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Introduction

● Distributed embeddings recently gained in popularity
● Tested in a number of applications at Yahoo

○ Search retargeting (WWW 2015)
○ Query categorization (WWW 2015)
○ Query rewriting  (SIGIR 2015)
○ Targeting at Tumblr (KDD 2015)

● This talk: Yahoo Mail (KDD 2015)



Introduction

● We can’t avoid ads in e-mail accounts
○ Improve user experience (and make more money) 

through product ads



Introduction

● Hundreds of millions of people around the world visit 
their e-mail inboxes daily

● Ads need to be highly relevant to overcome focus on 
the e-mail task

● Effective personalization and targeting is essential to 
tackling this problem
○ Higher revenue, better user experience



Inbound e-mails

● Still insufficiently explored and exploited area for the 
purposes of ad targeting
○ Only 10% of inbound volume represents human-

generated e-mails
○ For remaining 90% of traffic, more than 22% 

represents e-mails related to online shopping
● A treasure trove of data

○ Standardized online receipts
○ Data from multiple commercial domains



Data set

● Includes receipts sent to users who opted-in for such 
research studies
○ March to October 2014
○ Extracted product names and purchase times
○ 280.7M purchases from 172 commercial domains 

made by 29M users
○ 2.1M unique bought products priced over $5



Data analysis

● Purchasing habits for different demographics
a. Percentage of female online shoppers is higher
b. Male users buy more expensive items



Data analysis

● Purchasing habits for different user cohorts
a. Percentage of shoppers among online users
b. Average number of purchases per user



Data analysis

● Purchasing habits for different cohorts
a. Average amount spent by a user
b. Average price of purchased product



Recommending popular products

● Common and intuitive approach
● Lookback and lookahead parameters



Neural language models

● Neural language models induce low-D, distributed 
embeddings of words using neural networks

● Recently proposed word2vec gained popularity
○ Applied to sentences, graphs, app prediction, …

● Can it help in product recommendation?



Proposed models

● prod2vec
● bagged-prod2vec
● user2vec



Proposed models

● Efficient product-level purchase prediction algorithm
○ Capable of scaling to millions of users and products

● Embed products to low-D space using neural language 
model applied to a time series of user purchases
○ Clustering and nearest-neighbor search



Product-to-product models

● prod2vec-topK
○ Use each purchased item to recommend its K 

neighbors to be shown to user
● prod2vec-cluster

○ Cluster the products, and empirically estimate 
probability that cluster i follows cluster j

○ Retrieve nearest neighbors from each of the high-
probability clusters



Experiments

● The neighbors are highly relevant to the query

despicable me first aid for the usmle step 1 disney frozen lunch napkins

monsters university usmle step 1 secrets 3e disneys frozen party 9 square lunchdinner plates

the croods first aid basic sciences 2e disneys frozen party 9oz hotcold cups

turbo usmle step 1 qbook disneys frozen 7x7 square cakedessert plates

cloudy with a chance of meatballs brs physiology disneys frozen party printed plastic tablecover

hotel transylvania rapid review pathology with student consult disneys frozen party 7 square cakedessert plates

brave first aid cases for the usmle step 2 disney frozen 9 oz paper cups

the smurfs highyield neuroanatomy frozen invitation and thank you card

wreckit ralph lange pharmacology flash cards third edition disneys frozen party treat bags



Experiments

● Clustering results in more diverse recommendations
○ Example for product cressi supernova dry snorkel

bagged-prod2vec-topK bagged-prod2vec-cluster cluster ID

jaws quick spit antifog 1 ounce cressi neoprene mask strap
1

cressi neoprene mask strap cressi frameless mask

cressi frameless mask akona 2 mm neoprene low cut socks
2

akona 2 mm neoprene low cut socks tilos neoprene fin socks

tilos neoprene fin socks jaws quick spit antifog 1 ounce
3

cressi scuba diving snorkeling mask snorkel set aqua sphere kayenne goggle with clear lens black

mares cruise mesh due bag nikon coolpix aw120 161 mp waterproof camera
4

us divers island dry snorkel olympus stylus tg digital camera with 5x optical zoom



Recommending predicted products

● We fix lookback to 5 days
● Predicted products outperform popular ones



Experiments

● Bucket results

● Implemented in production

Metric Control 
(5% traffic)

Popular 
(5% traffic)

Predicted 
(5% traffic)

CTR - + 8.33% + 9.81%

YR n/a - + 7.63%

Daily bucket test results



Conclusion

● Inbound e-mail data is underutilized
● Significant differences between various user cohorts
● Neural language models can directly be applied to the 

recommendation problem
○ Don’t count, predict!

● Look for our ads during
     this holiday season!


