YAHOO! RESEARCH

Scalable Semantic Matching of Queries to Ads in Sponsored Search

Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri, Ricardo Baeza-Yates, Andrew Feng, Erik Ordentlich, Lee Yang, Gavin Owens

Yahoo Research, Advertising Sciences

Sponsored Search

New York Helicopter Tours Adrenaline365.com Adrenaline365.com/Helicopter-Tours ***** 260 reviews From \$154, Pay No Fees on the Day! Spectacular NYC Helicopter Tours Call 15-Min Helicopter ... 20-Min Helicopter ... 30-Min Helicopter ... Spectacular NY Hel...

New York Tours | newyorkpass.com/tours-new-york

Advertisers

- Provide ad creative (title, description, url)
- Provide bidterms (queries they want their ad to show for)

Search Engine

- Matches queries to bidterms (exact match + variant match)
- Implements: broad match

Sponsored Search

Adrenaline365.com Adrenaline365.com/Helicopter-Tours ***** 260 reviews From \$154, Pay No Fees on the Day! Spectacular NYC Helicopter Tours Call 15-Min Helicopter ... 20-Min Helicopter ... 30-Min Helicopter ... Spectacular NY Hel...

New York Tours

newyorkpass.com

Broad Match: advanced matching to non-provided keywords by:

Query rewriting:

Given a user query, find K semantically similar queries

Query-ad matching:

Need to place queries and ads in same feature space

ISSUE – No way we can find that this query and this ad are related

Query and Ad Representations

2) New – move from sparse to dense vectors

- Represent queries and ads as numeric vectors
- Vectors need to be learned using training data (search sessions)
- We want queries/ads with similar contexts to have similar vectors

session 1:trip_ideascheap_flightsholiday_travel_dealssession 2:trip_ideasair_ticketsholiday_travel_deals

Search2Vec

search2vec = word2vec [1] where:

- words = {queries, search ads, search links}
- documents = search sessions (uninterrupted sequences of user actions on the search engine)

[1] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013

Search2Vec

Search Sessions Dataset

- S1 hoka_running_shoe_reviews adid_2283077190 hoka_shoes_for_bad_feet hoka_shoes amazon zappos_shoes slc_231234142
- S2 king_tut king_tut_exibit king_tut_exibit_seattle adid_3858375378
 - gas_caps gas_cap_replacement_for_cars adid_1066604760
- S3 gas_door_replacement_for_cars slc_81285142 fuel_door_covers autozone_auto_parts adid_253157233
- S4 hoka_one_one run_florida hoka_shoes shoes_with_sl_2_last shoes_with_a_bigger_toe_box stans_shoes clarks_shoes slc_1567342

Search2Vec

Example search session:

Query8, Ad1, Query2, Query6

$$\mathbf{v}_{i}^{new} = \mathbf{v}_{i} + \eta \times (1 - \sigma(\mathbf{v}_{i}^{T} \mathbf{u}_{neigh})) \times \mathbf{u}_{neigh}$$
$$\mathbf{v}_{i}^{new} = \mathbf{v}_{i} - \eta \times \sigma(\mathbf{v}_{i}^{T} \mathbf{u}_{neg}) \times \mathbf{u}_{neg}$$

Search2Vec – after training

Query-to-Query similarity

Search2Vec – after training

Query Rewriting

Try our state-of-the-art system for query rewriting.			Input Type:	
scuba			Search Query	-
Result	Relevance	+	Output Type:	
No results			Search Query	•
			Search	

Search2Vec – after training

Query-to-Ad matching

ad_243609_341454

0.2 1.1 7.2 0.8 3.1

mystery_games

 \mathbf{J}

ad metadata	
	instant downloads and boxed sets of exciting murder mystery party games
generated keywords	murder mystery murder mystery games mystery games murder mystery party mystery party free murder mystery games for parties detective games murder mystery game how to host a mystery party for kids murder mystery dinner friends game night murder mystery parties at home murder mystery dinner party

Search2Vec – additional context

- How can we leverage additional search-specific context?
- What is context for a query in web search?
 - 1. Other queries in user search sessions
 - 2. Ads clicked (positives), dwell time, skipped ads (negatives)
 - 3. Search results clicked (represented with url)

Search2Vec – additional context

Dwell-time sensitive updates

- gradient multiplier: ni = log(1+t) t=dwell time in minutes
- ad clicks with longer dwell time
 -> larger learning rate
- ad clicks with short dwell time -> small learning rate

Seconds

Search2Vec – additional context

Ad skips as implicit negative signal

Skipped ads = ads at high positions skipped in favor of ad click at lower position

Search2Vec – final model

$$\operatorname{argmax}_{\theta} \overset{\circ}{\underset{(a,c)\hat{\mathsf{I}}}{\otimes}} \log \frac{1}{1 + e^{-v_c \mathbf{x}_a}} + \overset{\circ}{\underset{(a,c)\hat{\mathsf{I}}}{\otimes}} \log \frac{1}{1 + e^{v_c \mathbf{x}_a}} + \overset{\circ}{\underset{(q,ad)\hat{\mathsf{I}}}{\otimes}} \log \frac{1}{1 + e^{v_q \mathbf{x}_{ad}}}$$

Search2Vec - editorial evaluation

20K judgments <query, ad, score, grade> :

grade = {Bad, Fair, Good, Excellent, Perfect}

Cheep tickets, travelocity ad, 0.831, Perfect>

Search2Vec – A/B test

- **2** ways to increase Revenue Per Search:
- 1) Increase Depth: find more ads for queries that have ads

2) Increase Coverage: find ads for queries that do not have ads

Search2Vec – A/B test

- For each query find closest 30 ads in embedding space above 0.7 similarity and store in a <query, ad list> table
- **Control**: does not include this table: Ads
- Bucket: includes this table: Ads +

Bucket	Query Coverage	Auction Depth	CTR	Click Yield	Revenue per Search
1-machine	+1.14%	+2.13%	+0.5%	+1.7%	+7.07%

Ads

Low overlap with other match types: 90% pairs are unique

Search2Vec – Limitations

1. size of vocabulary

- **problem**: single 256GB machine can train up to 80M vectors
- **solution**: distributed training

2. cold ads

- **problem**: new ads added daily (no clicks to train ad vectors)
- **solution**: content vectors (create ad vectors from ad text)

3. tail queries

- **problem**: not enough observations to train a query vector
- **solution**: index head query vector-based expansions

Training

Initialize pair of vectors V (input) and U (output) for each word in vocab

Update v of center word and u's of neighbors and random negatives

Updates involve vector multiply-accumulates (v+=au, u+=av, v+=βu, u+=βv), with a, β determined by (u•v, u•v).

Parameter Server (PS) - distributed in-memory store for model parameters (vectors), supports: GET, PUT

1 Client:

- Take a mini-batch of data (e.g. 200 sessions)
- PS GET: v vectors for each word from mini-batch and vectors for neighbors and random negatives
- Client calculates gradient updates for all v and u
- PS PUT: updates v and u vectors in key-value store (no locks)

Distributed S2V – A/B test

More vectors: ~300M query & ad vectors

- **Control**: prod + 1 machine s2v
- **Bucket**: prod + 1 machine s2v + distributed s2v

Bucket	Query Coverage	Auction Depth	CTR	Click Yield	Revenue per Search
distributed search2vec	+2.44%	+2.39%	+0.2%	+1.81%	+9.39%

2. cold ads

How to generate vectors for new ads?

source	n-gram	has vector	similarity to bid term
bidterm	dna_testing	YES	1
title	ancestry	YES	0.66
title	dna	YES	0.76
title	testing	YES	0.24
title	ancestry_dna	NO	
title	dna_testing	YES	1
title	ancestry_dna_testing	YES	0.87
description	learn	YES	0.11
description	more	YES	0.03
description	learn_more	NO	_
description	about	YES	0.08
description	family_history	YES	0.62
description	your_family	YES	0.37

Offline Evaluation

Offline Evaluation

- V_{ad-context} : ad vectors learned from sessions
- V_{ad-content} : ad vectors formed from content
- **sim** : average cosine sim. between V_{ad-context} and V_{ad-content}
- High sim tells us we came close to the "ground truth"

method	average	std
words	0.574	0.059
phrases	0.665	0.067
CRF phrases	0.604	0.075
bid term only	0.731	0.128
anchor phrases	0.792	0.077

Cold-start ad vectors – A/B tests

More ad vectors: additional 50M ad vectors

- **Control**: prod + distributed s2v
- **Bucket**: prod + distributed s2v + cold ad vectors

Bucket	Query Coverage	Auction Depth	CTR	Click Yield	Revenue per Search
Cold Start Ad Vectors	+7.05%	+4.36%	-0.6%	+3.96%	+9.83%

Our system today

Tail queries A/B tests – still to come

search2vec today:

- top BROAD match algorithm
- 30%+ of all BROAD match impressions

Read more about it at: yahooresearch.tumblr.com

https://yahooresearch.tumblr.com/post/146257394201/s cience-powering-product-large-scale-query-to-ad

Vectors for Research Purposes

- 8M query vectors + 4K <query, query, grade> data available
- Webscope program: <u>http://webscope.sandbox.yahoo.com/catalog.php?datatype=l</u> <u>&did=73</u>
- Comparison to word2vec on query rewriting task:

Method	oAUC	Macro NDCG@5
word2vec	0.817	0.929
search2vec	0.880	0.959

Thank You!

Questions?

3. tail queries

How to generate vectors for tail queries?

How to do online matching and leverage search2vec?

- Build an index for online matching
- Leverage head queries and form documents from their search2vec rewrites(gives us semantic expansions)
- For a new query: textual match against document, retrieve vector of the top result

3. tail queries

Step 1: find top K = 10 queries for each head query from the vocabulary

que	ry		ехр	ansions	score	_
	que	ry	e	expansions	score	
		query		expansions		score
scu		quer	у	expansions		score
Jeu	brea			free stock tickers		0.763
		met		stock ticker app		0.760
-		stoc	k pro	best real time stock apps		0.757
1				best stock tracker app		0.741
		_		free stock apps		0.732

3. tail queries

Step 2: form query documents (flatten)

id	document
scuba_diving_gear	scuba diving equipment diving gear scuba equipment scuba gear scuba shop
bread_machines	bread maker bread machines cusinart bread maker bread machine reviews bread machine recipes
met_opera_ny	met opera address met opera nyc metropolitan opera house new york city met opra metropolitan opera in nyc
stock_pro	free stock tickers stock ticker app best real time stock apps best stock tracker app free stock apps

3. tail queries

Step 3: invert index for fast matching

input query	top result	matched document
metropolitan opera house that is in new york city	new_york_city_op era	metropolitan opera tosca ny city opera metropolitan opera promo code new york city opera new york city opera company metropolitan opera website metropolitan opera house lincoln center met opera new york metropolitan opera dress code metropolitan opera discount tickets
malware bytes free edition software download	free_antimalware_ software	free malware software download malware bytes download free malwarebytes downloads anti malware malware anti malware antivirus free download norman malware free anti malwarebytes free edition free antimalware software
what is the best stock ticker trading app in appstore?	stock_pro	free stock tickers stock ticker app best stock chart best real time stock charts best stock tracker app free stock apps stock tracker software good stocks to day trade free stock market ticker stock pro

Evaluation

Tail query vectors - Evaluation

Offline Evaluation

- V_{g-context} : query vectors learned from sessions (50M)
- \blacksquare V_{q-index} : query vectors formed by leveraging index (50M)
- **sim** : average cosine sim. between $V_{q-context}$ and $V_{q-index}$
- High sim tells us we came close to the "ground truth"

method	average	std
words	0.452	0.101
phrases	0.574	0.120
CRF phrases	0.514	0.119
elastic co-occurred queries K=10	0.621	0.084
elastic s2v K=10	0.717	0.091