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Abstract—Automatic pollen detection has recently gained sig-
nificant research attention due to its importance for public health.
Numerous computer vision methods have been proposed for this
task, with the majority relying on two-stage object detection
models applied to optical microscopy images. However, two-
stage approaches generally suffer from higher inference times,
making them less suitable for real-time pollen monitoring tasks.
Moreover, model performance on measurements from outdoor
data samples remains largely unexplored because they introduce
additional challenges, including visually complex backgrounds
and the presence of other non-pollen particles such as dust,
spores, and debris. In this work, we investigate the limits of
the one-stage detection model YOLOv11 on Ambrosia pollen
detection in images of outdoor and laboratory-prepared samples,
acquired with the AeroTape device. We systematically evaluate
training strategies, analyzing the effects of using either laboratory
or outdoor images, their combinations, and also the use of
data augmentation. The results show that incorporating aug-
mented lab-prepared pollen images into training achieves the best
mAP@50-95, highlighting the benefits of controlled laboratory
data and one-stage detectors for improved generalization.

Index Terms—Ambrosia pollen, outdoor image, AeroTape

I. INTRODUCTION

Detection and quantification of pollen have traditionally
relied on the standard volumetric method [1], which requires
manual identification of each grain under a microscope. This
procedure is highly labor-intensive and time-consuming, often
causing delays of at least 36 hours before the data becomes
available. Such latency is particularly problematic for highly
allergenic taxa such as Ambrosia, which is known to trigger
allergic rhinitis and asthma [2]. Ambrosia is typically active
from August to October, with peak concentrations occurring
mid-September. Timely response and appropriate therapy are
therefore crucial for mitigating its health effects. Various
automated approaches have been proposed to overcome these
limitations, relying on optical microscopy, holographic imag-
ing, or electrical signals [1], [3]. Most research primarily
focused on classification tasks, employing both traditional
machine learning algorithms, such as support vector machines
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Figure 1: Images of Ambrosia pollen acquired in lab (left)
and outdoor setting with pollen denoted in red (right)

[4], and deep learning models, including convolutional neural
networks (CNNs) [5]. For detection tasks, two-stage models
such as Faster R-CNN and RetinaNet have been investigated
[4], [5]. Although these methods achieved promising accuracy
(mAP@0.5 > 87%), their relatively long inference times limit
their applicability for real-time monitoring. On the other hand,
one-stage models such as YOLO [6] provide faster inference.
However, to date, only a single study investigated the appli-
cation of YOLOv7 for pollen detection [4], highlighting the
need for further research.

The development and evaluation of deep learning models
depend heavily on the availability, quantity, and quality of
data. Publicly available pollen datasets are predominantly com-
posed of images acquired from laboratory-prepared samples
collected under controlled conditions [7]–[10]. However, it is
unclear how the performance achieved under these idealized
conditions translates to outdoor settings, where environmental
variability introduces substantial complexity. To address this
gap, a growing trend is emerging toward developing devices
capable of quantifying pollen in outdoor environments [11]–
[13]. In Figure 1, we illustrate the contrast between images
acquired in laboratory and outdoor conditions with the Aero-
Tape device developed by Oberon. In previous work, AeroTape
was used with a CNN-based model to detect and quantify



Figure 2: Images of Ambrosia pollen across four imaging
modalities:(1) epi, (2) lat, (3) lat UV, (4) trans

Ambrosia pollen across multiple monitoring sites in the Lyon
region [11]. The authors achieved high detection accuracy with
limited false positives, enabling an analysis of the diurnal cycle
and tracing the geographical origin of the Ambrosia pollen
[11]. Our study explores the potential of YOLOv11 [14] for
Ambrosia pollen detection in outdoor images acquired by the
AeroTape device, focusing on this model due to its superior
accuracy and speed compared to earlier YOLO versions [14].

II. METHODOLOGY

A. Dataset

Images used in this study were collected with AeroTape,
a device equipped with an optical system providing 100×
magnification and capable of capturing images at a resolution
of 2560 × 1920 pixels across four modalities [11]. AeroTape
is similar to Pollen Sense, an existing commercial system for
pollen monitoring, but offers higher spatial resolution [13].
The four modalities, illustrated in Figure 2, are as follows:

1) Epi: illumination at a right angle;
2) Lateral (lat): illumination at an acute angle;
3) Lateral UV (lat UV): illumination at an acute angle

using UV light;
4) Transversal (trans): illumination from beneath the

pollen sample surface.
The laboratory dataset comprised all four aforementioned

modalities of images acquired on laboratory-prepared samples
of Ambrosia pollen, with the AeroTape device deployed in
controlled laboratory conditions. Since outdoor images were
available only in the epi modality, for consistency, we consid-
ered only epi images from the laboratory dataset in the follow-
ing experiments. In total, 21 laboratory images of Ambrosia
pollen grains were included. The outdoor dataset, in contrast,
was acquired using the same device deployed outdoors in
Beaurepaire, France, between July 31st and September 6th,

Table I: Dataset stats showing image and label counts

Dataset Train Valid. Test
Laboratory 303 / 4,303 24 / 623 59 / 1,351

Outdoor 705 / 772 44 / 46 66 / 72

2024, corresponding to the peak Ambrosia season. The acquisi-
tion procedure involved capturing pollen deposited on adhesive
tape, illuminated with light beams of varying wavelengths and
angles. A total of 1,393 outdoor images were obtained, of
which 303 contained Ambrosia pollen grains. Images without
Ambrosia were excluded from further analysis.

Both datasets were split into training, validation, and test
sets in a 75 : 10 : 15 ratio. To address the limited dataset size
and meet the input resolution required by the used detector,
full-size images were divided into patches of 640×640 pixels.
Validation and test patches were strictly non-overlapping,
while training patches were allowed to overlap by 40% in
both height and width. Outdoor images were manually labeled,
while laboratory images were labeled using the Segment Any-
thing Model (SAM) [15], followed by manual post-processing
by a domain expert to fix errors and eliminate duplicates. The
total counts of images and labels are summarized in Table I.

B. Experimental Setup

We used the "nano" version of YOLOv11 (YOLOv11n),
containing 2.6 million parameters [16]. The training process
was initiated from a model pretrained on the COCO dataset
and run for 100 epochs. Data augmentation was applied
dynamically during training, with the specific augmentation
techniques selected through hyperparameter tuning during
50 epochs using the Ray Tune library [17]. Based on this
configuration, the study evaluated the model under six training
strategies, designed to systematically examine the effect of
laboratory and outdoor images when used as training data:

1) Strategy 1 (S1): Training on lab-prepared images;
2) Strategy 2 (S2): S1 with data augmentation;
3) Strategy 3 (S3): Training on outdoor images;
4) Strategy 4 (S4): S3 with data augmentation;
5) Strategy 5 (S5): Training on lab and outdoor images;
6) Strategy 6 (S6): S5 with data augmentation.
Strategies S1 and S2 only included laboratory images in

the validation set; S3 and S4 used outdoor images, while S5
and S6 utilized a mix of laboratory and outdoor images. All
six strategies were evaluated on the same outdoor test set
using precision, recall, and mean average precision with an
IoU threshold set to 0.5 (mAP@50), and average mAP with
a threshold in a range from 0.5 to 0.95 (mAP@50-95). In
Table II, we show tuned hyperparameters of YOLOv11n for
the appropriate validation sets. During the evaluation phase,
the detection confidence threshold was set to 0.7.

III. RESULTS AND DISCUSSION

The model was trained under six strategies designed to ex-
amine which experimental setup yields the best performance.
As seen in Table III, combining outdoor and laboratory images



Table II: Optimal training hyperparameters

Parameters Lab Outdoor Lab + Outdoor
Learning rate (lr0) 0.00723 0.01085 0.01299

Weight decay 0.00045 0.00051 0.00032
Warm-up epochs 3.69422 4.50391 3.6279

Optimizer AdamW AdamW AdamW
Saturation 0.9 0.83126 0.52659

Value 0.56883 0.75634 0.24081
Horizontal flip 0.29379 0.49852 0.29163

Scale 0.52098 0.40173 0.54584
Mosaic 0.90164 0.64924 1.0

Table III: Results on the outdoor image test set

Strategy mAP@50 mAP@50-95 Prec. Recall F1
S1 87.35% 63.53% 97.17% 76.38% 85.60%
S2 91.14% 66.35% 92.95% 86.11% 89.44%
S3 98.19% 83.87% 94.59% 97.22% 95.92%
S4 97.51% 84.65% 92.11% 97.22% 94.63%
S5 97.74% 84.50% 96.22% 97.22% 96.72%
S6 97.47% 84.71% 97.84% 95.83% 96.83%

with additional augmentation (as per strategy S6) overall
achieved the highest mAP@50-95 and F1 score. Examples
of output detections for S6 are shown in Figure 3.

Data augmentation was investigated as a strategy to improve
model performance. The same set of augmentation techniques
was applied across all strategies. Color-based augmentations
(saturation and value) were incorporated to account for simu-
lated changes in brightness and contrast induced by sensor in-
stabilities or changing illumination. Geometric augmentations
(horizontal flip and scaling) were selected to introduce vari-
ability in object orientation and size. Mosaic augmentation was
used to simulate complex backgrounds where pollen grains
co-occur with other particles and noise, resembling outdoor
conditions. The evaluation on the outdoor test set showed that
augmentation contributed to an increase in mAP@50-95 across
all considered strategies. The effect of data augmentation can
also be observed in the F1 scores between Strategies 1 and 2,
as well as between Strategies 5 and 6.

In Section I, we discussed concerns about the generalization
of models trained exclusively on laboratory images when
applied to outdoor environments. To investigate this, Strategies
1 and 2 were trained solely on laboratory data, with the only
difference being that augmentation was applied in Strategy
2. As observed from the evaluation metrics and the confusion
matrix (given in Table IV), Strategy 1 produced a considerable
number of false positives, indicating that many background
elements were incorrectly classified as Ambrosia. These results
confirm that training on laboratory-only data limits the model
performance in outdoor settings, as illustrated in Figure 3b
showing the incorrect S1 predictions on an example outdoor
test image. On the other hand, when only outdoor training
images are used (strategies S3 and S4), we see a clear
performance improvement (see mAP@50-95 and F1 scores in
Table III), which is expected as in this setup there is no domain
shift between train and test domains. However, we can see that
combining laboratory and outdoor images (strategies S5 and
S6) led to a further boost in performance. Moreover, using

Figure 3: Examples of YOLOv11n detections: (a) correct
detections using S6, (b) incorrect detection using S1; red

boxes indicate ground truth, while blue represent predictions

this setup together with augmentation (as per S6) achieved
the highest F1 and mAP@50-95, demonstrating that including
augmented laboratory samples alongside outdoor images im-
proves generalization to real-world conditions. Lastly, looking
at the confusion matrices for strategies S1 and S6 (as shown
in Tables IV and V, respectively), we observe a reduction in
false positives and a higher number of true positives when
using S6, albeit some false negatives remain.

Table IV: Confusion matrix for S1

Ambrosia (Pred) Background (Pred)
Ambrosia (True) 55 3

Background (True) 17 0

Table V: Confusion matrix for S6

Ambrosia (Pred) Background (Pred)
Ambrosia (GT) 70 4

Background (GT) 2 0

To further examine model behavior, we generated confi-
dence histograms for strategies S1 and S6, shown in Figure 4.
The histogram for S1 shows a larger number of highly confi-
dent detections, clustered above 0.9. However, the confusion
matrix (Table IV) indicates that many of these predictions are
incorrect, with 17 false positives and only 55 true positives.



(a) Strategy S1

(b) Strategy S6

Figure 4: Distribution of confidence scores for S1 and S6

This highlights that a model trained solely on laboratory im-
ages tends to assign high confidence even to wrong detections
in outdoor settings, leading to poor generalization. In contrast,
S6 produces fewer detections above the 0.7 confidence thresh-
old, with the histogram showing a more balanced distribution
of confidence values. Yet, the confusion matrix (Table V)
reveals a much better trade-off: 70 true positives and only
2 false positives. This indicates that including outdoor data
during training leads to a better-calibrated model, providing
more reliable detections. Hence, S6 demonstrates improved
selectivity and robustness compared to the S1 strategy.

IV. CONCLUSION

This study evaluated the detection of Ambrosia pollen in
outdoor images using the YOLOv11n model under six differ-
ent training strategies, investigating the effect of augmentation
and of using laboratory and outdoor images during training.
The results highlight that incorporating lab images into the
training set substantially enhanced model performance, under-
scoring the value of leveraging controlled data to mitigate the
challenges posed by outdoor variability. Data augmentation
also contributed positively to performance, as reflected by
mAP@50-95; however, the combination of laboratory images
and augmentation yielded the highest improvements. In gen-

eral, the results strongly suggest the importance of combining
data sources with augmentation techniques to improve the
detection performance in outdoor conditions.
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