

E-commerce in Your Inbox

Product Recommendations at Scale

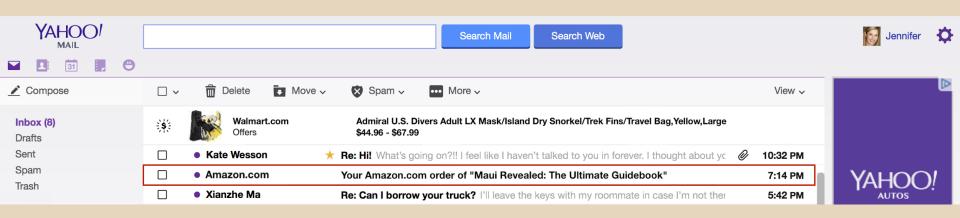
M. Grbovic, V. Radosavljevic, *N. Djuric*, N. Bhamidipati (Yahoo Labs, **Ad Targeting Team**)
J. Savla, V. Bhagwan, D. Sharp (Yahoo, Inc., **Yahoo Mail**)

Introduction

- Distributed embeddings recently gained in popularity
- Tested in a number of applications at Yahoo
 - Search retargeting (WWW 2015)
 - Query categorization (WWW 2015)
 - Query rewriting (SIGIR 2015)
 - Targeting at Tumblr (KDD 2015)
- This talk: Yahoo Mail (KDD 2015)

Introduction

- We can't avoid ads in e-mail accounts
 - Improve user experience (and make more money) through product ads



Introduction

- Hundreds of millions of people around the world visit their e-mail inboxes daily
- Ads need to be highly relevant to overcome focus on the e-mail task
- Effective personalization and targeting is essential to tackling this problem
 - Higher revenue, better user experience

Inbound e-mails

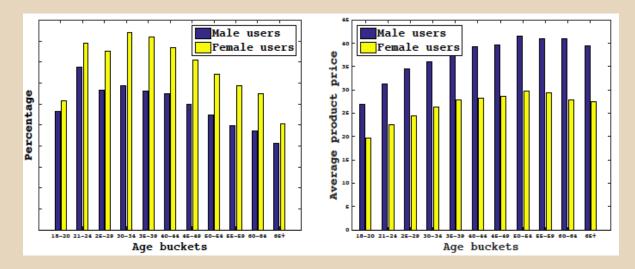
- Still insufficiently explored and exploited area for the purposes of ad targeting
 - Only 10% of inbound volume represents humangenerated e-mails
 - For remaining 90% of traffic, more than 22% represents e-mails related to online shopping
- A treasure trove of data
 - Standardized online receipts
 - Data from multiple commercial domains

Data set

- Includes receipts sent to users who opted-in for such research studies
 - March to October 2014
 - Extracted product names and purchase times
 - 280.7M purchases from 172 commercial domains made by 29M users
 - 2.1M unique bought products priced over \$5

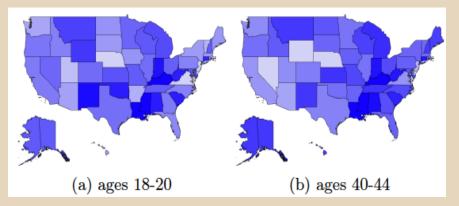
Data analysis

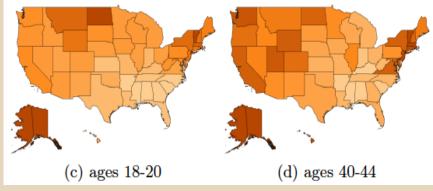
- Purchasing habits for different demographics
 - a. Percentage of female online shoppers is higher
 - b. Male users buy more expensive items



Data analysis

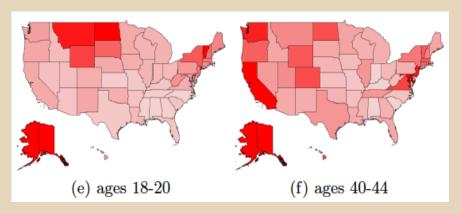
- Purchasing habits for different user cohorts
 - a. Percentage of shoppers among online users
 - b. Average number of purchases per user

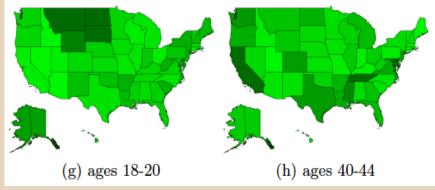




Data analysis

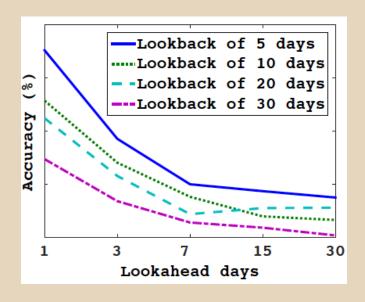
- Purchasing habits for different cohorts
 - a. Average amount spent by a user
 - b. Average price of purchased product

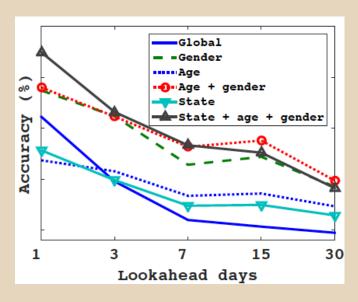




Recommending popular products

- Common and intuitive approach
- Lookback and lookahead parameters



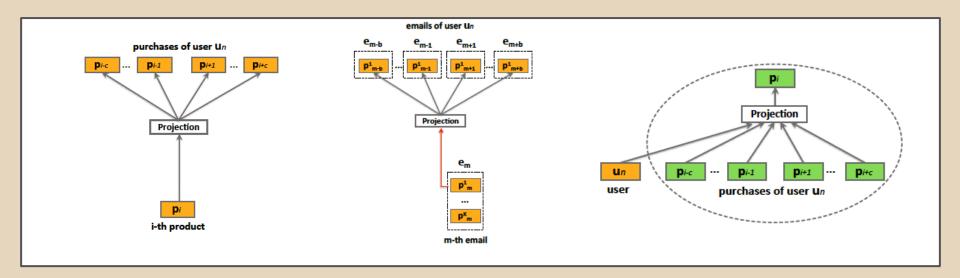


Neural language models

- Neural language models induce low-D, distributed embeddings of words using neural networks
- Recently proposed word2vec gained popularity
 - Applied to sentences, graphs, app prediction, ...
- Can it help in product recommendation?

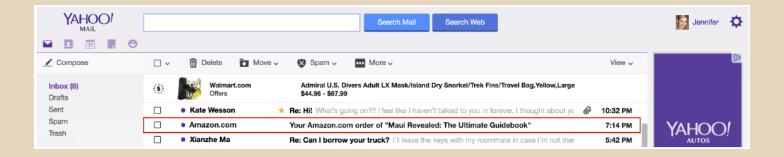
Proposed models

- prod2vec
- bagged-prod2vec
- user2vec



Proposed models

- Efficient product-level purchase prediction algorithm
 - Capable of scaling to millions of users and products
- Embed products to low-D space using neural language model applied to a time series of user purchases
 - Clustering and nearest-neighbor search



Product-to-product models

- prod2vec-topK
 - Use each purchased item to recommend its K neighbors to be shown to user
- prod2vec-cluster
 - Cluster the products, and empirically estimate probability that cluster i follows cluster j
 - Retrieve nearest neighbors from each of the highprobability clusters

Experiments

The neighbors are highly relevant to the query

despicable me	first aid for the usmle step 1	disney frozen lunch napkins	
monsters university	usmle step 1 secrets 3e	disneys frozen party 9 square lunchdinner plates	
the croods	first aid basic sciences 2e	disneys frozen party 9oz hotcold cups	
turbo	usmle step 1 qbook	disneys frozen 7x7 square cakedessert plates	
cloudy with a chance of meatballs	brs physiology	disneys frozen party printed plastic tablecover	
hotel transylvania	rapid review pathology with student consult	disneys frozen party 7 square cakedessert plates	
brave	first aid cases for the usmle step 2	disney frozen 9 oz paper cups	
the smurfs	highyield neuroanatomy	frozen invitation and thank you card	
wreckit ralph	lange pharmacology flash cards third edition	disneys frozen party treat bags	

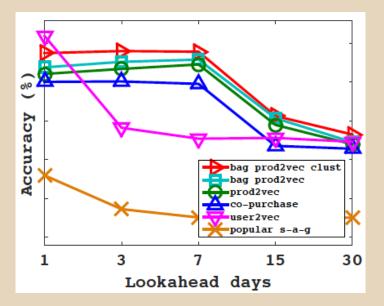
Experiments

- Clustering results in more diverse recommendations
 - Example for product cressi supernova dry snorkel

bagged-prod2vec-topK	bagged-prod2vec-cluster	cluster ID	
jaws quick spit antifog 1 ounce	cressi neoprene mask strap	4	
cressi neoprene mask strap	cressi frameless mask	'	
cressi frameless mask	akona 2 mm neoprene low cut socks	2	
akona 2 mm neoprene low cut socks	tilos neoprene fin socks	2	
tilos neoprene fin socks	jaws quick spit antifog 1 ounce		
cressi scuba diving snorkeling mask snorkel set	aqua sphere kayenne goggle with clear lens black	3 black	
mares cruise mesh due bag	nikon coolpix aw120 161 mp waterproof camera		
us divers island dry snorkel	olympus stylus tg digital camera with 5x optical zoom	4	

Recommending predicted products

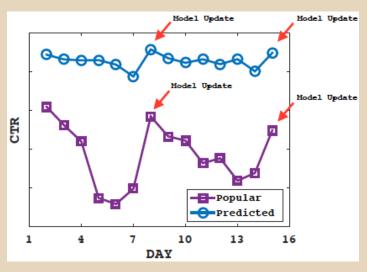
- We fix lookback to 5 days
- Predicted products outperform popular ones



Experiments

Bucket results

Metric	Control (5% traffic)	Popular (5% traffic)	Predicted (5% traffic)
CTR	-	+ 8.33%	+ 9.81%
YR	n/a	-	+ 7.63%



Daily bucket test results

Implemented in production

Conclusion

- Inbound e-mail data is underutilized
- Significant differences between various user cohorts
- Neural language models can directly be applied to the recommendation problem
 - On't count, predict!
- Look for our ads during this holiday season!

