
Scalable Semantic Matching of

Queries to Ads in Sponsored Search

Mihajlo Grbovic, Nemanja Djuric, Vladan

Radosavljevic, Fabrizio Silvestri, Ricardo Baeza-

Yates, Andrew Feng, Erik Ordentlich, Lee Yang,

Gavin Owens

Yahoo Research, Advertising

Sciences

Sponsored Search

 Advertisers

 Provide ad creative (title,

description, url)

 Provide bidterms (queries they

want their ad to show for)

 Search Engine

 Matches queries to bidterms

(exact match + variant match)

 Implements: broad match

Sponsored Search

Broad Match: advanced matching

to non-provided keywords by:

Query rewriting:

 Given a user query, find K

semantically similar queries

Query-ad matching:

 Need to place queries and ads

in same feature space

Query and Ad Representations

How to represent queries and ads?

1) Traditional – Bag of words

bag of words vector:

0 1 0 1 0 … 0 0

1 – where query words are

0 – everywhere else

Query:

cheap flights
flightscheap

bag of words vector:

Ad:

Get the best air ticket deals
air dealsticket

ISSUE – No way we can find that this query and this ad are related

1 0 1 0 1 … 1 1

bestget

Query and Ad Representations

2) New – move from sparse to dense vectors

Query vector 0.2 1.1 7.2 0.8 3.1

0.9 2.6 3.1 0.1 2.2Ad

 Represent queries and ads as numeric vectors

 Vectors need to be learned using training data (search sessions)

 We want queries/ads with similar contexts to have similar vectors

session 1: trip_ideas cheap_flights holiday_travel_deals

session 2: trip_ideas air_tickets holiday_travel_deals

vector

Search2Vec

search2vec = word2vec [1] where:

words = {queries, search ads, search links}

 documents = search sessions (uninterrupted

sequences of user actions on the search engine)

[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and

Jeffrey Dean. Distributed Representations of Words and Phrases

and their Compositionality. In Proceedings of NIPS, 2013

Search2Vec

Search Sessions Dataset

king_tut king_tut_exibit king_tut_exibit_seattle adid_3858375378

gas_caps gas_cap_replacement_for_cars adid_1066604760

gas_door_replacement_for_cars slc_81285142 fuel_door_covers

autozone_auto_parts adid_253157233

hoka_running_shoe_reviews adid_2283077190 hoka_shoes_for_bad_feet

hoka_shoes amazon zappos_shoes slc_231234142S1

S2

S3

hoka_one_one run_florida hoka_shoes shoes_with_sl_2_last

shoes_with_a_bigger_toe_box stans_shoes clarks_shoes slc_1567342 S4

Example search session:

Query8, Ad1, Query2, Query6

Search2Vec

Q8 A1 Q2 Q6

current query/ad

neighborhood

A1A1
Q6Q6

Q8Q8
RNDRND

Q2Q2

embedding space

RNDRND

v
i

new = v
i
+h × (1-s (v

i

Tu
neigh
)) ×u

neigh

v
i

new = v
i
-h ×s (v

i

Tu
neg
) ×u

neg

Query-to-Query similarity

Search2Vec – after training

cheap_flights

air_ticket_deals

cosine similarity=0.9

0.2 1.1 7.2 0.8 3.1

0.21 1.2 6.8 0.74 3.2

Search2Vec – after training

Query-to-Ad matching

Search2Vec – after training

ad_243609_341454

mystery_games

similarity=0.871

0.2 1.1 7.2 0.8 3.1

0.2 1.2 6.8 0.7 3.2

Search2Vec – additional context

 How can we leverage additional search-specific context?

 What is context for a query in web search?

1. Other queries – in user search sessions

2. Ads - clicked (positives), dwell time, skipped ads (negatives)

3. Search results - clicked (represented with url)

Search2Vec – additional context

Dwell-time sensitive updates

 gradient multiplier: ni = log(1+t)
t=dwell time in minutes

 ad clicks with longer dwell time
-> larger learning rate

 ad clicks with short dwell time

-> small learning rate

Seconds

n
u
m
b
e
r

o
f

(
q
u
e
r
y
,

a
d
)

p
a
i
r
s

Search2Vec – additional context

Ad skips as implicit negative signal

 Skipped ads = ads at high positions skipped in favor

of ad click at lower position

Q1Q1 Q2Q2 Q1Q1Ad click 5 Ad click 5 Ad view 1 Ad view 1 Ad view 5 Ad view 5

+

+ +
Ad view 8 Ad view 8

Ad view 3 Ad view 3

Ad click 4 Ad click 4 Ad view 6 Ad view 6

Ad view 5 Ad view 5 Ad view 2 Ad view 2
-

-

-

-

-

-
session:

Search2Vec – final model

 a = action (q, ad, slc)

 D = immediate context as positives

 Dr = random negatives (5 per session)

 Dn = implicit negatives (skipped ads)

 v = 300 dim vector

 c = 5 (context window size)

 10B sessions -> 80M vectors

argmax
q

log
1

1+ e
-v
c
×v
a

(a,c)ÎD

å + log
1

1+ e
v
c
×v
a

(a,c)ÎDr

å + log
1

1+e
v
q
×v
ad

(q,ad)ÎDn

å

Search2Vec - editorial evaluation

 20K judgments <query, ad, score, grade> :

 grade = {Bad, Fair, Good, Excellent, Perfect}

 <cheep tickets, travelocity ad, 0.831, Perfect>

Editorial Grade

Bad Fair Good Excellent Perfect

Q
A
E

m
o
d
e
l

s
c
o
r
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Box plot of editorial grades vs. QAE model scores

embeddings, we produced a short video5 in which we

show nearest search queries in the learned vector space
for several query examples. In addit ion, as part of this

study, we open-sourced 3 million query embeddings for
academic research purposes. Embeddings can be down-

loaded on Yahoo Labs Webscope website at the follow-
ing locat ion: ht t p: / / webscope. sandbox. yahoo. com/

cat al og. php?dat at ype=l &di d=73 .

4.3.2 Offline relevance results

In the first set of experiments we used editorial judgments

of query-ad pairs to compare broad match methods in terms
of relevance.

For this purpose we used an in-house dataset consist ing
of a query-ad pairs that were graded editorially. The editors

were inst ructed to grademore than 24,000 query-ad pairs as
either Bad, Fair , Good, Excel lent, or Perfect match. For each

ad, the editors had access to bid term, ad t it le, descript ion,
and display URL to help them reach their judgment . Note
that the candidates query-ad pairs were not generated by

any of the tested methods. For each query there were up
to 9 judged ads, allowing us to evaluate ranking of ads in

addit ion to relevance.
Using each of the compared methods we generated query

features and ad features for each judged pair. Then, to
calculate score for a part icular pair, we calculated cosine

similarity between the query feature vector and the ad fea-
ture vector. In case of QFG model, as it is a query rewrit -

ing method, the query-ad relevance score was calculated be-
tween the query and the ad bid term.

There are several quest ions one could ask regarding al-
gorithm relevance. First , how well can the algorithm score

dist inguish between Bad and Good broad match candidates.
Second, how well the ads can be ranked based on the algo-

rithm score, and how much does ranking based on algorithm
score deviates from ranking based on editorial grades. For

this purpose we concent rated on the following two met rics
to measure relevance:

1) oA UC Ordinal AUC measures how well the cosine
similarity scores computed by the t rained model can dis-

5ht tp:/ / youtu.be/ pvfFQSCYhqI

K

2 3 4 5 6 7 8 9

N
D
C
G

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

QAE
slc,dwell,en

QAE
slc

QAE

QFG

Content QAE

word2vec

TFIDF

Figure 5: NDCG@K for di↵erent models

Table 2: Comparison of di↵erent broad match methods on
editorial data

M et hod oAUC M acr o N DCG

word2vec 0.6673 0.7408
TFIDF 0.6407 0.6983

QFG 0.6928 0.7848
QAE 0.7154 0.8111

QAEsl c 0.7326 0.8303
QA E sl c,dw el l ,en 0.7392 0.8569

Content QAE 0.6881 0.7758

criminatebetween editorial gradesby comput ing theaverage
AUC (area under ROC curve) across four classifiers: perfect -

and-above vs. below-perfect , excellent -and-above vs. below
excellent , good-and-above vs. below good, and last ly fair-

and-above vs. below fair.
2) M acr o N DCG measures how well the ranked scores

align with the ranked editorial grades. Given numerical
grades (1 for Bad, 2 for Fair, 3 for Good, 4 for Excellent

and 5 for Perfect) we used (2gr ade − 1) as NDCG labels and
posit ion discount ing of log(posit ion in ranked list). Finally,

we average the met ric across all queries. Unlike oAUC, this
performance measure incurs a greater penalty for mistakes

found at the top of the list .
In Table 2 we report the averaged oAUC and Macro

NDCG of editorial query-ad pairs for di↵erent methods. In
addit ion, to get a sense of how di↵erent models compare at
a part icular rank we show the NDCG met ric at values of
rank ranging from 2 to 9 in Figure 5.

Several conclusions can be drawn. First , we can see that
the models that did not ut ilize search session data (i.e.,

word2vec and TF-IDF) perform worse than the models that
use historical search logs (QFG and QAE approaches). Sec-
ond, QAE embedding method performs bet ter than QFG

graph method. This can be explained by the fact that QFG
only makesuseof the co-occurrenceof queries, ad and search

links in the search sessions, whileQAE also accounts for sim-
ilarity of their contexts. Third, int roduct ion of search link

Editorial Grade

Bad Fair Good Excellent Perfect

Q
A
E

m
o
d
e
l

s
c
o
r
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Box plot of editorial grades vs. QAE model scores

embeddings, we produced a short video5 in which we
show nearest search queries in the learned vector space

for several query examples. In addit ion, as part of this
study, we open-sourced 3 million query embeddings for

academic research purposes. Embeddings can be down-
loaded on Yahoo Labs Webscope website at the follow-

ing locat ion: ht t p: / / webscope. sandbox. yahoo. com/
cat al og. php?dat at ype=l &di d=73 .

4.3.2 Offline relevance results

In the first set of experiments we used editorial judgments
of query-ad pairs to compare broad match methods in terms

of relevance.
For this purpose we used an in-house dataset consist ing

of a query-ad pairs that were graded editorially. The editors
were inst ructed to grademore than 24,000 query-ad pairs as

either Bad, Fair , Good, Excel lent, or Perfect match. For each
ad, the editors had access to bid term, ad t it le, descript ion,

and display URL to help them reach their judgment . Note
that the candidates query-ad pairs were not generated by
any of the tested methods. For each query there were up

to 9 judged ads, allowing us to evaluate ranking of ads in
addit ion to relevance.

Using each of the compared methods we generated query
features and ad features for each judged pair. Then, to

calculate score for a part icular pair, we calculated cosine
similarity between the query feature vector and the ad fea-

ture vector. In case of QFG model, as it is a query rewrit -
ing method, the query-ad relevance score was calculated be-

tween the query and the ad bid term.
There are several quest ions one could ask regarding al-

gorithm relevance. First , how well can the algorithm score
dist inguish between Bad and Good broad match candidates.

Second, how well the ads can be ranked based on the algo-
rithm score, and how much does ranking based on algorithm

score deviates from ranking based on editorial grades. For
this purpose we concent rated on the following two met rics

to measure relevance:
1) oA UC Ordinal AUC measures how well the cosine

similarity scores computed by the t rained model can dis-

5ht tp:/ / youtu.be/ pvfFQSCYhqI

K

2 3 4 5 6 7 8 9

N
D
C
G

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

QAE
slc,dwell,en

QAE
slc

QAE

QFG

Content QAE

word2vec

TFIDF

Figure 5: NDCG@K for di↵erent models

Table 2: Comparison of di↵erent broad match methods on
editorial data

M et hod oAUC M acro N DCG

word2vec 0.6673 0.7408

TFIDF 0.6407 0.6983
QFG 0.6928 0.7848

QAE 0.7154 0.8111
QAEsl c 0.7326 0.8303

QA E sl c,dw el l ,en 0.7392 0.8569

Content QAE 0.6881 0.7758

criminatebetween editorial gradesby comput ing theaverage
AUC (area under ROC curve) across four classifiers: perfect -
and-above vs. below-perfect , excellent -and-above vs. below

excellent , good-and-above vs. below good, and last ly fair-
and-above vs. below fair.

2) M acr o N DCG measures how well the ranked scores
align with the ranked editorial grades. Given numerical

grades (1 for Bad, 2 for Fair, 3 for Good, 4 for Excellent
and 5 for Perfect) we used (2gr ade − 1) as NDCG labels and

posit ion discount ing of log(posit ion in ranked list). Finally,
we average the met ric across all queries. Unlike oAUC, this

performance measure incurs a greater penalty for mistakes
found at the top of the list .

In Table 2 we report the averaged oAUC and Macro
NDCG of editorial query-ad pairs for di↵erent methods. In
addit ion, to get a sense of how di↵erent models compare at
a part icular rank we show the NDCG metric at values of

rank ranging from 2 to 9 in Figure 5.
Several conclusions can be drawn. First , we can see that

the models that did not ut ilize search session data (i.e.,
word2vec and TF-IDF) perform worse than the models that

use historical search logs (QFG and QAE approaches). Sec-
ond, QAE embedding method performs bet ter than QFG
graph method. This can be explained by the fact that QFG

only makesuseof the co-occurrenceof queries, ad and search
links in the search sessions, whileQAE also accounts for sim-

ilarity of their contexts. Third, int roduct ion of search link

Search2Vec – A/B test

 2 ways to increase Revenue Per Search:

1) Increase Depth: find more ads for queries that have ads

2) Increase Coverage: find ads for queries that do not have ads

Query 1Query 1 Ad 1Ad 1 Ad 2Ad 2 Ad 3Ad 3 Ad 4Ad 4 Ad 5Ad 5

Ad 6Ad 6 Ad 7Ad 7

Ad 8Ad 8 Ad 9Ad 9

Ad 5Ad 5

Query 2Query 2

Query 3Query 3

Query 4Query 4
Ads Ads

Ads Ads

existing ads

new ads

Search2Vec – A/B test

 For each query find closest 30 ads in embedding space

above 0.7 similarity and store in a <query, ad list> table

 Control: does not include this table:

 Bucket: includes this table: +

 Low overlap with other match types: 90% pairs are unique

Ads Ads Ads Ads

Ads Ads

Bucket Query

Coverage

Auction

Depth

CTR Click

Yield

Revenue

per Search

1-machine +1.14% +2.13% +0.5% +1.7% +7.07%

Search2Vec – Limitations

1. size of vocabulary

 problem: single 256GB machine can train up to 80M vectors

 solution: distributed training

2. cold ads

 problem: new ads added daily (no clicks to train ad vectors)

 solution: content vectors (create ad vectors from ad text)

3. tail queries

 problem: not enough observations to train a query vector

 solution: index head query vector-based expansions

Distributed Search2Vec

 Training

 Initialize pair of vectors v (input) and u (output) for each

word in vocab

 Update v of center word and u’s of neighbors and random

negatives

 Updates involve vector multiply-accumulates (v+=αu, u+=αv,
v+=βu, u+=βv), with α, β determined by (uv, uv).

w1 w2 w3 w4 w5 w6 w7 w8 w9 …

w1 w2 w3 w4 w4 w6 w7 w8 w9

w1 w2 w3 w4 w4 w6 w7 w8 w9

Distributed Search2Vec

 Parameter Server (PS) - distributed in-memory store for

model parameters (vectors), supports: GET, PUT

PS

ClientData

PS

PS

…

ClientData

ClientData

ClientData

…

PS

ClientData

PS

PS

…

 1 Client:

 Take a mini-batch of data (e.g. 200

sessions)

 PS GET: v vectors for each word from

mini-batch and u vectors for

neighbors and random negatives

 Client calculates gradient updates

for all v and u

 PS PUT: updates v and u vectors in

key-value store (no locks)

u and v vectors
search sessions

Distributed Search2Vec

Send word indices
and seeds

Negative sampling, compute uv

Clients:

PS Shards:

Aggregate results &
compute “α, β”
global coefficients

Update vectors

(v += αu, …)

Each shard stores
a part of every vector

We can train large

vocab model in

1 day

Distributed File System

. . .

Our solution:

w1

w2

…
wn

d1 … d30 d31 … d60 d291 … d300

Distributed Search2Vec

client
PS shard

3. aggregate partial
dot products and
compute α, β weights

4. sends weights and
seeds (again)

next mini-batch …

2. negative sampling
+ calculate partial dot
products uv

1. send word
indices and seed

waits ….

5. update partial
vectors v += αu, …

sessions

a
1-30

= v
i

i=1

30

å u
i

pos

v
1-30

new = v
1-30

+h × (1-s (a
full
)) ×u

1-30

pos

a
full
=a

1-30
+a

31-60
+ ...+a

371-300

b
1-30

= v
i

i=1

30

å uneg
i

v
1-30

new = v
1-30

-h ×s (b
full
) ×u

1-30

neg

b
full
= b

1-30
+b

31-60
+ ...+b

371-300

d1 d30

u
1-30

pos =u
1-30

pos +h × (1-s (a
full
)) ×v

1-30

u
1-30

neg =u
1-30

neg -h ×s (b
full
) ×v

1-30

Distributed S2V – A/B test

More vectors: ~300M query & ad vectors

 Control: prod + 1 machine s2v

 Bucket: prod + 1 machine s2v + distributed s2v

Bucket Query

Coverage

Auction

Depth

CTR Click

Yield

Revenue

per Search

distributed

search2vec

+2.44% +2.39% +0.2% +1.81% +9.39%

Cold-start ad vectors

2. cold ads

How to generate vectors for new ads?

Title Ancestry DNA Testing

Description Learn More About Yourself & Your Family History.

Display URL 23andme.com/AncestryDNATesting

Bid Term dna_testing

Cold-start ad vectors

source n-gram has vector similarity to bid term

bidterm dna_testing YES 1

title ancestry YES 0.66

title dna YES 0.76

title testing YES 0.24

title ancestry_dna NO

title dna_testing YES 1

title ancestry_dna_testing YES 0.87

description learn YES 0.11

description more YES 0.03

description learn_more NO

description about YES 0.08

description family_history YES 0.62

description your_family YES 0.37

v
ad _ content

= v
p
(i)

i

å

Offline Evaluation

Cold-start ad vectors

30M ads

260M queries

30M ads

context vectors

0.2 1.2 6.8 0.7 3.2

Vad-context

0.3 1.3 6.2 0.5 3.1

cosine
similarity

Train data

search sessions

content vectors

Ad data

ad meta-data
Vad-content

Cold-start ad vectors

Offline Evaluation

 Vad-context : ad vectors learned from sessions

 Vad-content : ad vectors formed from content

 sim : average cosine sim. between Vad-context and Vad-content

 High sim tells us we came close to the “ground truth”

method average std

words 0.574 0.059

phrases 0.665 0.067

CRF phrases 0.604 0.075

bid term only 0.731 0.128

anchor phrases 0.792 0.077

Cold-start ad vectors – A/B tests

More ad vectors: additional 50M ad vectors

 Control: prod + distributed s2v

 Bucket: prod + distributed s2v + cold ad vectors

Bucket Query

Coverage

Auction

Depth

CTR Click

Yield

Revenue

per Search

Cold Start

Ad Vectors

+7.05% +4.36% -0.6% +3.96% +9.83%

Our system today

 Tail queries A/B tests – still to come

 search2vec today:

 top BROAD match algorithm

 30%+ of all BROAD match impressions

 Read more about it at: yahooresearch.tumblr.com

https://yahooresearch.tumblr.com/post/146257394201/s

cience-powering-product-large-scale-query-to-ad

https://yahooresearch.tumblr.com/post/146257394201/science-powering-product-large-scale-query-to-ad

Vectors for Research Purposes

 8M query vectors + 4K <query, query, grade> data available

 Webscope program:

http://webscope.sandbox.yahoo.com/catalog.php?datatype=l

&did=73

 Comparison to word2vec on query rewriting task:

http://webscope.sandbox.yahoo.com/catalog.php?datatype=l&did=73

Thank You!

Questions?

Tail query vectors

3. tail queries

How to generate vectors for tail queries?

How to do online matching and leverage search2vec?

 Build an index for online matching

 Leverage head queries and form documents from their

search2vec rewrites(gives us semantic expansions)

 For a new query: textual match against document, retrieve

vector of the top result

Tail query vectors

3. tail queries

Step 1: find top K = 10 queries for each head query from the
vocabulary

query expansions score

scuba diving equipment 0.792

diving gear 0.766

scuba diving gear scuba equipment 0.765

scuba gear 0.764

scuba shop 0.763

query expansions score

bread maker 0.728

bread machines 0.722

bread machines cusinart bread maker 0.644

bread machine reviews 0.621

bread machine recipes 0.605

query expansions score

met opera address 0.824

met opera nyc 0.819

met opera ny metropolitan opera house new york city 0.805

met opra 0.793

metropolitan opera in nyc 0.790

query expansions score

free stock tickers 0.763

stock ticker app 0.760

stock pro best real time stock apps 0.757

best stock tracker app 0.741

free stock apps 0.732

Tail query vectors

3. tail queries

Step 2: form query documents (flatten)

id document

scuba_diving_gear scuba diving equipment diving gear scuba equipment scuba
gear scuba shop

bread_machines bread maker bread machines cusinart bread maker bread
machine reviews bread machine recipes

met_opera_ny met opera address met opera nyc metropolitan opera house
new york city met opra metropolitan opera in nyc

stock_pro free stock tickers stock ticker app best real time stock apps
best stock tracker app free stock apps

Tail query vectors

3. tail queries

Step 3: invert index for fast matching

input query top result matched document

metropolitan opera

house that is in new

york city

new_york_city_op

era

metropolitan opera tosca ny city opera metropolitan opera

promo code new york city opera new york city opera

company metropolitan opera website metropolitan opera

house lincoln center met opera new york metropolitan

opera dress code metropolitan opera discount tickets

malware bytes free

edition software

download

free_antimalware_

software

free malware software download malware bytes download

free malwarebytes downloads anti malware malware anti

malware antivirus free download norman malware free anti

malwarebytes free edition free antimalware software

what is the best

stock ticker trading

app in appstore?

stock_pro free stock tickers stock ticker app best stock chart best real

time stock charts best stock tracker app free stock apps

stock tracker software good stocks to day trade free stock

market ticker stock pro

Tail query vectors

 Evaluation

40M

50Mordered by
frequency

use for testing the
matching

index
query vectors

0.2 1.2 6.8 0.7 3.2

Vq-context

0.3 1.3 6.2 0.5 3.1

Vq-index (top result)

cosine similarity

Tail query vectors - Evaluation

Offline Evaluation

 Vq-context : query vectors learned from sessions (50M)

 Vq-index : query vectors formed by leveraging index (50M)

 sim : average cosine sim. between Vq-context and Vq-index

 High sim tells us we came close to the “ground truth”

method average std

words 0.452 0.101

phrases 0.574 0.120

CRF phrases 0.514 0.119

elastic co-occurred queries K=10 0.621 0.084

elastic s2v K=10 0.717 0.091

