

Multi-Modal Trajectory Prediction of NBA Players

Authors:

Sandro Hauri, Temple University
Nemanja Djuric, Uber ATG
Vladan Radosaljevic, Spotify
Slobodan Vucetic, Temple University

NBA Dataset Overview

- Recent improvements in CV allow for precise localization of NBA players
- Human trajectory prediction
- Basketball player
 - face difficult decisions at every time step
 - take into account other players on the court
 - show a wide range of human locomotion
- Data of more than 300 games publicly available
- Dataset contains 25 updates per second
- 113,760 possession
- Approximately 305 hours of game play

Input and Output Data

- Predict trajectory of single offensive
 NBA player
- Take into account available data at each time step
- Predict M possible paths
- Predict a probability for each generated path

Table 1: Input data for one time step, containing a total of 23 values

Input	Variable	Unit	Range
ball	x	[ft]	[0, 94]
	y	[ft]	[0, 50]
player P	\boldsymbol{x}	[ft]	[0, 94]
	y	[ft]	[0, 50]
4 team mates	\boldsymbol{x}	[ft]	[0, 94]
	\boldsymbol{y}	[ft]	[0, 50]
5 opponents	x	[ft]	[0, 94]
	y	[ft]	[0, 50]
shot clock	t	[s]	[0, 24]

Table 2: Output contains a time series of H output velocities in xand y-directions, as well as per-mode probability for M modes

Output	Variable	Unit	Range
M trajectories for player P	$\hat{m{ u}}_m$	[ft/s]	[-25, 25]
M probabilities	\hat{p}_m	[none]	[0, 1]

Loss Function

- We adapt previously published multi-modal loss function
- Addition of Relaxed
 Kronecker Delta allows
 to ramp up reward for
 best mode

$$\begin{split} \mathcal{L}^{\text{MSE}}(\boldsymbol{\nu}, \hat{\boldsymbol{\nu}}) &= \frac{1}{2H} \| \boldsymbol{\nu} - \hat{\boldsymbol{\nu}} \|_2^2 \\ \mathcal{L}^{\text{MTP}} &= \sum_{m=1}^M \delta_{\epsilon}(m = m^*) \Big(\log \hat{p}_m + \alpha \mathcal{L}^{\text{MSE}}(\boldsymbol{\nu}_t^P, \hat{\boldsymbol{\nu}}_{t,m}^P) \Big) \\ m^* &= \underset{m \in \{1, \dots, M\}}{\arg \min} \operatorname{dist}(\boldsymbol{\nu}_t^P, \hat{\boldsymbol{\nu}}_{t,m}^P) \\ \delta_{\epsilon}(cond) &= \begin{cases} 1 - \epsilon, & \text{if condition } cond \text{ is true,} \\ \frac{\epsilon}{M-1}, & \text{otherwise.} \end{cases} \end{split}$$

Qualitative Results

Generated trajectories are

- smooth
- plausible
- physically achievable
- diverse

Figure 1: Visualization of predicted trajectories with H = 40 using several state-of-the-art methods: a) location-LSTM, b) CNN, c) MBT₁, d) MACRO VRNN₁, e) SocialGAN₄, f) MBT_{4l} (ours), red: attackers, blue: defenders, orange: ball, grey: input history of predicted player, yellow: prediction, green: ground truth; a video animation is included in the Supplementary Material

Quantitative Results

- Detailed results table in full paper
- Results show reduction in error measures on
 - Average Displacement Error of waypoints
 - Final Displacement Error of final trajectory location
 - Mean Squared Error of velocities
- Maximum acceleration of our approach: 12.2 m/s²
- Maximum acceleration of ground truth (after denoising): 14.5 m/s²
- Maximum acceleration of baseline (MACRO VRNN): 54.9 m/s²

Thank you for your attention!

