Protein Function Prediction by Integrating Different Data Sources

Liang Lan, Nemanja Djuric, Yuhong Guo, Slobodan Vucetic Temple University, Philadelphia, USA

Introduction

- Protein function annotation key challenge in post-genomic era
- Experimental annotation accurate, but slow and expensive
- Large amount of information available
- Data mining techniques can help when dealing with available, large-scale data sets

Our approach

- Integrate information from different sources to predict gene functions
- We consider following data sources:
 - Protein sequence similarity
 - Protein-protein interaction
 - Gene expression
- Hypothesis: Including information from various sources results in better predictor performance

Methodology

We use weighted k-Nearest Neighbour algorithm to calculate likelihood that protein p has function f

$$score(p, f) = \sum_{p' \in N_k(p)} sim(p, p') \cdot I(f \in functions(p'))$$

- Simple to implement, yet competitive when compared to SVM
- Different sim(p, p') can be obtained with different data sources

Methodology - Cont'd

- We calculated different scores using different sources (sequence similarity, PPI, gene expression) for each (*p*, *f*) pair
- Total of J gene expressions, resulted in J+2 scores that are combined:

$$score(p, f) = w^{SEQ} \cdot score^{SEQ}(p, f) + w^{PPI} \cdot score^{PPI}(p, f) + \sum_{j=1}^{J} (w_j^{EXP} \cdot score_j^{EXP}(p, f))$$

Integrating different scores

- How to find weights w^{SEQ} , w^{PPI} , w_j^{EXP} ?
- We considered several methods:
 - Assigning the same weights to all scores
 - Weight optimization by likelihood maximization
 - Weight optimization by large margin approaches
- Also considered enhancing similarity scheme using approach from Pandev et al.*
- * "Incorporating functional inter-relationships into protein function prediction algorithms", BMC Bioinformatics (2009)

Max-margin approach

Define the following optimization problem:

Given *n* genes and *m* scores, and *f*(*x*, *y*) is an *m* x 1 vector of scores for gene *x* and function *y*, solve:

$$\begin{split} \min_{\mathbf{w},\xi} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_i \sum_{y \in Y_i, \overline{y} \in \overline{Y_i}} \xi_i(y, \overline{y}) \\ \text{s.t. } \mathbf{w}^{\mathrm{T}}(f(x_i, y) - f(x_i, \overline{y})) \geq 1 - \xi_i(y, \overline{y}), \, \forall i, y \in Y_i, \overline{y} \in \overline{Y_i} \\ \xi_i(y, \overline{y}) \geq 0, \, \forall i, y \in Y_i, \overline{y} \in \overline{Y_i} \end{split}$$

where w is an $m \ge 1$ weight vector learned during training, and *C* is a regularization parameter

Experimental setup

- We focused on function prediction for human proteins
- Data sources:
 - Sequence similarity scores for all pairs of CAFA proteins
 - Gene expressions 392 Affymetrix GPL96 Platform microarray data sets from GEO
 - PPI Physical interactions between human proteins listed in OPHID database

Experimental setup - Cont'd

- 8,714 annotated human proteins in CAFA training set
- Out of those 8,714, total of 2,869 proteins covered by all three data sources
- For evaluation, only GO functions annotated by more than 10 proteins are considered
 This resulted in 240 MF and 1,123 BP GO terms
- Neighbourhood size fixed to 20

Score averaging scheme

- None of the considered approaches worked significantly and consistently better than simple averaging
- As a result, we give the same weight to all 3 data sources:

$$w^{SEQ} = w^{PPI} = 1/3$$
$$w_j^{EXP} = 1/(3J)$$

Results (average AUC)

- ver. 1 neighbors found among only 2,869 overlapping human proteins
- *ver.* 2 neighbors found among all 8,714 human proteins
- *ver.* 3 neighbors found among all 36,924 CAFA training proteins

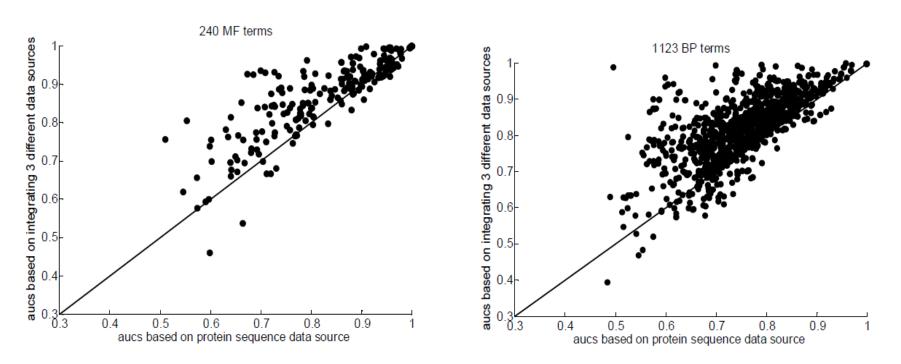
Data source	MF terms	BP terms
Microarray data	0.6442	0.6279
PPI data	0.6283	0.6671
Protein Sequence data, ver. 1	0.7636	0.6642
Protein Sequence data, ver. 2	0.7896	0.6921
Protein Sequence data, ver. 3	0.8396	0.7537
Integrating 3 data sources, ver. 1	0.8134	0.7468
Integrating 3 data sources, ver. 2	0.8494	0.7939
Integrating 3 data sources, ver. 3	0.8788	0.8165

Discussion

- Several important conclusions arise:
 - Gene expression is more useful for MF, while PPI is more useful for BP prediction
 - Sequence similarity data is superior to both gene expression and PPI data
 - It is beneficial to transfer functions to human proteins from their orthologues
 - Integration of data sources improves AUC significantly for both MF and BP terms

Results - Cont'd

 Comparison of AUC of sequence similarity scores (ver. 3) and integrated scores (ver. 3) for each GO term



Conclusion

- Some sources are more beneficial for BP, while some for MF terms prediction
- Integration of different sources improves function prediction significantly
- Exploring new integration techniques could lead to even better results

Thank you! Questions?