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Mimick

Job Title Normalization

Embedding of rare and out-of-vocabulary (OOV) words is an important

open NLP problem. A popular solution is to train a character-level neural

network to reproduce the embeddings from a standard word embedding

model. The trained network is then used to assign vectors to any input

string, including OOV and rare words. We enhance this approach and

introduce an algorithm that iteratively refines and improves both word- and

character-level models. We demonstrate that our method outperforms the

existing algorithms on 5 word similarity data sets, and that it can be

successfully applied to job title normalization, an important problem in the

e-recruitment domain that suffers from the OOV problem.

Abstract Iterative Mimick

Recently proposed Mimicking (Pinter et al., 2017; Kim et al., 2018) 

approach is a promising solution to the problem of Out-of-Vocabulary 

(OOV). Their main idea is to train a character-level embedding neural 

network (NN) that can reconstruct, or mimic, an embedding from word-

level embedding model. The trained character-level model is then used to 

generate both semantically and syntactically relevant embeddings for 

arbitrary character sequences. 

When G is fit on W, we observed that the syntactic

similarities dominate relationships between the

words, while semantic similarities weaken as

compared to the embeddings produced by W. For

example, for our e-recruiting data set discussed in

more detail below, the neighbors of are mostly

spelling variants of job java developer titles such

as javadeveloperor, javapython, developer.

Similarly, when the model is trained on a Twitter

data set, neighbors of the word are foods,

fooooood, and frood. This result is clearly

suboptimal, and is consistent with earlier findings

(Pinter et al., 2017)

Figure 1. General Mimicking Framework

Figure 2. Mimick and GWR Architectures

To address this issue, we propose an Iterative

Mimicking (IM) mechanism, illustrated in Figure 3. In

IM, the word embedding model W and character

embedding model G alternately influence each other in

multiple iterations, a procedure we refer to as

retrofitting. After fitting G on W once, IM continues with

training W by re-initializing vector 𝑣𝑊𝑖 with the current

Gi for each 𝑤𝑖 ∈ 𝑉. Thanks to different initialization,

the training of W results in a different local minimum

that should better represent the morphological

information captured by G. The retrofitting will not only

correct the vectors that G wrongly placed in the

semantic space, but also enhance the learning of W by

exploiting knowledge about syntactically similar words

learned by G.

Figure 3. Iterative Mimick Framework

Intrinsic Evaluation

Table 3. Avg. testing scores in different frequency ranges

Table 4. Avg. testing scores by 6 different human judgers

Extrinsic Evaluation

Word 
Embedding 
Model W

Character 
Embedding 

Model G

Update G by 
mimicking 
word vectors

Re-initialize W 
using G. Update W

Fully-Connected Layer (d-dim)

C       O       D       E       R

BiLSTM

Fully-Connected Layer (d-dim)

C      O      D      E        R

CNN

Highway Layer

(a) Mimick (b) GWR

Mimick (Pinter et al., 2017) and 

GWR (Kim et al., 2018) are the 2 

representatives of this method. 

They share the same idea, where a 

character-level embedding model 

G is learned to mimic a pretrained 

word-level embedding model W.

Word embedding model (W): Given a corpus D and a vocabulary V, word 

embedding models such as SkipGram and CBOW output a vector for each 

word in V, resulting in an embedding set {(𝑤𝑖, 𝑣𝑊𝑖)|𝑖, … ,𝑀}, where 

𝑤𝑖 ∈ 𝑉 is a word and 𝑣𝑊𝑖 ∈ 𝑅𝑑 is its vector representation. 

Character embedding model (G): Mimick and GWR expands the fixed-

vocabulary semantic space by training a character neural network G to 

mimic the embeddings from W. Generator G provides mapping from a 

character sequence to a vector in the same space as W, while preserving 

syntactic similarities(Pinter et al., 2017)

To train G, we minimize the 

squared Euclidean distance 

between 𝑣𝐺𝑖 and 𝑣
𝑊
𝑖 for 𝑤𝑖 ∈ 𝑉

Upon retraining W, IM proceeds by updating G based on the updated W, and the entire iterative process is repeated several times. The algorithm terminates after 

N iterations, after the gap between word-embedding space W and character-embedding space produced by G is sufficiently small, or after the embedding by G 

stabilizes. During inference, we may use G to generate vectors for any input string and discard W. Mimick (Pinter et al., 2017) and GWR (Zhao et al.,2018) are 

special cases of our algorithm, where the number of iterations N=1

Job Title Job Description

Software 

Engineer

Im a python developer building a web application for job 

recruiters to search multiple job boards at once like 

kayakcom for recruiters its a highly concurrent application 

using mongodb for the backend

Visiting Assistant 

Professor

Research in differential algebra and mathematical logic. 

Taught graduate and undergraduate courses in Logic 

Model Theory, Theory of Computation.

Job Title Normalization is a prime example of the OOV problem due to the unstructured nature of job 

titles. Given data set 𝐷 = {(𝑡𝑖, 𝑑𝑖)|𝑖 = 1, … ,𝑁}, where 𝑡𝑖 is job title and 𝑑𝑖 is job description. 

Both are free-form text entered by a user of a professional network such as LinkedIn or Indeed. Let 

us also suppose there is a job title taxonomy 𝑂 = {𝑜1, . . . , 𝑜𝑚}, which is a finite set denoting m 

distinct job categories. An example of such a taxonomy is the Standard Occupational Classification 

(SOC), whose O*NET-SOC2010 release contains 1,100 job titles (Elias et al., 2010). Then, the task 

is to match (or normalize) job title 𝑡 ∈ 𝑇 to one job category 𝑜 ∈ 𝑂 from the taxonomy. 

We apply our Iterative Mimick algorithm to solve this problem. For each pair (𝑡𝑖, 𝑑𝑖), we randomly insert 𝑡𝑖 into 𝑑i to train W. Then, once we obtain G from the 

IM model, we use it to provide each job title 𝑡𝑖 and each job category 𝑜𝑖 a vector. Each 𝑡𝑖 is normalized to the nearest 𝑜𝑖 in terms of Euclidean distance. Results 

are shown in Extrinsinc Evaluation Section

Table 1. Example Job Titles and Job Descriptions

Figure 5. All Job Title Variants are normalized to the category “Software Engineer”Figure 4. Vector Space of Job Titles

We first evaluate our framework on the task on Word Similarity. Given word 

pairs and the word similarity judgements by human labelers, the quality of 

embedding models is measured as the correlation between the human 

judgment and the cosine similarity of word embeddings.

5 Test sets and 2 Corpus are used in this evaluation. Pearson Correlation is 

used as the measure. The results are shown in Table 2 below. 

GWR outperformed Mimick on all data sets.

Both Mimick and GWR saw significant improvements through the proposed 

iterative process on most data sets, confirming our hypothesis that iteratively 

retrofitting the word- and the character-level models does improve the 

embedding quality.

Table 2. Pearson Correlation on 5 word similarity tasks

6 human judgers were 

asked to evaluate the 

quality of the 5 competing 

models. 

For each query job title, we listed randomly shuffled best matches from 

O*NET-SOC taxonomy produced by each model.

Human evaluators were asked to choose the best match. 

If a model produced the winning category it received 1 point, otherwise it 

received 0 points.

If multiple models produced the winning category all of them received 1 

point. Results are then averaged.

As can be seen in the tables, 

applying IM to the Mimick

LSTM model, the quality of the 

normalization significantly 

improved, nearly 25% on 

average. 

GWR+IM consistently outperforms other models in most frequency 

ranges. Our model also outperforms the commercial AutoCoder software 

in most frequency groups, only losing in T6 and T7. 

Given that our model takes much less time to train and does not require 

manual labor, this is an impressive result. 


