Innl

Abstract

Embedding of rare and out-of-vocabulary (OOV) words is an important
open NLP problem. A popular solution is to train a character-level neural
network to reproduce the embeddings from a standard word embedding
model. The trained network Is then used to assign vectors to any input
string, including OOV and rare words. We enhance this approach and
introduce an algorithm that iteratively refines and improves both word- and
character-level models. We demonstrate that our method outperforms the
existing algorithms on 5 word similarity data sets, and that it can be
successfully applied to job title normalization, an important problem in the
e-recruitment domain that suffers from the OOV problem.

Recently proposed Mimicking (Pinter et al., 2017; Kim et al., 2018)
approach is a promising solution to the problem of Out-of-Vocabulary
(OOV). Their main idea is to train a character-level embedding neural
network (NN) that can reconstruct, or mimic, an embedding from word-
level embedding model. The trained character-level model is then used to
generate both semantically and syntactically relevant embeddings for
arbitrary character sequences.

Squared Euclidean Loss

T

Vector Representation v, Vector Representation v;”

(0000000] (0000000]

Mimick (Pinter et al., 2017) and
GWR (Kim et al., 2018) are the 2
representatives of this method.
They share the same idea, where a
character-level embedding model
G is learned to mimic a pretrained
word-level embedding model W.

Char-level Neural Network (G)| | Word-level Embeddings (W)

BEERR |

Cc O D E R CODER

Figure 1. General Mimicking Framework

Word embedding model (W): Given a corpus D and a vocabulary V, word
embedding models such as SkipGram and CBOW output a vector for each
word in V, resulting in an embedding set {(w,, vW )|i, ..., M}, where

w; € V isaword and v, € Rd is its vector representation.

Character embedding model (G): Mimick and GWR expands the fixed-
vocabulary semantic space by training a character neural network G to
mimic the embeddings from W. Generator G provides mapping from a
character sequence to a vector in the same space as W, while preserving

syntactic similarities(Pinter et al., 2017)
00000000

00000000

To train G, we minimize the
squared Euclidean distance -

C W 1ghwz;yLayer
between v’ and v, forw, € V P e

..................

Fully-Connected Layer (d-dim)

Fully-Connected Layer (d-dim)

,/7

V|
1
c-

1=1

QO 0] GO0 0 O]

Improving Word Embeddings through Iterative Refinement of

Word- and Character-level Models
Phong Ha, Shanshan Zhang, Nemanja Djuric, Slobodan Vucetic

Department of Computer and Information Sciences, Temple University

lterative Mimick

When G is fit on W, we observed that the syntactic
similarities dominate relationships between the
words, while semantic similarities weaken as
compared to the embeddings produced by W. For
example, for our e-recruiting data set discussed in
more detail below, the neighbors of are mostly
spelling variants of job java developer titles such
as javadeveloperor, javapython, developer.
Similarly, when the model is trained on a Twitter
data set, neighbors of the word are foods,
fooooood, and frood. This result is clearly
suboptimal, and is consistent with earlier findings
(Pinter et al., 2017)

titles. Given dataset D = {(¢t,,di)|i= 1,...,N

are shown in Extrinsinc Evaluation Section

Job Title Normalization is a prime example of the OOV problem due to the unstructured nature of job

Both are free-form text entered by a user of a professional network such as LinkedIn or Indeed. Let
us also suppose there is a job title taxonomy O = {o,, ...,
distinct job categories. An example of such a taxonomy is the Standard Occupational Classification

(SOC), whose O*NET-SOC2010 release contains 1,100 job titles (Elias et al., 2010). Then, the task
Is to match (or normalize) job title t € T to one job category o € O from the taxonomy.

To address this issue, we propose an lterative
Mimicking (IM) mechanism, illustrated in Figure 3. In
IM, the word embedding model W and character
embedding model G alternately influence each other in
multiple iterations, a procedure we refer to as
retrofitting. After fitting G on W once, IM continues with
training W by re-initializing vector v"; with the current
Gi for each w; € V. Thanks to different initialization,
the training of W results in a different local minimum
that should better represent the morphological
information captured by G. The retrofitting will not only
correct the vectors that G wrongly placed in the
semantic space, but also enhance the learning of W by
exploiting knowledge about syntactically similar words
learned by G.

Job Title Normalization

om}, which is a finite set denoting m

Professor

Visiting Assistant

Update G by
mimicking

- word vectors / \
Word \_) Character

Embedding Embedding
Model W

Model G
\ J : \ Y

Re-initialize W
using G. Update W

Figure 3. lterative Mimick Framework

Upon retraining W, IM proceeds by updating G based on the updated W, and the entire iterative process is repeated several times. The algorithm terminates after
N iterations, after the gap between word-embedding space W and character-embedding space produced by G is sufficiently small, or after the embedding by G
stabilizes. During inference, we may use G to generate vectors for any input string and discard W. Mimick (Pinter et al., 2017) and GWR (Zhao et al.,2018) are
special cases of our algorithm, where the number of iterations N=1

Job Title Job Description
}, where t; Is job title and d; Is job description. Software Im a python developer building a web application for job
l ; Engineer recruiters to search multiple job boards at once like

kayakcom for recruiters its a highly concurrent application
using mongodb for the backend

Research in differential algebra and mathematical logic.
Taught graduate and undergraduate courses in Logic
Model Theory, Theory of Computation.

Table 1. Example Job Titles and Job Descriptions

We apply our lterative Mimick algorithm to solve this problem. For each pair (t;, di), we randomly insert ¢, into d; to train W. Then, once we obtain G from the
IM model, we use it to provide each job title t; and each job category o, a vector. Each t, is normalized to the nearest o, in terms of Euclidean distance. Results

#chairma

hematics_tutor #junior

#t*tor

#tg

searc aSS|Sta nt #software_developer c
r

n #g d research_assistant

e) = it
#it_
#u d g ad ew r ssistant

#research_#hgigeatine

. #mathematician
#reseﬁ‘%ﬁt e‘%rgi%?"“&%ﬁ deergar ﬁgn

#analytical chemist

prescdth @hgnmﬁxee

#marker scientist #jun

00000

r_develgipeiependent_developer #it_

#software_engine

#programme
#development_of, oft #lava aftmg dev
#system_developer op Of4RRRWY %%ﬁ@é@@%ﬁﬁ ware_sy oper

#assistant_ma gﬂgm fth dl\{ Itpm?tvs"a g g eer # oftware_enginee

#lead_develd
sultant ﬁthlt

#lead e
#principal_software_engineer

"POYFIMEE application devEigy@.Programmer

#application_development_intern #senior_php_developer

#backend_developer

onfiguration_and_iéAaGEREESRsABHTRBIS. developer

sultant_webapp_developer

#rd_team_le d ftW nQ software_developer

sSftwar &ngin n_tra nﬁt
nd_develo pe# software_engin

. d‘é"s"l t;mr dmeiswsudwgw;pﬁagrémm erar bllytytt st_engin

r_project_manager

#senior _programmer #it_specialist

#programmer_analyst

#w b_application #¥fRdiRyeloper

#softwar dwbd velopment_inter #s ftw %%ngtp ogramme

#pythondjango d#%l@fw d Ipp

softwarg, engin %%@%ﬁp%ftware_engineer

"glevelope software_dev
#pﬁﬁ}fﬂﬁ‘?ﬁ% engineering_igt@tRior software_architect
#software_development_intern #senior_developer ¢
enginéédeveloper
#sr_softwdre_developer

# lication’ de ﬁgﬁ&m engineer
#senior software_develo ppp

|ttpgmm#lb hpgmml#d softwa
#p oject_engineer_busi #@ahwa engineer par ttm

#php_developerit_systems
#senior_software_engineer

#java_developer

#software_architect
#sr_software_engineer #intern_soﬁSﬁét%_aésveel”@a@?er-'“temSh'p
ngineer
# ftw d eloper_internship

#junior_softwa g # CCCCC [tdqystem_analyst

#applications_developer
#programmer_part_time

#programmeranalyst #php_developer

# equity_derivatives it
#softwa - -
. d eloper_jffigqffware_analyst

#associate_software_engineer

#student_developer
#freelance_java_d eve|Op#php_web_étg’\;eéloapnég_developer

#software_engineering

Intrinsic Evaluation

We first evaluate our framework on the task on Word Similarity. Given word
pairs and the word similarity judgements by human labelers, the quality of
embedding models is measured as the correlation between the human

judgment and the cosine similarity of word embeddings.

5 Test sets and 2 Corpus are used in this evaluation. Pearson Correlation is
used as the measure. The results are shown in Table 2 below.

Corpus Model RG6S5 SL WS RW MEN
FastText 0D.551 0.273 0.621 0.422 0.613

Mimick 0418 0.142 0.439 0.206 0.390

Text8 Mimick+IM 0.463 0.238 0512 0.282 0.474
GWR 0.572 0.270 0.627 0.276 0.624

GWR+IM 0.643 0.294 0.673 0.317 0.664

FastText 0.662 0.196 0.415 0.277 0.628

Mimick 0.312 0.061 0.204 0.102 0.316

Twitter Mimick+IM 0.355 0.092 0.242 0.118 0.385
GWR 0.560 0.202 0.403 0.161 0.578

GWR+IM 0.683 0.221 0.467 0.189 0.612

Table 2. Pearson Correlation on 5 word similarity tasks

GWR outperformed Mimick on all data sets.

Both Mimick and GWR saw significant improvements through the proposed
iterative process on most data sets, confirming our hypothesis that iteratively
retrofitting the word- and the character-level models does improve the
embedding quality.

Extrinsic Evaluation

6 human judgers were
asked to evaluate the
quality of the 5 competing
models.

Frequency T T2 T3 T4 Ts T T~ Ts

AutoCoder 0.466 0501 0537 0.614 0.625 0.721 0.777 0.732
FastText 0408 0419 0481 0519 0581 0582 0.635 0.611

Mimick 0371 0368 0.536 0513 0479 0649 0.67 0616
Mimick+IM 0587 0.665 0.588 0.557 0.653 0.667 0.749 0.723
GWR+IM  0.592 0623 0.658 0.668 0.746 0.718 0.756 0.792

Table 3. Avg. testing scores in different frequency ranges

For each query job title, we listed randomly shuffled best matches from
O*NET-SOC taxonomy produced by each model.

Human evaluators were asked to choose the best match.

If a model produced the winning category it received 1 point, otherwise it
received 0 points.

If multiple models produced the winning category all of them received 1
point. Results are then averaged.

Judger #1 #2 #3 fi4 #5 #  Avg.

AutoCoder 0.636  0.679 0546 0.628 0.540 0.698 0.621
FastText 0552 03581 0476 0518 0511 0503  0.524
Mimick 0501 0527 0485 0571 0437 0554 03513

Mimick+IM  0.673 0.672 0.583 0.631 0.646 0.646 0.642

GWR+IM  0.758 0.767 0.647 0.719 0587 0.685 0.694

As can be seen in the tables,
applying IM to the Mimick
LSTM model, the quality of the
normalization significantly
improved, nearly 25% on
average.

GWR+IM consistently outperforms other models in most frequency
ranges. Our model also outperforms the commercial AutoCoder software

Table 4. Avg. testing scores by 6 different human judgers

in most frequency groups, only losing in T6 and T7.
Given that our model takes much less time to train and does not require
manual labor, this is an impressive result.

#web_developer_freelance
#android_developer

C O D E R
(b) GWR

#ac g@%ﬁﬁ%ﬁiﬁm A Pty Ioniskepnalyst

#tiskramedyst

#ﬁtita&ive_analyst

#dlrec.,ftmm e%_ma?ket: ng o
RIESS quwf arket gff lhce
eo Joyndsyr #|r‘|;h
#aghder
#f el®n &l% editor
b developer
#systgm#@gmgmstrator
#data base# i;dmmm&rator

(@) Mimick

uuuuu

Figure 5. All Job Title Variants are normalized to the category “Software Engineer”

Figure 2. Mimick and GWR Architectures Figure 4. Vector Space of Job Titles

www.PosterPresentations.com




