln is the number of labels in, potentially incomplete, label ranking πn for n-th train-
ing instance. The maximum likelihood estimation of λ can be found by minimizing the
negative log-likelihood function.

l(λ) =
N

∑

n=1

log
K

∑

k=1

P(k | x) ·
Ln∏

i=1

vk(πn(i))
∑Ln

j=i vk(πn(j))
. (25)

In principle, it should be possible to find a local minimum of non-convex function with
standard gradient descent. However, for mixtures such as the one we defined, it is hard
to learn at the same time both individual mixture parameters and splits of the input space
using gradient descent (Weigend et al. 1995). Moreover, the sum inside the logarithm in (25)
makes the task even more challenging.

For this reason we resort to a more natural alternative to minimization of l(λ), the
Expectation-Maximization (EM) algorithm (Dempster et al. 1977). To reformulate the prob-
lem such that the Expectation-Maximization approach can be applied, we need to adopt the
assumption that some variables are “hidden”. Similarly to the approach in Weigend et al.
(1995), we treat the cluster membership as a hidden variable. These hidden indicator vari-
ables Ink are defined as

Ink =
{

1, if xn is generated by k-th cluster,

0, otherwise.
(26)
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Note that this assumption of one cluster being responsible for each instance, is identical to
the assumption that allowed us to write (22). We can now rewrite (25) as

l(λ) = − ln
N

∏

n=1

K
∏

k=1

[

P(k | x) ·
Ln∏

i=1

vk(πn(i))
∑Ln

j=i vk(πn(j))

]Ink

. (27)

Further, by taking the logarithm, we end up with a simple double-sum, yielding a more
tractable log-likelihood function,

l(λ) = −
N

∑

n=1

K
∑

k=1

Ink ln

[

P(k | x) ·
Ln∏

i=1

vk(πn(i))
∑Ln

j=i vk(πn(j))

]

. (28)

The objective function (28) can now be optimized by iterating between E- and M-steps
of the EM algorithm. In the E-step, the expected values for Ink , denoted as hnk , are estimated
assuming that the model parameters λ are known,

E-step:

hnk = E[Ink | xn,πn, λ] = P(k | xn,πn) = P(k,πn | xn)

P(πn | xn)

= gnk · P(πn | xn, k)

P(πn | xn)
= gnk · P(πn | xn, k)

∑K

v=1 gnv · P(πn | xn, v)
= gnkenk

∑K

v=1 gnvenv

. (29)

In the M-step, the parameters of the model are updated assuming the Ink values are known,
and replacing each Ink in (28) by its expected value hnk . Note that there exists a strict re-
quirement that vk ∈ R

L+, k = 1, . . . ,K and thus we have to guarantee that all elements of
v are positive. In this setting, learning becomes a constrained optimization problem. Since
gradient ascent cannot be directly applied to a constrained optimization problem, we pro-
pose two alternatives for transforming the original constrained optimization problem to a
new optimization problem, which is unconstrained, and thus simpler to solve.

In the first approach we minimize the negative log-likelihood l(λ) with respect to zk =
log(vk) instead of vk . This converts the problem into the unconstrained optimization with
respect to zk , which can now be solved using gradient ascent approach, since there are no
strict requirements for zk . Once the learning phase is finished, vk is obtained as vk = exp(zk).
Similar technique was used in Qin et al. (2008). The summary of the resulting M-step (v.1)
in the stochastic mode is given as follows,

M-step (v.1):

mnew
p = mold

p − γ · wnp

(1 − hnk)

gnk

(xn − mp)

σ 2
p

, mp ∈ Sk

log
(

vk

(

πn(c)
)new) = log

(

vk

(

πn(c)
)old) − γ · vk

(

πn(c)
)

hnk

·
(

1

vk(πn(c))
−

c
∑

i=1

1
∑Ln

j=i vk(πn(j))

)

,

(30)

where γ is the learning rate, and c ∈ {1, . . . ,Ln}.
The second alternative is to resort to a closed form solution for vk score vectors, derived

using tools from the statistical literature. Minorization-Maximization (MM) algorithm pro-
posed in Hunter (2004) has been shown to be particularly suitable for calculating maximum
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likelihood estimates of the Plackett-Luce model. Incorporating the MM algorithm into our
MM-PL results in a second version of the M-step (v.2) given as,

M-step (v.2):

mnew
p = mold

p − γ · wnp

(1 − hnk)

gnk

(xn − mp)

σ 2
p

, mp ∈ Sk

vk

(

πn(c)
)new =

∑N

n=1 hnk · b(n, c)
∑N

n=1 hnk

∑Ln−1
i=1 δ(n, i, c)[∑Ln

j=i vk(πn(j))]−1
,

(31)

where

b(n, c) =
{

1, if π−1
n (c) < Ln,

0, otherwise,
(32)

and

δ(n, i, c) =
{

1, if π−1
n (c) ≥ i,

0, otherwise.
(33)

The advantage of the M-step (v.2) is that the closed form solution for score vectors vk

directly ensures that elements of vector vk are positive. It also avoids potential gradient
descent issues such as initialization.

An important issue to be addressed is the choice of the parameter σp . Parameter σp

controls the fuzziness of the distribution. For σp = 0 the assignments become deterministic,
while for σp → ∞ the assignments become uniform, regardless of the distance. One option
is for σp to be treated as a parameter to be optimized such that l(λ) is minimized. However,
it is not necessarily the best approach. In this work, we are treating σp as an annealing
parameter that is initially set to a large value, and is then decreased towards zero using
scheme σp(n + 1) = σp(0) · σT /(σT + n), where σT is the decay parameter. The purpose of
annealing is to facilitate convergence towards a good local optimum of l(λ). We note that
this strategy has been used in soft prototype approaches by other researchers (Seo et al. 2003;
Grbovic and Vucetic 2009).

Let us denote by pNN the index of the nearest prototype for instance xn. As σp decreases
towards zero, the assignment probability P(pNN |xn) approaches one, and the assignment
probabilities of the remaining prototypes approach zero. As a result, in the limit p(π |xn)

from (22) becomes limσp→0 P(π |xn) = P(π |kNN), where kNN is the pNN -th prototype’s
cluster. Therefore, the label rank for instance xn can be predicted by using the label score
vector of its nearest prototype’s cluster. Since the optimal ranking for any cluster πk , k =
1, . . . ,K can be obtained by simply sorting the elements of label score vector vk , it could be
performed only once at the end of the training procedure, and used in the prediction phase
to speed-up the prediction. The pseudo-code for the v.1 M-step EM version of our algorithm
is given in Algorithm 2.

6 Computational complexity

In this section we discuss the computational complexity of the considered supervised clus-
tering algorithms listed in Table 1.

The first type of baseline algorithms, KmMal and KmP l take O(KN +NL) and O(KN +
NL) time respectively. This is because they use the K-means algorithm in the first stage,
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Algorithm 2 MM-PL algorithm for Supervised Clustering of Label Ranking Data
Inputs: train data D = (xn,πn), n = 1, . . . ,N , K , P

Output: {mp}k,vk, k = 1, . . . ,K,p = 1, . . . ,P that define K clusters Sk = (μk, ρk), k = 1, . . . ,K

1. Initialize {mp}k to P random points from D, vk by assigning ε ∼ N(1,0.1) to each label
score, γ0 = 0.03, σp to data D variance

2. while (lossLR decreases by more than 10−4 )
3. E-step for each (xn,πn) ∈ D calculate hnk using (29) for k = 1, . . . ,K

4. M-step for each (xn,πn) ∈ D update {mp}k and vk using (30) for p = 1, . . . ,P

5. k = 1, . . . ,K , γ (n) = γ0 · γT /(γT + n), σ(n) = σ0 · σT /(σT + n), σT = γT = 8N

4. Calculate lossLR

5. Shuffle data D

6. Calculate ρk by sorting vk for k = 1, . . . ,K

Table 1 Time complexity of
supervised clustering algorithms Algorithm Time complexity

MM-PL O(NPL logL)

Kmeans-Mal O(KN + NL)

Kmeans-PL O(KN + NL logL)

Naive-Kmeans O(KN + KL logL)

Naive-RT O(NL + NKL + NK logN)

ebms-RT O(KNL2 + NKL + NK logN)

K’om-RT O(KNL2 + NKL + NK logN)

RT-prune O(NL logN)

RT-iter O(NL + NKL + NK logN)

followed by finding the central ranking of examples in S1, S2, . . . , SK , which takes O(NL)

using the modified Borda count (Cheng et al. 2009) and O(NL logL) using the Plackett-
Luce model. The complexity of the NaïveKm baseline is O(KN + KL logL), as the L

labels need to be sorted for K clusters following the K-means algorithm. The baseline
algorithms NaïveRT , ebmsRT and K-o’mRT all train a Decision Tree in the second stage.
Their time complexity only differs in the first stage of the algorithm where they search for
the K central rankings. We note that the RankTree complexity with K possible ranking in
leafs takes O(NKL+NK logN) time, as we can calculate all possible distances dτ (πn,ρk)

in O(NKL) time, followed by growing the tree using cumulative sums of different dτ ,
which takes O(NK logN) assuming tree depth of logN . In general, RTiter has same time
complexity as NaïveRT but it needs several iterations. The time complexity for RTiter is
O(NL logN) because for each possible split we need to find the central ranking ρ and the
spread θ , which takes O(NL) time. When searching for the best split ρ for both sides can
be updated instead of recalculated. Finally, the time complexity of the MM-PL algorithm is
O(NPL logL), where P is the total number of prototypes used, e.g., 100.

7 Experiments

In this section we evaluate the proposed algorithms for supervised clustering of label ranking
data. Following the clustering experiments, we also evaluate the MM-PL algorithm in label
ranking prediction task, where it was compared to several previously proposed algorithms.
We describe the considered data sets in Sect. 7.1, while the experimental results are reported
in Sect. 7.2.
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In our preliminary experiments, we experimented with several different versions of the
MM-PL algorithm. We were interested in comparing M-step (v.1) vs. M-step (v.2) as well
as batch vs. stochastic prototype updates in M-step (v.1). The main conclusions are that the
stochastic updates performed better than batch updates and that both v.1 and v.2 exhibited
very similar performance. Following these results, in the following we report the perfor-
mance of MM-PL v.1 with stochastic updates. Additional experiments with M-step (v.2)
showed similar results to M-step (v.1), performing slightly better on some data sets and
similar or slightly worse on others. The results of simulations that used the M-step (v.2) are
not shown to avoid redundancy.

Let us first discuss MM-PL implementation details, specifically, initialization and param-
eter selection. The simplest way to initialize prototypes is to randomly place them in feature
space or to select them by random sampling from the available training points. The label
score vector vk for each prototype was initialized by assigning ε ∼ N(1,0.1) to each label
score. We have observed that setting all elements of label score vectors vk to the same value
leads to problems with the optimization procedure. The learning rate parameter γ was set to
the initial value γ0 = 0.03, and updated using γ (n) = γ0 · γT /(γT + n), where γT = 8N was
used in all experiments. Parameter σp was initialized as the training data variance (Seo et al.
2003) and updated using the annealing schedule with σT = 8N . Training was terminated
when l(λ) (28) stopped decreasing by more than 10−4.

7.1 Data description

We collected a total of 24 data sets for evaluation of MM-PL in both supervised clustering
and label ranking prediction experiments. These data sets were used previously (Cheng et al.
2009, 2010) in evaluation of the label ranking prediction algorithms. Most of them were
obtained by converting benchmark multi-class (A) and regression data sets (B) from the
UCI and Statlog repositories into label ranking data, by using the following Naïve Bayes
(A) and feature-to-label (B) (Cheng et al. 2009) techniques. For multi-class data sets, the
Naïve Bayes classifier is first trained on the original data. Then, the label ranking data is
obtained by sorting labels with respect to the predicted class probabilities. In case of a tie,
the label with the lowest index is ranked first. For regression data sets, some attributes are
removed from the data set, and each one is considered as a label. The removed attributes
are standardized and then ordered by size to obtain label ranks. The data sets are available
online.3

In addition, we used the real-world data from Hüllermeier et al. (2008) and sushi pref-
erence data from Kamishima and Akaho (2009). The data from the first source includes
five data sets from the medical domain. The Yeast genome consists of 2,465 genes, each
described by the phylogenetic profile of length 24. Same input features with different tar-
get rankings from five microarray experiments (spo, heat, dtt, cold, diau) resulted in five
different data sets.

The sushi preference data collection4 consists of data for several different preference
learning tasks (collaborative filtering, object ranking and label ranking). The data is a result
of a food-chain survey in which the users, described by 11 features, provided preferences
for different sushi dishes in terms of a five-point-scale (for collaborative filtering) or full
sushi rankings of 10 suggested sushis (for object and label ranking applications). In our

3http://www.uni-marburg.de/fb12/kebi/research/.
4http://www.kamishima.net/sushi/.

http://www.uni-marburg.de/fb12/kebi/research/
http://www.kamishima.net/sushi/
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Table 2 Label ranking data sets: synthetic (S), semi-synthetic (SS) and real-world

Name Domain # instances N # attributes d # labels L

circles synthetic 7,000 2 6

checker synthetic 7,200 2 6

authorsh. semi-synthetic (A) 841 70 4

iris semi-synthetic (B) 150 4 3

bodyfat semi-synthetic (B) 252 7 7

pendigits semi-synthetic (A) 10,992 16 10

calhouse semi-synthetic (B) 20,640 4 4

segment semi-synthetic (A) 2,310 18 7

cpu-small semi-synthetic (B) 8,192 6 5

stock semi-synthetic (B) 950 5 5

elevators semi-synthetic (B) 16,599 9 9

vehicle semi-synthetic (A) 846 18 4

fried semi-synthetic (B) 40,769 9 5

vowel semi-synthetic (A) 528 10 11

glass semi-synthetic (A) 214 9 6

wine semi-synthetic (A) 178 13 3

housing semi-synthetic (B) 506 6 6

wisconsin semi-synthetic (B) 194 16 16

cold biology 2,465 24 4

heat biology 2,465 24 6

diau biology 2,465 24 7

spo biology 2,465 24 11

dtt biology 2,465 24 4

sushi food 5,000 11 10

experiments the data version from Kamishima and Akaho (2009) was used. The goal is to
predict how a new customer ranks the 10 sushis based on his/her features. The additional
features that describe each sushi were excluded since they could not be utilized in our model.
The description of data sets is given in Table 2.

We also generated two 2-dimensional data sets to better characterize our model (Fig. 6).
The real-life motivation for these synthetic data sets might be a country whose population
consists of an unknown mixture of ethnically or culturally diverse people, each with differ-
ent eating preferences. Based on data recorded at local stores, a food company is interested
in spatially partitioning the country into K potentially irregularly shaped and nonadjacent
regions, and creating a customized advertising strategy for each region. Such synthetic data
was useful for visualization because the two features correspond to longitude and latitude.
The observed behavior of different algorithms gives an insight into a general case where cus-
tomers are described by multiple features. The two particular cases of interest were irregular-
shaped (circles data) and unbalanced clusters (checker data).

In both data sets we assume there are 3 dominant central rankings with L = 6 labels
(1: 123456,2: 654321,3: 316254). Let us refer to them as classes. Each point was assigned
its class’ label ranking corrupted by noise, such that with certain probability one or more
labels switch places in total rank. The first data set (called circles) was created by uniformly
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Fig. 6 Synthetic data sets (color/gray levels are based on Kendall distance from reference ranking
(1,2, . . . ,L))

sampling 7,000 points from a square of width 6, centered at the origin. All points within
distance 1.5 from origin were assigned to class 1, points within distances 1.5 to 2.7 were
assigned to class 2, and the remaining points were assigned to class 3. Finally, for every
point we add label ranking noise in the following way. One label is chosen at random, and
the second label is chosen such that it is first label’s first neighbor in the label ranking
with probability 0.5, second neighbor with probability 0.3, third neighbor with probability
0.15 and fourth neighbor with probability 0.05 (if a label has only one neighbor we pick
that neighbor as a second label, otherwise we pick one of two neighbors by throwing a fair
coin). Then, we switch these two labels with probability 0.7, otherwise we quit noise-adding
routine. If the noise was added we pick two new labels in the same way as before and switch
them with probability 0.5, and if the second label switch occurred we choose two new labels
and switch them with probability 0.3. The second data set (called checker) was generated in
the following way. We sampled 450 points from each of 16 Gaussian distributions centered
at the fields of 4 × 4 checkerboard, and assigned points from upper right and lower right
Gaussians to classes 1 and 2, respectively, and the remaining points to class 3. Similarly to
the first data set, we assigned each point its class’ label ranking corrupted by noise. Matlab
code to generate the data sets and other material, including implementation of all methods
mentioned in this paper, are available upon request.

A common shortcoming of collection of user-content real-world label ranking data is
missing preference information. Very often a user will only provide a partial rank of pre-
ferred items. Similarly to Cheng et al. (2009), we adopt the assumptions that labels are miss-
ing from rankings at random. Therefore, for each label in the ranking, we decide whether to
discard it with a certain probability pd . We did not pursue different directions when gener-
ating partial rankings, although other valid assumptions can be made, such as top-K labels
or the assumption that only certain rankings get corrupted into partial rankings.

7.2 Experimental results

The clustering algorithms were compared using one external measure, Δrank , which evalu-
ates cluster purity in label ranking space and two internal measures, df eat and dknh, which
compactness in the feature space. To evaluate predictive performance, lossLR on test set was
used. All results are averaged over 5 repetitions of a 10-fold cross-validation.
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Fig. 7 Clustering performance comparison Δrank vs. dknh and df eat

7.2.1 Evaluation on synthetic data

The results on the synthetic checker and circle data sets are shown first. For this purpose,
the number of clusters was set to K = 3 in order to test whether the correct clusters can
be recovered. MM-PL used a total budget of K · P = 90 prototypes, i.e., 30 per cluster.
The resulting Δrank versus the resulting df eat and dknh for different algorithms are shown in
Fig. 7. In addition, Tables 3 and 4 report which rankings are discovered as cluster centroids
in different settings (complete rankings, 30 % and 60 % of missing labels) and the resulting
partitions for some algorithms are visualized in Figs. 8 and 9. Finally, the performance in
terms of lossLR summarized in the top two rows of Table 6.

We can conclude that MM-PL performed the best overall as it was able to uncover the
actual clusters and the correct central rankings, even when the clusters were unbalanced
(checker) and 60 % of labels were missing. Further, RTiter algorithm performed very well
and almost always found the correct central rankings, outperforming other RankTree-based
algorithms, such as RTprun and K-o’mRT It can be observed that KmMal and KmP l un-
derperformed when the label regions had complicated distributions, as they do not consider
rankings in their first stage. NaïveRT top K central ranking selection strategy did not prove
efficient. Because of the imbalance in cluster sizes and the large amount of noise, it was
not able to correctly uncover all the cluster central rankings by taking the top K occurring
rankings as the central rankings. Neither did ebmsRT . K-o’mRT proved to be the best Rank
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Table 3 Resulting cluster central rankings checker data set (K = 3)

KmMal KmP l naiveKm naiveRT ebmsRT Ko’mRT RTprun RTiter MMPL

full 123456 123456 123456 123456 132654 123456 132654 123456 123456

123456 132456 654321 654321 653421 654321 654321 654321 654321

361524 653421 423516 213456 653421 361245 316254 316254 316254
30 % 123456 123456 123456 123456 132546 132546 132654 123456 123456

123456 345261 654321 654321 132645 654321 654321 654321 654321

361254 312654 136254 124356 132645 214356 361254 361254 316254
60 % 123456 123456 123456 123456 132645 214536 123546 123456 123456

316254 316254 654321 124356 132645 546321 653421 654321 654321

316452 123456 123645 123546 132546 132645 316254 361254 316254

Table 4 Resulting cluster central rankings circle data set (K = 3)

KmMal KmP l naiveKm naiveRT ebmsRT Ko’mRT RTprun RTiter MMPL

full 361254 361254 123456 136254 123456 123456 132465 123456 123456

316254 361254 654321 654321 132546 654321 654321 654321 654321

361524 365124 316254 316254 312654 316254 361254 316254 316254
30 % 361524 365124 132654 312654 653421 124356 132456 123456 123456

361254 361254 654321 654321 653421 654321 654321 654321 654321

361524 361254 654321 316254 132654 316254 361254 316254 316254
60 % 361524 361524 635124 316524 316254 124356 132546 123456 123456

361254 361254 316254 361254 316254 635412 653421 654321 654321

361524 361254 316254 316254 316254 126354 361254 316254 316254

Clustering → FR. It found the correct central rankings for circle data set in case of complete
label rankings (Table 3). However, it was less effective when label preference information
was missing. In case of checker data K-o’mRT found clusters that are compact in label space
(low Δrank), however it resulted in poor predictive performance. It assigned to the smallest
cluster some examples from other two clusters based on distances in label ranking space.
Finally, NaïveKm was not as successful as other algorithms on both data sets.

In Fig. 7 we show the trade-off between compactness in feature space (measured by
df eat and dknh) and purity in label ranking space (measured by Δrank). The best algorithm
is the one in the bottom left corner. We can conclude that the best algorithms overall were
MM-PL and RTiter as they achieved the best trade-off. It can also be observed that KmMal

and KmP l found the most compact clusters in feature space, especially when measured by
df eat as they directly optimize for this measure. The gap between KmMal , KmP l and other
algorithms decreases when we look at the dknh measure in the case of circle data, as df eat is
known to have high values for non-globular clusters, such as circles in our case.

Overall, as the percentage of missing labels increased, all algorithms, except MM-PL and
to some extend RTiter , had more trouble finding the correct cluster central rankings.

It should be noted that K-means based algorithms are likely to find different central
rankings depending of the initial seeding. On the other hand, the other algorithms provide
more stable clusterings.
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Fig. 8 Clustering performance comparison on checker data set (K = 3)

Fig. 9 Clustering performance comparison on circle data set (K = 3)
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Fig. 10 sushi data performance comparison Δrank vs. dknh and df eat

Fig. 11 Clustering performance comparison on sushi data set (K = 5)

7.2.2 Evaluation on semi-synthetic and real-world data

Next, we evaluated the algorithms on the real-world sushi data set with K = 5 clusters. In
Fig. 10 we shown the performance in terms of achieved Δrank vs. df eat and Δrank vs. dknh

trade-offs. The predictive performance in terms of lossLR is shown at the bottom row of
Table 6. Finally, Table 5 shows the central rankings found by each algorithm and Fig. 11
visualizes the found clusters for some algorithms by projecting features to the first two
principal components.

We can make several observations:

(1) KmMal , KmP l and NaïveKm clusters were compact in feature space (df eat and dknh) but
less compact in label space (Δrank)

(2) Rank Clustering → FR were compact in the label space (Δrank), but far less compact in
the feature space (df eat and dknh)

(3) MM-PL clusters were compact in both label and feature space
(4) RTiter outperformed other RankTree-based methods and came fairly close to MM-PL

For example, even though KmMal partitioned the feature space well, the partitions were
not descriptive enough as all cluster central rankings had sushis 8 and 1 at the first two
positions and 7 and 10 at the last two positions. Thus, the cluster-specific promotional ma-
terial would only differ in the mid part of customer preferences. Due to the fact that cluster
members were scattered around the feature space (Fig. 11b), K-o’mRT resulted in poor gen-
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Table 6 Label Ranking Supervised Clustering performance comparison in terms of lossLR (complete rank-
ings)

Data 1 Rank KmMal KmP l naiveKm naiveRT ebmsRT Ko’mRT RTprun RTiter MMPL

checker .398 .340 .343 .296 .291 .348 .269 .268 .263 .250

circle .393 .392 .392 .444 .263 .281 .260 .292 .258 .253

fried .493 .413 .414 .334 .273 .280 .276 .299 .238 .226

calhouse .380 .364 .364 .424 .335 .333 .333 .346 .331 .349

elevators .435 .347 .333 .300 .213 .211 .211 .217 .211 .171

pendigits .383 .290 .292 .308 .303 .294 .283 .264 .255 .172

cpu-small .431 .362 .369 .374 .353 .403 .354 .346 .337 .356

segment .419 .214 .221 .188 .153 .168 .145 .129 .112 .146

wisconsin .485 .451 .456 .443 .462 .449 .451 .459 .441 .433

vowel .334 .253 .268 .274 .211 .207 .208 .202 .194 .209

vehicle .335 .132 .125 .113 .101 .123 .102 .106 .092 .090

stock .445 .213 .213 .218 .169 .200 .168 .170 .138 .140

iris .451 .091 .096 .059 .056 .096 .056 .058 .056 .061

glass .171 .110 .113 .113 .110 .114 .100 .106 .104 .108

authorsh .269 .072 .075 .066 .143 .178 .083 .115 .113 .079

bodyfat .450 .451 .453 .454 .448 .451 .450 .448 .448 .430

wine .234 .050 .044 .058 .082 .110 .080 .079 .079 .047

housing .412 .376 .384 .407 .400 .388 .364 .372 .358 .339

cold .401 .395 .395 .408 .413 .391 .410 .413 .404 .386

heat .464 .438 .440 .453 .457 .455 .457 .463 .453 .433

diau .348 .336 .340 .385 .380 .356 .367 .367 .345 .327

dtt .438 .416 .420 .432 .435 .425 .437 .439 .431 .410

spo .441 .431 .438 .440 .467 .448 .452 .461 .448 .431

sushi .392 .372 .342 .383 .375 .373 .380 .339 .336 .332

average .392 .304 .305 .307 .287 .295 .279 .282 .268 .257

avg. rank 9.04 5.37 6.00 6.96 5.83 6.00 4.58 5.21 2.67 2.21

time (sec) 22.8 10.1 12.5 9.3 1K 8.3K 2.1K 532 2.4K 234

eralization (Table 6). MM-PL clusters were informative and diverse in label space and also
consistently distributed in the feature space, allowing for a simpler and more intuitive rule
when assigning new customers to clusters. For this reason it had the best overall predictive
performance (Table 6).

The results on the remaining data sets are reported in terms of LossLR in Table 6, and
in terms of Δrank and dknh in Figs. 12a and 12b. We also show the aggregated average
Δrank vs. dknh trade-off across all data sets in Fig. 13. The number of clusters was set to
K = 10. Therefore, RTprun was pruned until the leafs contain at most 10 different rankings,
and the total budget size of MM-PL was set to P · K = 100, i.e., 10 prototypes per cluster.
Bottom rows of Table 6 report average LossLR on all data sets as well as the average rank of
algorithms. For each data set, the algorithms were ranked in decreasing order of performance
and the average rankings across all data sets are reported. Finally, the running times (number
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Fig. 12 Label Ranking Supervised Clustering performance comparison (complete rankings)

Fig. 13 Aggregate Δrank vs.
dknh performance summary
(complete rankings)

of seconds it takes to complete a single 5-fold cross-validation) averaged over all data sets
are reported at the bottom of Table 6.

The results include 1-Rank algorithm result that serves as an indicator of how well we
can represent data using a single label rank.

We can make several conclusions regarding the performance of MM-PL. Firstly, by ob-
serving Fig. 12a, we can conclude that in the most cases (17 out of 24) MM-PL resulted in
the purest clusters in the label ranking space. Secondly, MM-PL averaged the 4-th best com-
pactness in the feature space (Fig. 12b), performing close to KmMal , KmP l and NaïveKm.
Thirdly, MM-PL achieved the best Δrank vs. dknh trade-off overall (Fig. 13). Finally by
observing the results in Table 6 we can conclude that MM-PL had the best predictive per-
formance as well (ranked best 15 out of 24 times) with minimum average rank of 2.21.

Regarding the running time, MM-PL and was ranked 4-th best out of all clustering algo-
rithms (excluding 1 Rank), averaging 234 seconds per 5-fold cross-validation. Expectedly,
the largest difference in running times was observed on data sets with large L and large N .
For example, running times for Wisconsin data set which has small number of observations
N = 194 but large number of labels L = 16, were as follows: 270.21 sec (RTiter ), 95 sec
(RTprun), 23.4 sec (KmMal), 423.3 sec (ebmsRT ), 48.2 sec MM-PL. Also, for Fried data set
with N = 40,769 and L = 5, the running times were: 3.5K sec (RTiter ), 1.6K sec (RTprun),
252 sec (KmMal), 3K sec (Ko’mRT ), 632 sec MM-PL.
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RTiter was ranked the second best algorithm overall, outperforming other RT solutions,
including RTprun and Ko’mRT . However, it comes at a cost of large computational time. It
was slower than other RT-based methods and much slower than MM-PL due to its iterative
nature and the fact that it needs to calculate the sum of losses for every possible split. The
speed-up at probable cost of performance could be achieved by using greedy solutions that
do not consider each split. This holds for all RT-based methods.

Depending on the data properties, various algorithms showed their advantages. If the
clusters in feature space corresponded to clusters in the label space KmMal , KmP l per-
formed well, especially KmP l which was ranked high in experiments with missing prefer-
ences (Table 8). If top K label rankings matched the true cluster centroids NaiveRT was a
good fit.

Regarding the performance of the Rank Clustering → FR algorithms, it depended greatly
on the choice of the K rankings, which are found in the first stage using Naive, ebms or the
Ko’m strategy. Ko’m proved to be the best choice and Ko’mRT was ranked as the third best
algorithm overall. Surprisingly, Naive did slightly better than ebms, except on real-world
data sets, data sets with large L and the cases with missing labels (shown in Table 8). In
those cases ebms outperformed Naive. The reason for this behavior may be in the fact that
ebms strategy is specifically designed for large number of labels (Meilă and Bao 2010).
Regarding the computational complexity, in some cases Rank Clustering → FR had lower
running times when compared to RTprun and RTiter , due to the fact that they know the
candidate K rankings in advance, and do not need to find central ranking for each possible
split. However, RTprun and RTiter do not have a pre-processing stage of finding K rankings,
which is costly in some cases, especially for ebms, which was very slow on large data sets
and was overall the slowest algorithm.

In Fig. 14 we evaluate the performance of label rank clustering algorithms with respect to
the number of clusters K . The investigation was performed on Fried and Elevator data sets.
We were interested in both the performance when small number of clusters is specified,
which is important when working on a limited budget, and at what point increasing the
number of clusters does not further improve performance. Performance was evaluated based
on both LossLR (top figures) and Δrank (bottom figures).

We can observe that the change in performance from K = 1 to K = 2 was already sig-
nificant. Performance on Fried data set continued to improve after K = 20 clusters, while
on Elevator data set it stopped improving after K = 10, i.e., clusters became no more pure
when increasing K .

In the next set of experiments we evaluated the algorithms in the missing label scenario.
These results are reported in Tables 7 and 8. Missing label scenario was simulated using the
following procedure. First we decided on the percentage of missing labels pd , e.g., pd =
30 %. Then, for each example in the training data we flipped a biased coin for every label in
the ranking to decide whether to delete that label (with probability pd ).

In Tables 7 and 8 we show results for 30 % and 60 % missing labels. It is interesting
to observe that the dominance of MM-PL increased when label information is missing. Its
average rank significantly improved, as it is now the best performing algorithm on almost
all data sets, which was not the case before the removal of labels. Its rank improved from
2.21 with no missing labels to 1.75 with 30 % and 1.33 with 60 % missing labels. It can
also be observed that the rank of KmP l algorithm improves with the percentage of missing
labels. For example, in experiments with no missing labels, it shares the 7-th position with
ebmsRT , but is ranked 3-rd overall in experiments with 60 % missing labels. Further, the
rank of ebmsRT also improves with the percentage of missing labels, while the rank of
Ko’mRT worsens. As a result, in experiments with 60 % missing labels, ebmsRT is ranked
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Fig. 14 Clustering performance comparison with different K

better than NaiveRT and Ko’mRT , which was not the case in experiments with full rankings.
RTiter remains the second best algorithm, while RTprun holds the third overall position.

In Fig. 15 we evaluate the performance of label rank clustering algorithms with respect
to the percentage of missing label information (p ranging from 10 % to 90 %) on Fried and
Elevator data sets.

This investigation is of great practical importance. For example, a company might have
a large number of products, but its survey data could contains ranks for only a small subset
of products for each customer. Therefore, the percentage of missing labels might easily be
as high as 90 %.

It can be observed that MM-PL and RTiter were much more robust to missing informa-
tion than baseline algorithms. KmMal and NaiveKm performed equally poor for p = 10 % to
70 % and started to degrade even more afterwards. When compared to them KmP l perfor-
mance did not change much even when 90 % of labels are missing. Rank Clustering → FR
algorithms’ performance suddenly dropped, as soon as p = 60 %, and continued dropping
rapidly, where the least degradation was observed with ebmsRT . Further RTprun had better
performance than Rank Clustering → FR algorithms. Moreover, performance of MM-PL
and RTiter decreased much more gradually when compared to other algorithms. Finally,
MM-PL performance was satisfactory even when p = 70 %, which makes it a good choice
for supervised clustering of label ranking data with missing label information.
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Table 7 Label Ranking Supervised Clustering performance comparison in terms of lossLR (incomplete
rankings—30 % missing labels)

Data KmMal KmP l naivKm naivRT ebmsRT KomRT RTprn RTitr MMPL

checker .340 .336 .300 .282 .316 .257 .292 .254 .249

circle .392 .381 .410 .281 .303 .263 .294 .260 .258

fried .412 .408 .320 .305 .278 .279 .283 .260 .236

calhousing .365 .364 .463 .346 .350 .344 .350 .339 .352

elevator .334 .330 .301 .218 .218 .216 .220 .218 .210

pendigits .289 .289 .287 .305 .302 .286 .266 .243 .181

cpu-small .363 .367 .389 .362 .366 .361 .358 .350 .356

segment .214 .223 .197 .180 .175 .167 .145 .136 .145

wisconsin .455 .456 .443 .481 .445 .458 .448 .444 .435

vowel .255 .260 .276 .238 .220 .226 .210 .208 .211

vehicle .131 .125 .165 .110 .140 .098 .099 .100 .095

stock .217 .217 .227 .176 .220 .195 .179 .183 .148

iris .093 .088 .142 .079 .131 .087 .090 .088 .088

glass .117 .114 .173 .125 .115 .116 .110 .110 .114

authorship .073 .072 .072 .128 .180 .134 .117 .110 .075

bodyfat .455 .453 .459 .459 .447 .443 .454 .452 .436

wine .051 .049 .163 .088 .128 .077 .076 .062 .045

housing .377 .375 .421 .389 .390 .391 .370 .358 .357

cold .405 .397 .404 .414 .406 .427 .416 .400 .393

heat .440 .442 .451 .457 .456 .459 .462 .455 .437

diau .339 .338 .376 .350 .357 .363 .361 .344 .338

dtt .422 .420 .428 .441 .432 .442 .452 .438 .417

spo .434 .439 .447 .454 .450 .455 .456 .429 .435

sushi .369 .342 .374 .367 .353 .378 .353 .342 .335

average .306 .304 .320 .293 .299 .288 .286 .274 .264

rank 5.96 5.00 6.96 5.75 5.83 5.33 4.96 2.75 1.75

time (sec) 13.5 15.8 10.9 1.5K 10.1K 2.4K 486 2.5K 228

8 Conclusion

Although it has many potential real-world applications, supervised clustering of complex
label rank data has not been heavily studied. We established several heuristic baselines for
this problem and proposed two principled algorithms, the Plackett-Luce (PL) Mixture Model
and the Iterative RankTree model specifically tailored for this application. We experimen-
tally showed the strength of the PL and RTiter models by conducting extensive experiments
on two synthetic, sixteen semi-synthetic, and six real-world data sets.

Depending on the data properties, various algorithms showed their advantages. For ex-
ample, when the clusters in the feature space corresponded to clusters in the label space the
KmMal and KmP l baseline approaches performed well. If clusters were evenly distributed
in the label space and most occurring ranks matched cluster central rankings the Ko’mRT

baseline approach performed well. However, in case of unbalanced clusters, either in label
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Table 8 Label Ranking Supervised Clustering performance comparison in terms of lossLR (incomplete
rankings—60 % missing labels)

Data KmMal KmP l naivKm naivRT ebmsRT KomRT RTprn RTitr MMPL

checker .342 .340 .308 .413 .403 .325 .300 .268 .260

circle .392 .382 .396 .362 .379 .337 .295 .263 .261

fried .422 .412 .395 .355 .301 .297 .299 .275 .251

calhousing .365 .364 .501 .367 .362 .358 .356 .354 .349

elevator .336 .332 .308 .238 .229 .229 .227 .221 .214

pendigits .291 .291 .337 .333 .317 .324 .270 .258 .202

cpu-small .365 .366 .413 .469 .379 .383 .364 .359 .360

segment .213 .217 .229 .208 .206 .238 .160 .157 .156

wisconsin .465 .472 .461 .490 .463 .467 .464 .453 .444

vowel .265 .265 .314 .277 .244 .271 .245 .233 .242

vehicle .136 .134 .210 .127 .146 .135 .118 .114 .109

stock .222 .222 .259 .233 .252 .256 .195 .200 .162

iris .136 .134 .188 .210 .208 .215 .194 .138 .127

glass .139 .134 .211 .127 .138 .156 .139 .126 .130

authorship .082 .075 .077 .143 .214 .163 .138 .129 .082

bodyfat .469 .465 .464 .466 .467 .480 .467 .453 .444

wine .087 .078 .220 .145 .149 .154 .151 .137 .076

housing .397 .396 .436 .399 .408 .415 .384 .370 .365

cold .404 .404 .418 .419 .406 .445 .445 .438 .398

heat .447 .445 .456 .458 .472 .467 .472 .454 .439

diau .345 .340 .378 .357 .357 .383 .382 .345 .343

dtt .424 .422 .432 .445 .434 .457 .458 .448 .422

spo .443 .440 .471 .467 .458 .462 .465 .461 .440

sushi .379 .341 .394 .368 .354 .388 .390 .350 .343

average .315 .311 .345 .328 .323 .325 .319 .292 .276

rank 5.17 4.08 6.96 6.33 5.67 6.67 5.42 2.96 1.33

time (sec) 13.8 16.4 11.6 1.4K 10K 2.2K 460 2.6K 188

Fig. 15 Clustering performance comparison with different percent of missing labels
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or feature space, or presence of partial rankings, the baseline approaches did not perform as
well as the MM-PL and RTiter models.

The MM-PL model achieved state-of-the-art clustering performance, showing better
adaptivity to missing information and smaller number of clusters than the RTiter model.
When faced with the missing label problem, and particularly when a large fraction of la-
bels are missing, the MM-PL model works exceptionally well. In addition to the impressive
accuracy, the PL model has a small memory footprint, making it an attractive option in
memory-constrained scenarios. It also has favorable time complexity, scaling linearly in the
size of data set and number of prototypes, which results in very fast and efficient model.
These features make MM-PL an attractive option for label ranking.

The new application of supervised clustering opens many interesting problems. For in-
stance, an interesting direction would be to study supervised clustering of label ranking data
from a Bayesian perspective, since maximum likelihood may lead to overfitting for sparse
label ranking data. It would also be interesting to investigate and compare different assump-
tions of missing preferences, such as top-K assumptions, constant corruption, and missing
at random. Our future work also includes addressing current shortcomings of the MM-PL
model, including its inability to model arbitrary pairwise preferences which do not form a
ranking. This could be solved by developing a mixture model with a pair-wise probabilistic
model instead of the PL model.
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manuscript.
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Cheng, W., Dembczyński, K., & Hüllermeier, E. (2010). Label ranking methods based on the Plackett-Luce
model. In International conference on machine learning (pp. 215–222).

Coppersmith, D., Fleischer, L. K., & Rudra, A. (2006). Ordering by weighted number of wins gives a good
ranking of weighted tournaments. In ACM-SIAM symposium on discrete algorithms (pp. 776–782).

de Borda, J. C. (1781). Memoire sur les Élections au Scrutin. Hist. Acad. R. Sci.
Dekel, O., Manning, C., & Singer, Y. (2003). Advances in neural information processing systems: Vol. 16.

Log-linear models for label ranking. Cambridge: MIT Press.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society. Series B. Methodological, 39, 1–38.
Domshlak, C., Hüllermeier, E., Kaci, S., & Prade, H. (2011). Preferences in AI: an overview. Artificial Intel-

ligence, 175(7–8), 1037–1052.
Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the web. In Inter-

national conference on world wide web (pp. 613–622). New York: ACM.
Eick, C. F., Vaezian, B., Jiang, D., & Wang, J. (2006). Discovery of interesting regions in spatial data sets

using supervised clustering. In Knowledge discovery in databases (pp. 127–138). Berlin: Springer.
Eick, C., Zeidat, N., & Zhao, Z. (2011). Supervised clustering—algorithms and benefits. In International

conference on tools with AI (pp. 774–776).
Finley, T., & Joachims, T. (2005). Supervised clustering with support vector machines. In International con-

ference on machine learning (pp. 217–224). New York: ACM.
Gärtner, T., & Vembu, S. (2010). Label ranking algorithms: a survey. In J. Fürnkranz & E. Hüllermeier (Eds.),

Preference learning (pp. 45–64). Berlin: Springer.



Mach Learn (2013) 93:191–225 225

Grbovic, M., & Vucetic, S. (2009). Regression learning vector quantization. In International conference on
data mining (pp. 788–793).

Guiver, J., & Snelson, E. (2009). Bayesian inference for Plackett-Luce ranking models. In International
conference on machine learning (pp. 377–384). New York: ACM.

Han, J., & Kamber, M. (2001). Data mining: concepts and techniques. San Mateo: Morgan Kaufmann.
Har-Peled, S., Roth, D., & Zimak, D. (2003). Constraint classification for multiclass classification and rank-

ing. In Advances in neural information processing systems (pp. 785–792). Cambridge: MIT Press.
Hüllermeier, E., Fürnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise prefer-

ences. Artificial Intelligence, 172, 1897–1916.
Hunter, D. R. (2004). MM algorithms for generalized Bradley-Terry models. The Annals of Statistics, 32,

384–406.
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. New York: Prentice Hall.
Kamishima, T., & Akaho, S. (2009). Efficient clustering for orders. In Mining complex data (pp. 261–279).

Berlin: Springer.
Kaufmann, L., & Rousseeuw, P. (1990). Fining groups in data: an introduction to cluster analysis. New York:

Wiley.
Kremer, H., Kranen, P., Jansen, T., Seidl, T., Bifet, A., Holmes, G., & Pfahringer, B. (2011). An effective

evaluation measure for clustering on evolving data streams. In ACM SIGKDD international conference
on knowledge discovery and data mining (pp. 868–876). New York: ACM.

Lam, W. M., & Reibman, A. R. (1993). Design of quantizers for decentralized estimation systems. IEEE
Transactions on Communications, 41(11), 1602–1605.

Lu, T., & Boutilier, C. (2011). Learning Mallows models with pairwise preferences. In International confer-
ence on machine learning (pp. 145–152).

Luce, R. D. (1959). Individual choice behavior: a theoretical analysis. New York: Wiley.
Mallows, C. L. (1957). Non-null ranking models. Biometrika, 44, 114–130.
Megalooikonomou, V., & Yesha, Y. (2000). Quantizer design for distributed estimation with communication

constraints and unknown observation statistics. IEEE Transactions on Communications, 48(2), 181–
184.
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