a2 United States Patent
Mohta et al.

US012259694B2

US 12,259,694 B2
*Mar. 25, 2025

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR SENSOR
DATA PROCESSING AND OBJECT
DETECTION AND MOTION PREDICTION
FOR ROBOTIC PLATFORMS

(71) Applicant: Aurora Operations, Inc., Pittsburgh,
PA (US)

(72) Inventors: Abhishek Mohta, San Mateo, CA (US);
Fang-Chieh Chou, Redwood City, CA
(US); Carlos Vallespi-Gonzalez,
Wextord, PA (US); Brian C. Becker,
Pittsburgh, PA (US); Nemanja Djuric,
Pittsburgh, PA (US)

(73) Assignee: AURORA OPERATIONS, INC.,
Pittsburgh, PA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 18/656,210

(22) Filed: May 6, 2024

(65) Prior Publication Data
US 2024/0369977 Al Nov. 7, 2024
Related U.S. Application Data

(63) Continuation of application No. 17/501,614, filed on
Oct. 14, 2021, now Pat. No. 12,007,728.

(Continued)
(51) Imt.CL
GO05B 13/02 (2006.01)
B6OW 50/00 (2006.01)
B6OW 60/00 (2020.01)
(52) US. CL
CPC ... GO5B 13/0265 (2013.01); B60W 60/001
(2020.02); B6OW 50/00 (2013.01);
(Continued)

o

(58) Field of Classification Search

CPC ............ GO6N 3/02; GO6N 3/045; GO6N 3/08;
GO6N 20/00; GO6V 10/80; GO6V 10/77,
(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

11,422,546 B2* 82022 Giering ................. GOG6F 18/251
2020/0174490 Al* 6/2020 Ogale .......cccceen. GO6N 3/045
(Continued)

OTHER PUBLICATIONS

Casas et al., “IntentNet: Learning to Predict Intention from Raw
Sensor Data”, 2"¢ Conference on Robot Learning (CoRL), 2018,
Zurich, Switzerland, 10 pages.

(Continued)

Primary Examiner — Russell Frejd
Assistant Examiner — Brandon Z Willis
(74) Attorney, Agent, or Firm — Dority & Manning, P.A.

(57) ABSTRACT

Systems and methods are disclosed for detecting and pre-
dicting the motion of objects within the surrounding envi-
ronment of a system such as an autonomous vehicle. For
example, an autonomous vehicle can obtain sensor data
from a plurality of sensors comprising at least two different
sensor modalities (e.g., RADAR, LIDAR, camera) and
fused together to create a fused sensor sample. The fused
sensor sample can then be provided as input to a machine
learning model (e.g., a machine learning model for object
detection and/or motion prediction). The machine learning
model can have been trained by independently applying
sensor dropout to the at least two different sensor modalities.
Outputs received from the machine learning model in
response to receipt of the fused sensor samples are charac-
terized by improved generalization performance over mul-
tiple sensor modalities, thus yielding improved performance
in detecting objects and predicting their future locations, as
well as improved navigation performance.

20 Claims, 10 Drawing Sheets

OETAIN STNSOR DATA FROM A PLURALITY OF
SENSORS COMPRISING AT 1FAST TWO BIFFIRENT SENSGR
MODALTRES

-~ 862

¥

IHOEPENDENTLY ASPLY SENSCR DROPOUT TO THE AT LEASTTWO o

DIFFERENT SENSCR MODALITIES {F THE SENSOR DATA

¥
FHSE THE SENSOR DATA FROM THE AT LEAST
TWO DEFFERENT SENSOR MODALITIES WITh Y
SEHSOR DROPOUY INTEPERDENTLY APPLIED THERET T GENERATE
A FUSKT SENSOX Samins

2

PROCERS THE FHSED SERSUR SAMPLE WITH AT LEAST 8 PORTIN 508
OF TRE QBIECT BEFECEION MODEL

¥,

UPDATE GNE OR MORE WEIGHTS CF TRE OBJECT DETECTION .
MOBELBASE UM LABEES ASSTICIATED WO MHE SENSOR DATA nd




US 12,259,694 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 63/091,401, filed on Oct.
14, 2020.

(52) US. CL
CPC ..o B6OW 2050/0052 (2013.01); B6OW
2050/0083 (2013.01);, B6OW 2420/403
(2013.01); B6OW 2420/408 (2024.01); B6OW
2556/35 (2020.02)
(58) Field of Classification Search
CPC ... GO6V 10/82; GO6V 20/56; GO6V 20/58,;
GO6V 2201/07, GO6V 2201/08; GO6F
18/25; GO6F 30/27, GO6F 2111/18;
B60W 60/001; B60W 50/00; B6OW
2050/0002; B6OW 2050/0052; B60OW
2050/0083; B6OW 2420/403; B6OW
2420/408; B60W 2556/35; GO5B
13/0265; GO5SB 13/027; GO5B 13/041;
GO5B 13/042
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2020/0225321 Al*
2021/0122364 Al 4/2021 Lee

2021/0304046 Al* 9/2021 Miki ... ... GO6N 5/045
2021/0398338 Al* 12/2021 Philion ............... GO6V 10/774
2022/0026568 Al 1/2022 Meuter et al.

7/2020 Kruglick ................. GO1S 7/417

OTHER PUBLICATIONS

Djuric et al., “MultiXNet: Multiclass Multistage Multimodal Motion
Prediction”, arXiv:2006.02000v3, 8 pages.

Fadadu et al., “Multi-View Fusion of Sensor Data for Improved
Perception and Prediction in Autonomous Driving”, arXiv:2008.
11901v1, 10 pages.

Liang et al., “Deep Continuous Fusion for Multi-Sensor 3D Object
Detection”, European Conference on Computer Vision (ECCV),
2018, 16 pages.

Liu et al., “Learning End-to-End Multimodal Sensor Policies for
Autonomous Navigation”, arXiv:1705.10422v2, 13 pages.

Luo et al., “Fast and Furious: Real Time End-to-End 3D Detection,
Tracking and Motion Forecasting with a Single Convolutional Net”,
IEEE CVPR, 2018, pp. 3569-3577.

Manivasagam et al., “LiDARsim: Realistic LIDAR Simulation by
Leveraging the Real World”, IEEE CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 11167-11176.

Meyer et al., “LaserFlow: Efficient and Probabilistic Object Detec-
tion and Motion Forecasting”, arXiv:2003.05982v4, 8 pages.
Meyer et al., “Sensor Fusion for Joint 3D Object Detection and
Semantic Segmentation”, IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2019, 8 pages.

Shah et al., “LiRaNet: End-to-End Trajectory Prediction using
Spatio-Temporal Radar Fusion”, arXiv:2010.00731v3, 17 pages.
Srivastava et al., “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”, Journal of Machine Learning Research,
vol. 15, 2014, pp. 1929-1958.

Urmson et al., “Self-Driving Cars and the Urban Challenge”, IEEE
Intelligent Transportation Systems, Mar./Apr. 2008, pp. 66-68.
Yang et al., “RadarNet: Exploiting Radar for Robust Perception of
Dynamic Objects”, arXiv:2007.14366v1, 16 pages.

* cited by examiner



U.S. Patent Mar. 25, 2025 Sheet 1 of 10 US 12,259,694 B2

ENVIRONMENT
118

ROBOTIC PLATFORM
105

- (ISTSENSOR(S) )

| 2ND SENSOR(S){
i 10 :

5 {




US 12,259,694 B2

Sheet 2 of 10

Mar. 25, 2025

U.S. Patent

RSN

h

S0z
/.t.s)ﬁw — : . @
.Mwﬁ‘xfﬁ.ﬁ,m,uﬂxmﬁwu ¢ 91
4 . %12 41 e o
W _. -
_Use 5 \
S ) > ; T
SR, e, P R y —— e .
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV - | ma | i | I 557
W O ||\ WO || || NOLwd \ -
e R e i T2 e Wi
. JoNCEE oo, | NoIDIGR )\ HOLDEd WL
. A o . P o
7w ) 0k se R
S | YBLSS SNILNGH AHOKOLOY )
Iz W
WALSAS INELAGWO) TDIHIA R
ry
I X
W D! N
WALSTS a0y 546
/




US 12,259,694 B2

Sheet 3 of 10

Mar. 25, 2025

U.S. Patent

e
VVVVVV R A X 978
1004040\, /
BWH et OLSUALYH ey LINIOVWI JOVWLEY /- g0g
VWD /S \IOUWI UM/ /
e / piE-
fan O J
opE- M wvan \
AISNIINL <) anomiiod
g 3TN e won /0w e
HwwE |
) A38 ¥V
%E-¢ pLsmnvH 8es |
\ D08/ Lk 2R . O e O e ,% AGVWL YW N, e
4 S04 ,% ErEEIN
08NS LINXIOAW Of X des
| HAOMLIN N ~
bt WU e WEONL 0K ey SIS g
\ Wy / WIS s Toay /
[— o
/ (
8¢ BI
e



US 12,259,694 B2

Sheet 4 of 10

Mar. 25, 2025

U.S. Patent

~
104100 SNIAW NdIN0 19V1S 1581
A 4l Wit \\m@\j — o ;f;ﬂmhﬁ w\;, L AL
/_ \ S N& /ﬂ_ & AW W&%\M&\m\\
SHOIDIAIN oy il
JUSTIEVE04 NOIDIOIN NOLDIL0
WAOWILIAW :
QN —
NoaDYE L NOLDIEIO 434 NOaNYE
V1S QNODTS | “T0¥ GILVI0E 19V1S 1541
o 5T¥
- _ -
39YIS QNODIS
AL dYW ULV 10VIS 1S 1915 154

00y




U.S. Patent Mar. 25, 2025 Sheet 5 of 10 US 12,259,694 B2

80

(OBTAIN SENSOR DATA FROM A PLURALITY OF
SENSORS COMPRISING AT LEAST TWO DIFFERENT SENSOR
MODALITIES

INDEPENDENTLY APPLY SENSOR DROPOUT TO THE AT LEAST TWO W
DIFFERENT SENSOR MODALITIES OF THE SENSCR DATA

¥

FUSE THE SENSOR DATA FROM THE AT LEAST
TWO DIFFERENT SENSOR MODALITIES WITH e &0

SENSOR DROPOUT INDEPENDENTLY APPLIED THERETO TO GENERATE
A FUSED SENSOR SAMPLE

¥

PROCESS THE FUSED SENSOR SAMPLE WITH AT LEAST A PORTION P
OF THE OBJECT DETECTION MODEL

¥

UPDATE ONE OR MORE WEIGHTS OF THE OBJECT DETECTION 410
MOBEL BASED ON LABELS ASSOCIATED WITH THE SENSOR DATA <

FIG. 5




U.S. Patent Mar. 25, 2025 Sheet 6 of 10 US 12,259,694 B2

/0

OBTAIN SENSOR DATA FROM A PLURALITY OF 0
SENSORS COMPRISING AT LEAST TWO DIFFERENT SENSOR e
MODALITIES

FUSE THE SENSOR DATA FROM THE AT LEASY
TWO DIFFERENT SENSOR MODALETIES TO CREATE A FUSED SENSOR 104
SAMPLE -

PROVIDE THE FUSED SENSOR SAMPLE AS IRPUT 70 A MACHINE LEARNIRG
MODEL, THE MACHINE LEARNING MODEL HAVING BEEN TRAINED BY 106
INDEPENDENTLY APPLYING SENSOR DROPOUT TO THE AT LEAST TWO

DIFFERENT SENSOR MODALITIES

4

RECEIVE, AS AN OUTPUT OF THE MACHINE LEARNING MODEL IN RESPONSE
TG RECEIPT OF THE FUSED SENSOR SAMPLE PROVIDED AS INPUT, DATA -
INDICATIVE OF GNE OR MORE OBJECTS WITRIN AN ENVIRONMENT

FIG. 6




U.S. Patent Mar. 25, 2025 Sheet 7 of 10 US 12,259,694 B2

80

{OBTAIN SENSOR DATA FROM A PLURALITY OF
SENSORS COMPRISING AT LEAST TWO DIFFERENT SENSOR —
MODALITIES

FUSE THE SENSOR DATA FROM THE AT LEAST
TWO DIFFERENT SENSOR MODALITIES TO CREATE A FUSED SENSOR B804
SAMPLE

k

PROVIDE THE FUSED SENSOR SAMPLE AS INPUT 70 A MACHINE LEARNING
MODEL FOR OBJECT DETECTION AND MOTION PREDICTION, THE 806
MACHINE-LEARNING MODEL FOR OBJECT DETECTION AND MOTION 1
PREDICTION HAVING BEEN TRAINED BY INDEPENDENTLY APPLYING
SENSOR DROPOUT TO THE AT LEAST TWO DIFFERENT SENSOR MODALITIES

RECEIVE, AS AN QUTPUT OF THE MACHINE LEARNING MODELFOR OBJECT 1
DETECTION ARD MOTION PREDICTION IN RESPONSETO RECEIFT OFTHE
FUSED SENSOR SAMPLE PROVIDE AS INPUT, PERCEPTION DATA INDICATIVE
{F ONE OR MORE STATES OF THE ONE OR MORE OBJECTS WITHIN
THE ENVIRONMENT AND PREDICTION DATA INDICATIVE OF ORE OR
MORE PREDICTED FUTURE LOCATIONS OF THE ONE OR MORE OBJECTS

FIG. 7




US 12,259,694 B2

Sheet 8 of 10

Mar. 25, 2025

U.S. Patent

05ei—1

§hil—
Oboi—
A

&L

Slel—y

VAR

AR
rARd

3

DVIEINT WWOD
YIVQ GNINIVAL
HInTvdl 13000

SHAOW

A

SV N

b

v

—{snotnyisnr} { viva
RIOH3N

{05504 J

(SHIIAI0 N1IN4WO) .
W3ISAS INIINWOD ININEVITINIHOVI

17441

\

jS—

oot

e

(SHMOMIIN  §Z1L—

Sl
0511

T S

hY

%

F

#°

g (SYT300W

r

\\.ﬂ DVIEINT WD

)

—{snoronusat ) { vive

- A4OWIW

\\\\\\\\ { (shuoss108d

)

{SIIIA30 INLLNAWO)

\dv:/./
A

WILSAS SNILDAWGD

A1l



US 12,259,694 B2

Sheet 9 of 10

Mar. 25, 2025

U.S. Patent

0zl :
) 6 914
NN |
5501 HOLDBISSTD (ST NOLLISSYT HiTHL 0N
] T
OTPT (INIWNONIANY 3HL W) e /
SDILOON WO NIwNONINE | T .
L NI 38 0L CINTWAR0 (STA00W GaNEVITINTHIYW (STI81 HLIM SOV
3080 20 KO EISr D ook COWHODAB0) | d - gygnag wo/Gny (STAQON |« V90 HOSABS WELNANDAS
TU0K HOLLVAIWRSA a0 CENIVTINTIOYN L5314 “913) LSYLYO ONINIVAL
;;;;; » {
(ISIHAINT 40 SRnLVES e — v /o
__QNIOW OB OMIaNno L) /
BOVL “97)savos ontannos il vovt Yy
s\\\ \\\.\c\.\\\
,“ —
NOIDN e
501 NOISSIaH T (SYT8Y1 Y04 HLNYL ONNOYS
iyl _

o
o3
oo



U.S. Patent Mar. 25, 2025 Sheet 10 of 10 US 12,259,694 B2

1300

GENERATE TRAINING DATA FOR TRAINING A FIRST MACHINE-LEARNED | y500
MODEL -

SELECT & TRAINING INSTANCE BASED, AT LEAST IN PART, ON THE 1504
TRAINING DATA B

k

INPUT THE TRAINING INSTANCE INTO THE FIRST MACHINE-LEARNED Pt
MOBEL N

GENERATE LOSS METRIC(S) FOR THE FIRST MACHINE-LEARNED MODEL
BASED ON OUTPUT{S) OF AT LEAST A PORTION OF THE FIRSY
MACHINE-LEARNED MODEL IN RESPONSE T0 THE TRAINING INSTANCE

w//’”“'? 508

k

MODIFY AT LEAST THE PORTION OF THE FIRST MACHINE-LEARNED MODEL | 1510
BASED, AT LEAST IN PART, ON AT LEAST ONE OF THE LOSS METRI((S)

FIG. 10




US 12,259,694 B2

1
SYSTEMS AND METHODS FOR SENSOR
DATA PROCESSING AND OBJECT
DETECTION AND MOTION PREDICTION
FOR ROBOTIC PLATFORMS

RELATED APPLICATION

The present application is based on and claims the benefit
of U.S. Provisional Patent Application No. 63/091,401 hav-
ing a filing date of Oct. 14, 2020 and U.S. patent application
Ser. No. 17/501,614 having a filing date of Oct. 14, 2021,
which are incorporated by reference herein.

BACKGROUND

Robots, including autonomous vehicles, can receive data
that is used to perceive an environment through which the
robot can travel. Robots can rely on machine-learned models
to detect objects within an environment. The effective opera-
tion of a robot can depend on accurate object detection
provided by the machine-learned models. Various machine-
learned training techniques can be applied to improve such
object detection.

SUMMARY

Aspects and advantages of embodiments of the present
disclosure will be set forth in part in the following descrip-
tion, or may be learned from the description, or may be
learned through practice of the embodiments. Aspects of the
present disclosure are directed to a computing system that
can be used to detect surrounding objects and their motion
predictions which are critical components of a self-driving
system, necessary for safe operations. In particular, sensor
modalities can contribute towards the model performance.
Even more particularly, sensor dropout can be used to
mitigate issues such as increases in system complexity and
brittle models, leading to more robust, better performing
models. Thus, aspects of the present disclosure enable the
computing system to leverage a sensor dropout approach to
train robust models capable of jointly detecting and predict-
ing the motion of actors using LIDAR point clouds, camera
RGB images, and/or RADAR returns.

According to one example aspect, a computing system
can detect surrounding objects and their motion predictions
using a variety of sensor modalities. In particular, a com-
puting system can detect surrounding objects and their
motion predictions using sensor dropout. However, it is a
challenging task to detect surrounding objects and their
motion prediction. Multiple sensor modalities (e.g., cam-
eras, LIDARs, RADARs, etc.) are in general leading to
improved sensing systems where different sensors can
complement each other. For example, cameras can help with
detecting objects at longer ranges or RADAR helping to
improve the velocity estimates of vehicles. However, more
sensors being installed can also result in a more complex
model that may be difficult to manage and maintain, as well
as in a brittle system that may exhibit over-reliance on a
particular sensor modality. For example, a dominant LIDAR
sensor may be focused on during day operations, while
ignoring other sensors.

The present disclosure resolves these challenges by pro-
viding computing systems and methods that perform detec-
tion and motion prediction using the dropout of different
inputs during training. In particular, by using the dropout of
different inputs during training, the computing system and
method can improve in generalization performance during

15

25

35

40

45

50

55

2

online operations. Even more particularly, the dropout can
help limit the coupling of sensor modalities. For example,
the disclosed techniques can help prevent a model from
mostly relying on RADAR for vehicle detection and forcing
it to also be able to detect vehicles using only LIDAR and/or
image data. Even more particularly, it can also help the
autonomous system handle and recover from sensor noise.
For instance, sensor noise can occur when a camera is
impacted by glare or when sensor input data is dropped data
due to online latency or hardware issues (e.g., power inter-
rupts, physical damage to the sensor itself, etc.), which can
happen during real-world operations. Even more particu-
larly, sensor dropout can be useful in simulation use cases.
For instance, the realism gap between simulated and real
sensor data can be not the same for all sensor modalities. As
a result, reducing reliance on sensors where this gap is still
large can help improve the quality of simulation runs, and
lead to more realistic model performance in simulated
environments that is transferable to the real world.

Aspects of the present disclosure can provide a number of
technical improvements to robotic autonomous operations,
object detection technology, and simulation. By employing
dropout of different inputs during training, the proposed
systems reduce computer resource usage. In particular, pre-
vious sensing systems would be required to leverage mul-
tiple sensor modalities. By employing dropout of different
inputs during training, the proposed systems can reduce the
coupling of sensor modalities leading to a reduction in the
amount of computer operations needed to operate the sens-
ing system, conserving computing resources such as pro-
cessor usage, memory usage, network bandwidth, etc.

As another example technical effect, the proposed sys-
tems and methods allow for less reliance on availability of
all sensors at all times. This is especially beneficial where
the realism gap between simulated and real sensor data is not
the same for all sensor modalities. Thus, by reducing the
comprehensive reliance on sensors, the quality of simulation
runs and improved model performance in simulated envi-
ronments can be achieved.

In an aspect, the present disclosure provides a computer-
implemented method for object determination. The method
may comprise obtaining (e.g., by a computing system
including one or more processors, etc.) sensor data from a
plurality of sensors comprising at least two different sensor
modalities. The method may comprise independently apply-
ing (e.g., by the computing system, etc.) sensor dropout to
the at least two different sensor modalities of the sensor data.
The method may comprise fusing (e.g., by the computing
system, etc.) the sensor data from the at least two different
sensor modalities with sensor dropout independently applied
thereto to generate a fused sensor sample. The method may
comprise processing (e.g., by the computing system, etc.)
the fused sensor sample with at least a portion of the object
detection model. The method may comprise updating (e.g.,
by the computing system, etc.) one or more weights of the
object detection model based on labels associated with the
sensor data.

In some implementations, independently applying sensor
dropout to the at least two different sensor modalities of the
sensor data comprises independently applying sensor drop-
out to each of the at least two different sensor modalities at
a fixed probability associated with the sensor modality.

In some implementations, the plurality of sensors com-
prise a RADAR system, a LIDAR system, and a camera.

In some implementations, the at least two different sensor
modalities comprise at least one of the RADAR system or
the camera. In particular, independently applying sensor



US 12,259,694 B2

3

dropout to the at least two different sensor modalities of the
sensor data comprises zeroing out a final feature vector for
a portion of the sensor data obtained from the at least one of
the RADAR system or the camera.

In some implementations, sensor data is obtained from the
LIDAR system. In particular, independently applying sensor
dropout to a portion of the sensor data obtained from one or
more sensors of at least one of the at least two different
sensor modalities comprises replacing a LIDAR intensity
value with a sentinel value for a portion of the sensor data
obtained from the LIDAR system.

In some implementations, the fixed probability associated
with the sensor modality for at least one of the two different
sensor modalities is zero.

In some implementations, the machine learning model
comprises an end-to-end model that is configured to jointly
perform object detection and motion prediction.

In some implementations, the operations may further
include employing the trained machine learning model by a
robotic platform operating within an environment.

In some implementations, the robotic platform comprises
an autonomous vehicle.

In some implementations, the environment comprises a
real-world environment or a simulated environment.

In another aspect, the present disclosure provides an
autonomous vehicle control system comprising one or more
processors, and one or more computer-readable medium
storing instructions that when executed by the one or more
processors cause the autonomous vehicle to perform opera-
tions. The operations may comprise obtaining sensor data
from a plurality of sensors comprising at least two different
sensor modalities. The operations may comprise fusing the
sensor data from the at least two different sensor modalities
to create a fused sensor sample. The operations may com-
prise providing the fused sensor sample as input to a
machine learning model, the machine learning model having
been trained by independently applying sensor dropout to
the at least two different sensor modalities. The operations
may comprise receiving, as an output of the machine learn-
ing model in response to receipt of the fused sensor sample
provided as input, data indicative of one or more objects
within an environment.

In some implementations, the plurality of sensors com-
prise a RADAR system, a LIDAR system, and a camera.

In some implementations, the sensor data is obtained from
at least one of the RADAR system or the camera. In
particular, a training of the machine learning model com-
prises zeroing out a final feature vector for a portion of the
sensor data obtained from the at least one of the RADAR
system or the camera.

In some implementations, the sensor data is obtained from
the LIDAR system. In particular, a training of the machine
learning model comprises replacing a LIDAR intensity
value with a sentinel value for a portion of the sensor data
obtained from the LIDAR system.

In some implementations, the operations further comprise
controlling an autonomous vehicle (e.g., controlling a
motion of an autonomous vehicle) based on the data indica-
tive of the one or more objects within the environment.

In some implementations, the machine learning model
comprises an end-to-end model that is configured to jointly
perform object detection and motion prediction.

In another aspect, the present disclosure provides an
autonomous vehicle comprising one or more processors and
one or more computer-readable medium storing instructions
that when executed by the one or more processors cause the
autonomous vehicle control system to perform operations.

10

15

20

25

30

35

40

45

50

55

60

65

4

The operations may comprise obtaining sensor data from a
plurality of sensors comprising at least two different sensor
modalities. The operations may comprise fusing the sensor
data from the at least two different sensor modalities to
create a fused sensor sample. The operations may comprise
providing the fused sensor sample as input to a machine
learning model for object detection and motion prediction,
the machine learning model for object detection and motion
prediction having been trained by independently applying
sensor dropout to the at least two different sensor modalities.
The operations may comprise receiving, as an output of the
machine learning model for object detection and motion
prediction in response to receipt of the fused sensor sample
provided as input, perception data indicative of one or more
states of the one or more objects within the environment and
prediction data indicative of one or more predicted future
locations of the one or more objects. The operations may
comprise generating motion plan data for controlling the
autonomous vehicle based on the perception data and the
prediction data.

In some implementations, the plurality of sensors com-
prise a RADAR system, a LIDAR system, and a camera.

In some implementations, the sensor data is obtained from
at least one of the RADAR system or the camera, and a
training of the machine learning model for object detection
and motion prediction comprises zeroing out a final feature
vector for a portion of the sensor data obtained from the at
least one of the RADAR system or the camera.

In some implementations, the sensor data is obtained from
the LIDAR system, and a training of the machine learning
model for object detection and motion prediction comprises
replacing a LIDAR intensity value with a sentinel value for
a portion of the sensor data obtained from the LIDAR
system.

Other example aspects of the present disclosure are
directed to other systems, methods, vehicles, apparatuses,
tangible non-transitory computer-readable media, and
devices for generating data (e.g., scene representations,
simulation data, training data, etc.), training models, and
performing other functions described herein. These and
other features, aspects and advantages of various embodi-
ments will become better understood with reference to the
following description and appended claims. The accompa-
nying drawings, which are incorporated in and constitute a
part of this specification, illustrate embodiments of the
present disclosure and, together with the description, serve
to explain the related principles.

BRIEF DESCRIPTION OF THE DRAWINGS

Detailed discussion of embodiments directed to one of
ordinary skill in the art are set forth in the specification,
which makes reference to the appended figures, in which:

FIG. 1 depicts a block diagram of an example computing
platform according to example implementations of the pres-
ent disclosure;

FIG. 2 depicts a block diagram of an example system
according to example implementations of the present dis-
closure;

FIG. 3 depicts an example sensor data processing archi-
tecture according to example implementations of the present
disclosure;

FIG. 4 depicts an example machine-learned model for
joint detection and motion prediction, that can be trained
with sensor dropout techniques according to example imple-
mentations of the present disclosure;



US 12,259,694 B2

5

FIG. 5 depicts a flowchart of an example method for
training a machine learning model using sensor dropout
according to aspects of the present disclosure;

FIG. 6 depicts a flowchart of an example method of
analyzing sensor data using a machine learning model
according to aspects of the present disclosure;

FIG. 7 depicts a flowchart of an example method of object
detection and motion prediction using a machine learning
model according to aspects of the present disclosure;

FIG. 8 depicts a block diagram of an example computing
system according to example embodiments of the present
disclosure;

FIG. 9 depicts a block diagram of an example process for
training one or more machine-learned models according to
aspects of the present disclosure; and

FIG. 10 depicts a flowchart of an example method for
training a machine-learned model according to aspects of the
present disclosure.

DETAILED DESCRIPTION

The following describes the technology of this disclosure
within the context of an autonomous vehicle for example
purposes only. As described herein, the technology is not
limited to an autonomous vehicle and can be implemented
within other robotic and computing systems. For example,
the systems and methods disclosed herein can be imple-
mented in a variety of ways including, but not limited to, a
computer-implemented method, an autonomous vehicle sys-
tem, an autonomous vehicle control system, a robotic plat-
form system, or a general robotic device control system.

With reference now to FIGS. 1-10, example implemen-
tations of the present disclosure will be discussed in further
detail. FIG. 1 depicts a block diagram of an example
operational scenario 100 according to example implemen-
tations of the present disclosure. The operational scenario
100 includes a robotic platform 105 and an environment 110.
The environment 110 can be external to the robotic platform
105. The robotic platform 105, for example, can operate
within the environment 110. The environment 110 can
include an indoor environment (e.g., within one or more
facilities, etc.) or an outdoor environment. An outdoor
environment, for example, can include one or more areas in
the outside world such as, for example, one or more rural
areas (e.g., with one or more rural travel ways, etc.), one or
more urban areas (e.g., with one or more city travel ways,
etc.), one or more suburban areas (e.g., with one or more
suburban travel ways, etc.), etc. An indoor environment, for
example, can include environments enclosed by a structure
such as a building (e.g., a service depot, manufacturing
facility, etc.).

The robotic platform 105 can include one or more
sensor(s) 115, 120. The one or more sensors 115, 120 can be
configured to generate or store data descriptive of the
environment 110 (e.g., one or more static or dynamic objects
therein, etc.). The sensor(s) 115, 120 can include one or
more LIDAR systems, one or more Radio Detection and
Ranging (RADAR) systems, one or more cameras (e.g.,
visible spectrum cameras or infrared cameras, etc.), one or
more sonar systems, one or more motion sensors, or other
types of image capture devices or sensors. The sensor(s) 115,
120 can include multiple sensors of different types. For
instance, the sensor(s) 115, 120 can include one or more first
sensor(s) 115 and one or more second sensor(s) 120. The
first sensor(s) 115 can include a different type of sensor than
the second sensor(s) 120. By way of example, the first
sensor(s) 115 can include one or more imaging device(s)

10

15

20

25

30

35

40

45

50

55

60

65

6

(e.g., cameras, etc.), whereas the second sensor(s) 120 can
include one or more depth measuring device(s) (e.g.,
LIDAR device, etc.).

The robotic platform 105 can include any type of platform
configured to operate within the environment 110. For
example, the robotic platform 105 can include one or more
different type(s) of vehicle(s) configured to perceive and
operate within the environment 110. The vehicles, for
example, can include one or more autonomous vehicle(s)
such as, for example, one or more autonomous trucks. By
way of example, the robotic platform 105 can include an
autonomous truck including an autonomous tractor coupled
to a cargo trailer. In addition, or alternatively, the robotic
platform 105 can include any other type of vehicle such as
one or more aerial vehicles, ground-based vehicles, water-
based vehicles, space-based vehicles, etc.

FIG. 2 depicts an example system overview of the robotic
platform as an autonomous vehicle according to example
implementations of the present disclosure. More particu-
larly, FIG. 2 illustrates a vehicle 205 including various
systems and devices configured to control the operation of
the vehicle 205. For example, the vehicle 205 can include an
onboard vehicle computing system 210 (e.g., located on or
within the autonomous vehicle, etc.) that is configured to
operate the vehicle 205. For example, the vehicle computing
system 210 can represent or be an autonomous vehicle
control system configured to perform the operations and
functions described herein. Generally, the vehicle comput-
ing system 210 can obtain sensor data 255 from sensor(s)
235 (e.g., sensor(s) 115, 120 of FIG. 1, etc.) onboard the
vehicle 205, attempt to comprehend the vehicle’s surround-
ing environment by performing various processing tech-
niques on the sensor data 255, and generate an appropriate
motion plan through the vehicle’s surrounding environment
(e.g., environment 110 of FIG. 1, etc.).

The vehicle 205 incorporating the vehicle computing
system 200 can be various types of vehicles. For instance,
the vehicle 205 can be an autonomous vehicle. The vehicle
205 can be a ground-based autonomous vehicle (e.g., car,
truck, bus, etc.). The vehicle 205 can be an air-based
autonomous vehicle (e.g., airplane, helicopter, etc.). The
vehicle 205 can be a lightweight elective vehicle (e.g.,
bicycle, scooter, etc.). The vehicle 205 can be another type
of vehicle (e.g., watercraft, etc.). The vehicle 205 can drive,
navigate, operate, etc. with minimal or no interaction from
a human operator (e.g., driver, pilot, etc.). In some imple-
mentations, a human operator can be omitted from the
vehicle 205 (or also omitted from remote control of the
vehicle 205). In some implementations, a human operator
can be included in the vehicle 205.

The vehicle 205 can be configured to operate in a plurality
of operating modes. The vehicle 205 can be configured to
operate in a fully autonomous (e.g., self-driving, etc.) oper-
ating mode in which the vehicle 205 is controllable without
user input (e.g., can drive and navigate with no input from
a human operator present in the vehicle 205 or remote from
the vehicle 205, etc.). The vehicle 205 can operate in a
semi-autonomous operating mode in which the vehicle 205
can operate with some input from a human operator present
in the vehicle 205 (or a human operator that is remote from
the vehicle 205). The vehicle 205 can enter into a manual
operating mode in which the vehicle 205 is fully controllable
by a human operator (e.g., human driver, pilot, etc.) and can
be prohibited or disabled (e.g., temporary, permanently, etc.)
from performing autonomous navigation (e.g., autonomous
driving, flying, etc.). The vehicle 205 can be configured to
operate in other modes such as, for example, park or sleep



US 12,259,694 B2

7

modes (e.g., for use between tasks/actions such as waiting to
provide a vehicle service, recharging, etc.). In some imple-
mentations, the vehicle 205 can implement vehicle operating
assistance technology (e.g., collision mitigation system,
power assist steering, etc.), for example, to help assist the
human operator of the vehicle 205 (e.g., while in a manual
mode, etc.).

To help maintain and switch between operating modes,
the vehicle computing system 210 can store data indicative
of the operating modes of the vehicle 205 in a memory
onboard the vehicle 205. For example, the operating modes
can be defined by an operating mode data structure (e.g.,
rule, list, table, etc.) that indicates one or more operating
parameters for the vehicle 205, while in the particular
operating mode. For example, an operating mode data
structure can indicate that the vehicle 205 is to autono-
mously plan its motion when in the fully autonomous
operating mode. The vehicle computing system 210 can
access the memory when implementing an operating mode.

The operating mode of the vehicle 205 can be adjusted in
avariety of manners. For example, the operating mode of the
vehicle 205 can be selected remotely, off-board the vehicle
205. For example, a remote computing system (e.g., of a
vehicle provider, fleet manager, or service entity associated
with the vehicle 205, etc.) can communicate data to the
vehicle 205 instructing the vehicle 205 to enter into, exit
from, maintain, etc. an operating mode. By way of example,
such data can instruct the vehicle 205 to enter into the fully
autonomous operating mode.

In some implementations, the operating mode of the
vehicle 205 can be set onboard or near the vehicle 205. For
example, the vehicle computing system 210 can automati-
cally determine when and where the vehicle 205 is to enter,
change, maintain, etc. a particular operating mode (e.g.,
without user input, etc.). Additionally, or alternatively, the
operating mode of the vehicle 205 can be manually selected
through one or more interfaces located onboard the vehicle
205 (e.g., key switch, button, etc.) or associated with a
computing device within a certain distance to the vehicle
205 (e.g., a tablet operated by authorized personnel located
near the vehicle 205 and connected by wire or within a
wireless communication range, etc.). In some implementa-
tions, the operating mode of the vehicle 205 can be adjusted
by manipulating a series of interfaces in a particular order to
cause the vehicle 205 to enter into a particular operating
mode.

The operations computing system 290A can include mul-
tiple components for performing various operations and
functions. For example, the operations computing system
290A can be configured to monitor and communicate with
the vehicle 205 or its users. This can include coordinating a
vehicle service provided by the vehicle 205 (e.g., cargo
delivery service, passenger transport, etc.). To do so, the
operations computing system 290A can communicate with
the one or more remote computing system(s) 290B or the
vehicle 205 through one or more communications
network(s) including the communications network(s) 220.
The communications network(s) 220 can send or receive
signals (e.g., electronic signals, etc.) or data (e.g., data from
a computing device, etc.) and include any combination of
various wired (e.g., twisted pair cable, etc.) or wireless
communication mechanisms (e.g., cellular, wireless, satel-
lite, microwave, and radio frequency, etc.) or any desired
network topology (or topologies). For example, the com-
munications network(s) 220 can include a local area network
(e.g., intranet, etc.), wide area network (e.g., the Internet,
etc.), wireless LAN network (e.g., through Wi-Fi, etc.),

30

40

45

8

cellular network, a SATCOM network, VHF network, a HF
network, a WiMAX based network, or any other suitable
communications network (or combination thereof) for trans-
mitting data to or from the vehicle 205.

Each of the one or more remote computing system(s)
290B or the operations computing system 290A can include
one or more processors and one or more memory devices.
The one or more memory devices can be used to store
instructions that when executed by the one or more proces-
sors of the one or more remote computing system(s) 290B
or operations computing system 290A cause the one or more
processors to perform operations or functions including
operations or functions associated with the vehicle 205
including sending or receiving data or signals to or from the
vehicle 205, monitoring the state of the vehicle 205, or
controlling the vehicle 205. The one or more remote com-
puting system(s) 290B can communicate (e.g., exchange
data or signals, etc.) with one or more devices including the
operations computing system 290A and the vehicle 205
through the communications network(s) 220.

The one or more remote computing system(s) 290B can
include one or more computing devices such as, for
example, one or more operator devices associated with one
or more vehicle providers (e.g., providing vehicles for use
by the service entity, etc.), user devices associated with one
or more vehicle passengers, developer devices associated
with one or more vehicle developers (e.g., a laptop/tablet
computer configured to access computer software of the
vehicle computing system 210, etc.), or other devices. One
or more of the devices can receive input instructions from a
user or exchange signals or data with an item or other
computing device or computing system (e.g., the operations
computing system 290A, etc.). Further, the one or more
remote computing system(s) 290B can be used to determine
or modify one or more states of the vehicle 205 including a
location (e.g., a latitude and longitude, etc.), a velocity, an
acceleration, a trajectory, a heading, or a path of the vehicle
205 based in part on signals or data exchanged with the
vehicle 205. In some implementations, the operations com-
puting system 290A can include the one or more remote
computing system(s) 290B.

The vehicle computing system 210 can include one or
more computing devices located onboard the vehicle 205.
For example, the computing device(s) can be located on or
within the vehicle 205. The computing device(s) can include
various components for performing various operations and
functions. For instance, the computing device(s) can include
one or more processors and one or more tangible, non-
transitory, computer readable media (e.g., memory devices,
etc.). The one or more tangible, non-transitory, computer
readable media can store instructions that when executed by
the one or more processors cause the vehicle 205 (e.g., its
computing system, one or more processors, etc.) to perform
operations and functions, such as those described herein for
collecting and processing sensor data in a streaming manner,
performing autonomy functions, controlling the vehicle 205,
communicating with other computing systems, etc.

The vehicle 205 can include a communications system
215 configured to allow the vehicle computing system 210
(and its computing device(s)) to communicate with other
computing devices. The communications system 215 can
include any suitable components for interfacing with one or
more communications network(s) 220, including, for
example, transmitters, receivers, ports, controllers, antennas,
or other suitable components that can help facilitate com-
munication. In some implementations, the communications
system 215 can include a plurality of components (e.g.,



US 12,259,694 B2

9

antennas, transmitters, or receivers, etc.) that allow it to
implement and utilize multiple-input, multiple-output
(MIMO) technology and communication techniques. The
vehicle computing system 210 can use the communications
system 215 to communicate with one or more computing
devices that are remote from the vehicle 205 over the
communication network(s) 220 (e.g., through one or more
wireless signal connections, etc.).

As shown in FIG. 2, the vehicle computing system 210
can include the one or more sensors 235, the autonomy
computing system 240, the vehicle interface 245, the one or
more vehicle control systems 250, and other systems, as
described herein. One or more of these systems can be
configured to communicate with one another through one or
more communication channels. The communication
channel(s) can include one or more data buses (e.g., con-
troller area network (CAN), etc.), on-board diagnostics
connector (e.g., OBD-II, etc.), or a combination of wired or
wireless communication links. The onboard systems can
send or receive data, messages, signals, etc. amongst one
another through the communication channel(s).

In some implementations, the sensor(s) 235 can include
one or more LIDAR sensor(s). The sensor(s) 235 can be
configured to generate point data descriptive of a portion of
a three-hundred and sixty degree view of the surrounding
environment of the robot. The point data can be three-
dimensional LIDAR point cloud data. In some implemen-
tations, one or more sensors 235 for capturing depth infor-
mation can be fixed to a rotational device in order to rotate
the sensor(s) about an axis. The sensor(s) 235 can be rotated
about the axis while capturing data in interval sector packets
descriptive of different portions of a three-hundred and sixty
degree view of a surrounding environment of the vehicle
205. In some implementations, one or more sensors 235 for
capturing depth information can be solid state.

In some implementations, the sensor(s) 235 can include at
least two different types of sensor(s). For instance, the
sensor(s) 235 can include at least one first sensor (e.g., the
first sensor(s) 115, etc.) and at least one second sensor (e.g.,
the second sensor(s) 120, etc.). The at least one first sensor
can be a different type of sensor than the at least one second
sensor. For example, the at least one first sensor can include
one or more image capturing device(s) (e.g., one or more
cameras, RGB cameras, etc.). In addition, or alternatively,
the at least one second sensor can include one or more depth
capturing device(s) (e.g., LIDAR sensor, etc.). The at least
two different types of sensor(s) can obtain sensor data
indicative of one or more static or dynamic objects within an
environment of the vehicle 205.

The sensor(s) 235 can be configured to acquire sensor
data 255. The sensor(s) 235 can be external sensors config-
ured to acquire external sensor data. This can include sensor
data associated with the surrounding environment of the
vehicle 205. The surrounding environment of the vehicle
205 can include/be represented in the field of view of the
sensor(s) 235. For instance, the sensor(s) 235 can acquire
image or other data of the environment outside of the vehicle
205 and within a range or field of view of one or more of the
sensor(s) 235. This can include different types of sensor data
acquired by the sensor(s) 235 such as, for example, data
from one or more LIDAR systems, one or more RADAR
systems, one or more cameras (e.g., visible spectrum cam-
eras, infrared cameras, etc.), one or more motion sensors,
one or more audio sensors (e.g., microphones, etc.), or other
types of imaging capture devices or sensors. The sensor data
255 can include image data (e.g., 2D camera data, video
data, etc.), RADAR data, LIDAR data (e.g., 3D point cloud

10

15

20

25

30

35

40

45

50

55

60

65

10

data, etc.), audio data, or other types of data. The one or
more sensors can be located on various parts of the vehicle
205 including a front side, rear side, left side, right side, top,
or bottom of the vehicle 205. The vehicle 205 can also
include other sensors configured to acquire data associated
with the vehicle 205 itself. For example, the vehicle 205 can
include inertial measurement unit(s), wheel odometry
devices, or other sensors.

The sensor data 255 can be indicative of one or more
objects within the surrounding environment of the vehicle
205. The object(s) can include, for example, vehicles, pedes-
trians, bicycles, or other objects. The object(s) can be
located in front of, to the rear of, to the side of, above, below
the vehicle 205, etc. The sensor data 255 can be indicative
of locations associated with the object(s) within the sur-
rounding environment of the vehicle 205 at one or more
times. The object(s) can be static objects (e.g., not in motion,
etc.) or dynamic objects/actors (e.g., in motion or likely to
be in motion, etc.) in the vehicle’s environment. The sensor
data 255 can also be indicative of the static background of
the environment. The sensor(s) 235 can provide the sensor
data 255 to the autonomy computing system 240, the remote
computing system(s) 290B, or the operations computing
system 290A.

In addition to the sensor data 255, the autonomy comput-
ing system 240 can obtain map data 260. The map data 260
can provide detailed information about the surrounding
environment of the vehicle 205 or the geographic area in
which the vehicle was, is, or will be located. For example,
the map data 260 can provide information regarding: the
identity and location of different roadways, road segments,
buildings, or other items or objects (e.g., lampposts, cross-
walks or curb, etc.); the location and directions of traffic
lanes (e.g., the location and direction of a parking lane, a
turning lane, a bicycle lane, or other lanes within a particular
roadway or other travel way or one or more boundary
markings associated therewith, etc.); traffic control data
(e.g., the location and instructions of signage, traffic lights,
or other traffic control devices, etc.); obstruction information
(e.g., temporary or permanent blockages, etc.); event data
(e.g., road closures/traffic rule alterations due to parades,
concerts, sporting events, etc.); nominal vehicle path data
(e.g., indicate of an ideal vehicle path such as along the
center of a certain lane, etc.); or any other map data that
provides information that assists the vehicle computing
system 210 in processing, analyzing, and perceiving its
surrounding environment and its relationship thereto. In
some implementations, the map data 260 can include high
definition map data. In some implementations, the map data
260 can include sparse map data indicative of a limited
number of environmental features (e.g., lane boundaries,
etc.). In some implementations, the map data can be limited
to geographic area(s) or operating domains in which the
vehicle 205 (or autonomous vehicles generally) may travel
(e.g., due to legal/regulatory constraints, autonomy capa-
bilities, or other factors, etc.).

The vehicle 205 can include a positioning system 265.
The positioning system 265 can determine a current position
of the vehicle 205. This can help the vehicle 205 localize
itself within its environment. The positioning system 265
can be any device or circuitry for analyzing the position of
the vehicle 205. For example, the positioning system 265
can determine position by using one or more of inertial
sensors (e.g., inertial measurement unit(s), etc.), a satellite
positioning system, based on IP address, by using triangu-
lation or proximity to network access points or other net-
work components (e.g., cellular towers, WiFi access points,



US 12,259,694 B2

11

etc.) or other suitable techniques. The position of the vehicle
205 can be used by various systems of the vehicle computing
system 210 or provided to a remote computing system. For
example, the map data 260 can provide the vehicle 205
relative positions of the elements of a surrounding environ-
ment of the vehicle 205. The vehicle 205 can identify its
position within the surrounding environment (e.g., across six
axes, etc.) based at least in part on the map data 260. For
example, the vehicle computing system 210 can process the
sensor data 255 (e.g., LIDAR data, camera data, etc.) to
match it to a map of the surrounding environment to get an
understanding of the vehicle’s position within that environ-
ment. Data indicative of the vehicle’s position can be stored,
communicated to, or otherwise obtained by the autonomy
computing system 240.

The autonomy computing system 240 can perform vari-
ous functions for autonomously operating the vehicle 205.
For example, the autonomy computing system 240 can
perform the following functions: perception 270A, predic-
tion 270B, and motion planning 270C. For example, the
autonomy computing system 240 can obtain the sensor data
255 through the sensor(s) 235, process the sensor data 255
(or other data) to perceive its surrounding environment,
predict the motion of objects within the surrounding envi-
ronment, and generate an appropriate motion plan through
such surrounding environment. In some implementations,
these autonomy functions can be performed by one or more
sub-systems such as, for example, a perception system, a
prediction system, a motion planning system, or other sys-
tems that cooperate to perceive the surrounding environment
of the vehicle 205 and determine a motion plan for control-
ling the motion of the vehicle 205 accordingly. In some
implementations, one or more of the perception, prediction,
or motion planning functions 270A, 270B, 270C can be
performed by (or combined into) the same system or through
shared computing resources. In some implementations, one
or more of these functions can be performed through dif-
ferent sub-systems. As further described herein, the
autonomy computing system 240 can communicate with the
one or more vehicle control systems 250 to operate the
vehicle 205 according to the motion plan (e.g., through the
vehicle interface 245, etc.).

The vehicle computing system 210 (e.g., the autonomy
computing system 240, etc.) can identify one or more
objects that are within the surrounding environment of the
vehicle 205 based at least in part on the sensor data 255 or
the map data 260. The objects perceived within the sur-
rounding environment can be those within the field of view
of the sensor(s) 235 or predicted to be occluded from the
sensor(s) 235. This can include object(s) not in motion or not
predicted to move (static objects) or object(s) in motion or
predicted to be in motion (dynamic objects/actors). The
vehicle computing system 210 (e.g., performing the percep-
tion function 270C, using a perception system, etc.) can
process the sensor data 255, the map data 260, etc. to obtain
perception data 275A. The vehicle computing system 210
can generate perception data 275A that is indicative of one
or more states (e.g., current or past state(s), etc.) of one or
more objects that are within a surrounding environment of
the vehicle 205. For example, the perception data 275A for
each object can describe (e.g., for a given time, time period,
etc.) an estimate of the object’s: current or past location (also
referred to as position); current or past speed/velocity;
current or past acceleration; current or past heading; current
or past orientation; size/footprint (e.g., as represented by a
bounding shape, object highlighting, etc.); class (e.g., pedes-
trian class vs. vehicle class vs. bicycle class, etc.), the

15

20

30

35

40

45

12

uncertainties associated therewith, or other state informa-
tion. The vehicle computing system 210 can utilize one or
more algorithms or machine-learned model(s) that are con-
figured to identify object(s) based at least in part on the
sensor data 255. This can include, for example, one or more
neural networks trained to identify object(s) within the
surrounding environment of the vehicle 205 and the state
data associated therewith. The perception data 275A can be
utilized for the prediction function 270B of the autonomy
computing system 240.

The vehicle computing system 210 can be configured to
predict a motion of the object(s) within the surrounding
environment of the vehicle 205. For instance, the vehicle
computing system 210 can generate prediction data 275B
associated with such object(s). The prediction data 275B can
be indicative of one or more predicted future locations of
each respective object. For example, the prediction function
270B can determine a predicted motion trajectory along
which a respective object is predicted to travel over time. A
predicted motion trajectory can be indicative of a path that
the object is predicted to traverse and an associated timing
with which the object is predicted to travel along the path.
The predicted path can include or be made up of a plurality
of way points. In some implementations, the prediction data
275B can be indicative of the speed or acceleration at which
the respective object is predicted to travel along its associ-
ated predicted motion trajectory. The vehicle computing
system 210 can utilize one or more algorithms or machine-
learned model(s) that are configured to predict the future
motion of object(s) based at least in part on the sensor data
255, the perception data 275A, map data 260, or other data.
This can include, for example, one or more neural networks
trained to predict the motion of the object(s) within the
surrounding environment of the vehicle 205 based at least in
part on the past or current state(s) of those objects as well as
the environment in which the objects are located (e.g., the
lane boundary in which it is travelling, etc.). The prediction
data 275B can be utilized for the motion planning function
270C of the autonomy computing system 240.

The vehicle computing system 210 can determine a
motion plan for the vehicle 205 based at least in part on the
perception data 275A, the prediction data 275B, or other
data. For example, the vehicle computing system 210 can
generate motion planning data 275C indicative of a motion
plan. The motion plan can include vehicle actions (e.g.,
speed(s), acceleration(s), other actions, etc.) with respect to
one or more of the objects within the surrounding environ-
ment of the vehicle 205 as well as the objects’ predicted
movements. The motion plan can include one or more
vehicle motion trajectories that indicate a path for the
vehicle 205 to follow. A vehicle motion trajectory can be of
a certain length or time range. A vehicle motion trajectory
can be defined by one or more way points (with associated
coordinates). The way point(s) can be future locations for
the vehicle 205. The planned vehicle motion trajectories can
indicate the path the vehicle 205 is to follow as it traverses
a route from one location to another. Thus, the vehicle
computing system 210 can take into account a route/route
data when performing the motion planning function 270C.

The vehicle computing system 210 can implement an
optimization algorithm, machine-learned model, etc. that
considers cost data associated with a vehicle action as well
as other objective functions (e.g., cost functions based on
speed limits, traffic lights, etc.), if any, to determine opti-
mized variables that make up the motion plan. The vehicle
computing system 210 can determine that the vehicle 205
can perform a certain action (e.g., pass an object, etc.)



US 12,259,694 B2

13

without increasing the potential risk to the vehicle 205 or
violating any traffic laws (e.g., speed limits, lane boundaries,
signage, etc.). For instance, the vehicle computing system
210 can evaluate the predicted motion trajectories of one or
more objects during its cost data analysis to help determine
an optimized vehicle trajectory through the surrounding
environment. The motion planning function 270C can gen-
erate cost data associated with such trajectories. In some
implementations, one or more of the predicted motion
trajectories or perceived objects may not ultimately change
the motion of the vehicle 205 (e.g., due to an overriding
factor, etc.). In some implementations, the motion plan may
define the vehicle’s motion such that the vehicle 205 avoids
the object(s), reduces speed to give more leeway to one or
more of the object(s), proceeds cautiously, performs a stop-
ping action, passes an object, queues behind/in front of an
object, etc.

The vehicle computing system 210 can be configured to
continuously update the vehicle’s motion plan and corre-
sponding planned vehicle motion trajectories. For example,
in some implementations, the vehicle computing system 210
can generate new motion planning data 275C/motion plan(s)
for the vehicle 205 (e.g., multiple times per second, etc.).
Each new motion plan can describe a motion of the vehicle
205 over the next planning period (e.g., waypoints/
locations(s) over the next several seconds, etc.). Moreover,
a motion plan may include a planned vehicle motion trajec-
tory. The motion trajectory can be indicative of the future
planned location(s), waypoint(s), heading, velocity, accel-
eration, etc. In some implementations, the vehicle comput-
ing system 210 can continuously operate to revise or oth-
erwise generate a short-term motion plan based on the
currently available data. Once the optimization planner has
identified the optimal motion plan (or some other iterative
break occurs), the optimal motion plan (and the planned
motion trajectory) can be selected and executed by the
vehicle 205.

The vehicle computing system 210 can cause the vehicle
205 to initiate a motion control in accordance with at least
a portion of the motion planning data 275C. A motion
control can be an operation, action, etc. that is associated
with controlling the motion of the vehicle 205. For instance,
the motion planning data 275C can be provided to the
vehicle control system(s) 250 of the vehicle 205. The vehicle
control system(s) 250 can be associated with a vehicle
interface 245 that is configured to implement a motion plan.
The vehicle interface 245 can serve as an interface/conduit
between the autonomy computing system 240 and the
vehicle control systems 250 of the vehicle 205 and any
electrical/mechanical controllers associated therewith. The
vehicle interface 245 can, for example, translate a motion
plan into instructions for the appropriate vehicle control
component (e.g., acceleration control, brake control, steer-
ing control, etc.). By way of example, the vehicle interface
245 can translate a determined motion plan into instructions
to adjust the steering of the vehicle 205 “X” degrees, apply
a certain magnitude of braking force, increase/decrease
speed, etc. The vehicle interface 245 can help facilitate the
responsible vehicle control (e.g., braking control system,
steering control system, acceleration control system, etc.) to
execute the instructions and implement a motion plan (e.g.,
by sending control signal(s), making the translated plan
available, etc.). This can allow the vehicle 205 to autono-
mously travel within the vehicle’s surrounding environment.

The vehicle computing system 210 can store other types
of data. For example, an indication, record, or other data
indicative of the state of the vehicle (e.g., its location,

10

15

20

25

30

35

40

45

50

55

60

65

14

motion trajectory, health information, etc.), the state of one
or more users (e.g., passengers, operators, etc.) of the
vehicle, or the state of an environment including one or more
objects (e.g., the physical dimensions or appearance of the
one or more objects, locations, predicted motion, etc.) can be
stored locally in one or more memory devices of the vehicle
205. Additionally, the vehicle 205 can communicate data
indicative of the state of the vehicle, the state of one or more
passengers of the vehicle, or the state of an environment to
a computing system that is remote from the vehicle 205,
which can store such information in one or more memories
remote from the vehicle 205. Moreover, the vehicle 205 can
provide any of the data created or store onboard the vehicle
205 to another vehicle.

The vehicle computing system 210 can include the one or
more vehicle user devices 280. For example, the vehicle
computing system 210 can include one or more user devices
with one or more display devices located onboard the
vehicle 205. A display device (e.g., screen of a tablet, laptop,
smartphone, etc.) can be viewable by a user of the vehicle
205 that is located in the front of the vehicle 205 (e.g.,
driver’s seat, front passenger seat, etc.). Additionally, or
alternatively, a display device can be viewable by a user of
the vehicle 205 that is located in the rear of the vehicle 205
(e.g., a back passenger seat, etc.). The user device(s) asso-
ciated with the display devices can be any type of user
device such as, for example, a tablet, mobile phone, laptop,
etc. The vehicle user device(s) 280 can be configured to
function as human-machine interfaces. For example, the
vehicle user device(s) 280 can be configured to obtain user
input, which can then be utilized by the vehicle computing
system 210 or another computing system (e.g., a remote
computing system, etc.). For example, a user (e.g., a pas-
senger for transportation service, a vehicle operator, etc.) of
the vehicle 205 can provide user input to adjust a destination
location of the vehicle 205. The vehicle computing system
210 or another computing system can update the destination
location of the vehicle 205 and the route associated there-
with to reflect the change indicated by the user input.

As described herein, with reference to the remaining
figures, the autonomy computing system 240 can utilize one
or more machine-learned models to perform the perception
270A, prediction 270B, or motion planning 270C functions.
The machine-learned model(s) can be previously trained
through one or more machine-learned techniques. The
machine-learned models can be previously trained by the
one or more remote computing system(s) 290B, the opera-
tions computing system 290A, or any other device (e.g.,
remote servers, training computing systems, etc.) remote
from or onboard the vehicle 205. For example, the one or
more machine-learned models can be learned by a training
computing system over training data stored in a training
database. The training data can include, for example,
sequential sensor data indicative of an environment (and
objects/features within) at different time steps. In some
implementations, the training data can include a plurality of
environments previously recorded by the autonomous
vehicle with one or more objects, static object(s) or dynamic
object(s).

To help improve the performance of a robotic platform,
such as an autonomous vehicle of FIG. 2, the technology of
present disclosure can leverage sensor data packet process-
ing to generate updated spatial data of a surrounding envi-
ronment. Using the technology of the present disclosure, a
sensor data packet can be processed to generate a two-
dimensional representation, which can be processed to gen-
erate a local feature map which is then used to update a
spatial map for object determination, or detection.



US 12,259,694 B2

15

For example, FIG. 3 depicts an example system 300
configured to detect and predict the motion of objects within
the surrounding environment of a system such as an autono-
mous vehicle according to example implementations of the
present disclosure. As further described herein, the network
architecture can be indicative of at least a portion of an
environment in which a robotic platform operates. The
system 300 can include any of the system(s) (e.g., robotic
platform 105, vehicle 205, vehicle computing system 210,
remote computing system 290B, operations computing sys-
tem 290A, etc.) described herein such as, for example, with
reference to FIGS. 1, 2, etc. The system 300 can be config-
ured to process sensor data to fuse sensor data from at least
two different sensor modalities to create a fused sensor
sample to determine one or more objects and predict their
motion in the surrounding environment.

To do so, the system 300 can use multiple inputs. For
example, the multi-view architecture can have at least one
LIDAR input 306, (e.g., LIDAR point cloud, etc.). In
particular, the LIDAR point cloud can be converted into
appropriate feature representations that can be ingested by
deep models. For example, the points can be treated as an
unordered set of point-wise feature vectors. Even more
particularly, the LIDAR input 306 can undergo a LIDAR
intensity dropout 314. At LIDAR intensity dropout 314,
units (e.g., hidden and visible) can be dropped out (e.g.,
temporarily removed from the network) along with all its
incoming and outgoing connections. The choice of which
units to drop is random. For example, each unit can be
retained with a fixed probability independent of other units,
where the probability can be chosen using a validation set or
can simply be set (e.g., at 0.5). Specifically, dropout can be
applied to graphical models (e.g., Boltzmann Machines).
Applying the LIDAR intensity dropout 314 can amount to
sampling a “thinned” LIDAR network where the thinned
network includes all the units that survived dropout.

In particular, a neural net with n units can be seen as a
collection of 2" possible thinned neural networks. Those
networks can all share weights such that the total number of
parameters is still O(n®). For example, applying sensor
dropout to LIDAR can use LIDAR point positions to per-
form multi-view projection. As an example, projection can
be computed as follows:

N
D s b Pargantty Foowree Peouree L)

-
£, target x)= N
Z i1 Li=Prarger(Z

Where F,,,..., and F,, ... can be feature maps in the target
and source views, respectively, represented as 2D grids and
indexed by a cell index, while x denotes a cell index within
the target grid. P, and P, can be projection operators
that project LIDAR point L, onto the corresponding view
and return the cell index in that view. Scalar N can be the
total number of LIDAR points in a sweep, while 1. can be
an indicator function which equals 1 when condition c is true
and O otherwise. In other words, LIDAR points can be used
to extract features from the source view and project them
into the target view, then an average pooling can be applied
if multiple LIDAR points are projected into the same target
cell.

As a further example, the LIDAR data may not be
dropped completely and can instead improve model robust-

ness to LIDAR intensity.

20

25

30

35

40

45

50

55

60

65

16
In some implementations, the multi-view architecture can
have a LIDAR BEV branch which consists of LIDAR BEV
branch data 322. In particular, features can be extracted
separately from voxelized multi-sweep LIDAR data on one
side and rasterized HD map on the other. Even more
particularly, the two sets of features can then be summed,
before being sent downstream to a first-stage backbone
network. Specifically, multiple past sweeps (e.g., 10) of
LIDAR can be voxelized onto a BEV grid, then fused with
rasterized HD map channels and RADAR features extracted
with a spatio-temporal network. As an example, the input

feature for each sweep can be:

[z 5wl

where length 1., width W, and height V define the area of
interest in a 3D physical space. Furthermore, T-1 past
sweeps can be encoded into the same BEV frame and the
feature maps can be stacked along the channel dimensions.

In some implementations, the multi-view architecture can
have LIDAR RV branch which comprises LIDAR RV
branch data 324. For example, the LIDAR points can be
rasterized into a 2D RV image following feature extraction
with a CNN which can be fused with the camera image
features. In particular, the LIDAR RV branch data 324 can
consume LIDAR point-cloud data. Even more particularly,
an RV image can be constructed from the LIDAR point
cloud. Even more particularly, the constructed RV image can
be processed by two convolutional layers with a matrix (e.g.,
a kernel) without stride.

In some implementations, in parallel, features can be
extracted from the RGB camera image 308 with a light-
weight image database (e.g., ImageNet 326) which can
include multiple layers of convolutions. For example, each
of the convolution layers can include a matrix and stride. As
another example, every alternate layer can include a matrix
and stride. In particular, extracted camera features can be
projected or warped to the RV to produce warped image
features 332. Following the extracted camera features being
projected or warped to the RV to produce warped image
features 332, camera features can undergo camera feature
dropout to obtain camera feature dropout data 342. To obtain
camera feature dropout data 342, units (e.g., hidden and
visible) can be dropped out (i.g., temporarily removed from
the network) along with all its incoming and outgoing
connections. Even more particularly, the extracted camera
features can be concatenated with the LIDAR RV features at
camera and LIDAR RV concatenation point 340. In particu-
lar, a binary indicator encoding whether the RV cell contains
a valid camera projection (e.g., a 1 for a valid projection, a
—1 for an invalid projection) can also be concatenated at
camera and LIDAR RV concatenation point 340.

In some implementations, a multi-scale convolutional
network (e.g., U-Net Lite 338) can be applied to the con-
catenated features. The convolutional network can be used
to jointly extract camera and LIDAR features. The convo-
Iutional network can process the features at a scale. For
example, the convolutional network can process the features
at 2 scales (e.g., down-scaling 2x horizontally and double
the channel size). In particular, a residual block with skip
connection can be used as a processing block at each level.
Even more particularly, a deconv layer for feature upsam-
pling can follow the residual block.



US 12,259,694 B2

17

In some implementations, the multi-view architecture can
have a RADAR sweep input 302. In particular, multiple
RADAR sensors can be used. Even more particularly, a
RADAR sweep input 302 can be created such that the
RADAR sweep input 302 contains measurements from all
RADARs in a time interval. Even more particularly,
RADAR points can be transformed into a coordinate frame
associated with the most recent sweep. For example, for
each RADAR point in the RADAR sweep input 302, a
feature vector can be calculated containing its 2D position,
RADAR cross section and ego-motion compensated radial
velocity. Specifically, multiple modules can be used to learn
features from RADAR points for BEV cells (e.g., spatial
temporal network 318).

In some implementations, the spatial module in the spatial
temporal network 318 module can work on each sweep
individually and provide robustness to sparsity and position
errors observed in RADAR points. In particular, the spatial
module in the spatial temporal network 318 can extract BEV
features for each cell in the BEV grid using a single sweep
of RADAR points. Even more particularly, the grid can be
chosen to be centered at the ego-vehicle position at the most
recent sweep. Specifically, an appropriate resolution for
feature learning can be selected. Even more specifically,
parametric continuous convolutions can be used to compute
the BEV cell features. The parametric convolution can
generalize the standard convolution operator to non-grid like
structure. The parametric convolution can handle different
input and output domains with pre-defined correspondence
between them. As an example, the features h;” can be
calculated for the sweep by:

h= 3 & (KD - )

M
xeAj

Where A;™ can be the associated set of RADAR points,
x;” can be the 2D coordinates of the associated RADAR
point, xjm can be the 2D coordinate of the BEV cell’s center,
@ denotes the concatenation operation, f;” can be the feature
vector for the RADAR point and g™(*) can be a multi-layer
perceptron (MLP) with learnable weights shared across all
the cells. A;” can be calculated using the nearest neighbor
algorithm with a distance threshold larger than the size of a
cell.

In some implementations, the temporal learning module
in the spatial temporal network 318 can provide robustness
to radial velocity observation by using a sequence of sweeps
to implicitly recover full 2D velocity of objects. In particu-
lar, the temporal learning module in the spatial temporal
network 318 can combine spatial features for all the sweeps.
For example, for each cell a spatio-temporal feature vector
can be calculated by concatenating the per sweep features
and using an MLP to combine them.

In some implementations, RADAR feature dropout data
328 can be obtained by applying dropout to the RADAR
sweep input 302 that is run through the spatial temporal
network 318. In particular, the RADAR feature dropout data
328 can be applied to improve the robustness of the model.

In particular, the dropout can be performed differently for
each sensor modality. For example, camera feature dropout
data 342 and RADAR feature dropout data 328 can be
obtained by zeroing out the corresponding final feature
vector before sensor fusion. As another example, for LIDAR
intensity, the LIDAR intensity can be replaced with a

20

25

30

35

40

45

50

55

60

65

18

sentinel value (e.g., set to the mean LIDAR intensity com-
puting from the training samples).

In some implementations, dropout neural networks can be
trained using stochastic gradient descent in a manner similar
to standard neural nets. In particular, a thinned network can
be used by dropping out units. Even more particularly,
forward and backpropagation can be done on this thinned
network. The gradients for each parameter can be averaged.
Specifically, any case which does not use a parameter may
contribute a gradient of zero for that parameter. Many
methods have been used to improve stochastic gradient
descent such as momentum, annealed learning rates and 1.2
weight decay. Those methods were found to be useful for
dropout neural networks as well. In particular, although
dropout alone gives significant improvements, in some cases
using dropout along with maxnorm regularization, large
decaying learning rates and high momentum provides a
significant boost over just using dropout.

In some implementations, neural networks can be pre-
trained using stacks of RBMs, autoencoders or Deep Botz-
mann Machines. In particular, pretraining can use unlabeled
data. Even more particularly, pretraining can be followed by
backpropagation. Furthermore, dropout can be applied to
finetune nets that have been pretrained using these tech-
niques. In particular, the weights obtained from pretraining
can be scaled such that for each unit, the expected output
under random dropout can be the same as the output during
pretraining.

In some implementations, a rasterized map data 304 is
input. In particular, a BEV representation of an HD map can
be obtained by rasterization. Even more particularly, static
map elements can be encoded in the same frame as the BEV
LIDAR grid. Static map elements can include driving paths,
crosswalks, lane and road boundaries, interactions, drive-
ways, and parking lots, where each element is encoded as a
binary mask in its own separate channel. The rasterized map
data 304 must then be input into a process map raster to
obtain processed map raster data 320.

In some implementations, the RADAR feature dropout
data 328, processed map raster data 320, and LIDAR BEV
branch data 322 can be fused at RADAR, map, LIDAR
fusion point 330 to produce the BEV feature map. Finally,
BEYV projected features data 336 can be fused with the BEV
feature map at the feature tensor fusion point 334 to produce
feature tensor fusion data. Specifically, the fused feature
tensor data can be processed with additional convolutions to
output detections and motion predictions for each actor.

FIG. 4 depicts an example system configured as a
machine-learned model 400 for joint detection and motion
prediction, that can be trained with sensor dropout tech-
niques according to example implementations of the present
disclosure. As further described herein, the machine-learned
model 400 can be indicative of at least a portion of an
environment in which a robotic platform operates. The
machine-learned model 400 can be used by any of the
system(s) (e.g., robotic platform 105, vehicle 205, vehicle
computing system 210, remote computing system 290B,
operations computing system 290A, etc.) described herein
such as, for example, with reference to FIGS. 1, 2, etc. The
machine-learned model 400 can be configured to output data
relating to joint detection and motion prediction.

To do so, the machine-learned model 400 can first lever-
age a first stage 402. In the first stage 402 the machine-
learned model 400 can provide feature tensor fusion data
from as input to first stage backbone network 404. As a
particular example, the feature tensor fusion data can origi-
nate from feature tensor fusion point 334 in FIG. 3. The first



US 12,259,694 B2

19

stage backbone network 404 can include a BEV image first
stage feature map 406. In particular, the BEV image first
stage feature map 406 can be viewed as a top-down grid
representation of the SDV’s surroundings, wherein each cell
can include input features encoded along the channel dimen-
sions. Even more particularly, the BEV image first stage
feature map 406 can be processed by a sequence of 2-D
convolutional layers. Specifically, the image can be pro-
cessed by a sequence of 2-D convolutional layers until a
final layer containing learned featured for each cell location.

In some implementations, following a 1x1 convolutional
layer, for each cell, a set of outputs can be predicted (e.g.,
two) to comprise the first stage output data 412. In particular,
the set of outputs comprising the first stage output data 412
can include object detection data 408 and object motion
prediction data 410 wherein object detection data 408 and
object motion prediction data 410 can represent object
detection and its movement prediction. Even more particu-
larly, object detection data 408 for a cell centered at (x, y)
can comprise an existence probability p, oriented bounding
box. Specifically, the existence probability p, oriented
bounding box can be represented by its center c=(C,, &)
relative to the cell center, size represented by length 1 and

width W, and heading 85 relative to the x-axis, parameter-

ized as a tuple (sin 85 , cos 8o ). Specifically, the object
motion prediction data 410 can be composed of bounding

box centers (or waypoints) ¢ =(¢rx, €ny) and headings

é;l at H future time horizons, with he {1, . . . , H}. Even
more specifically, a full set of H waypoints can be denoted

as a trajectory 1={ G, bn }i™. For example, the bounding
box size can be considered constant across the entire pre-
diction horizon.

In some implementations, the loss at a certain time step
can include detection and prediction losses computed over
all BEV cells. In particular, a binary focal loss £ ,,..(p) can
be used for object probability with a hyper-parameter ¥ set
to a particular value (e.g., 2) to perform the per-pixel
detection loss. Even more particularly, the binary focal loss
£ focalP) With the hyper-parameter ¥y set to a particular value
(e.g., 2) can be empirically found to perform well in order.
Specifically, when there exists a ground-truth object in a
particular cell a smooth — ¢, regression loss ¢ ,(v-v) can be
used for all bounding box parameters (e.g., center, size, and
heading), where the loss can be computed between the
predicted value v and the corresponding ground truth v. The
smooth — ¢ | regression loss can be used to capture predic-
tion errors of future bounding box centers and headings.
Furthermore, the overall loss at horizon h for a cell with a
foreground (fg) object L, can be:

Ly = Ln=oUpocar(P) + 10 = D + 1 =) +

01 @ — i) + 01 @1y — €iy) + €1 (sindy, — sindy) + 1 (cosby, — costy),

where 1. can equal 1 if the condition c¢ is true and 0
otherwise, while the loss for a background (bg) cell not
containing a foreground object can be equal to L=
£ poeatlD)-

In some implementations, to enforce a lower error toler-
ance for earlier horizons the per-horizon losses can be
multiplied by fixed weights that are gradually decreasing for
future timesteps, and the per-horizon losses can be aggre-
gated to obtain the final loss:

20

25

30

35

40

45

50

55

60

20

H
L= lpgeenrlpg + 15 ceuzlhlfg(h)
=0

where A< (0, 1) can be a constant decay factor (for example,
the constant decay factor can be set to 0.97 in our experi-
ments). The loss can contain both detection and prediction
components, and all model parameters are learned jointly in
an end-to-end manner.

In some implementations, the machine-learned model 400
can learn trajectories and uncertainties jointly, where the
position uncertainty in the along-track (AT) and cross-track
(CT) directions can decompose. In particular, a predicted
waypoint ¢, can be projected along AT and CT directions by
considering the ground-truth heading 6,, and the errors
along these directions can be assumed to follow a Laplace
distribution Laplace(p, b), where PDF of a random Lapla-
cian variable v can be computed as:

1. (_M)
%5,

where mean [ and diversity b can be the Laplace param-
eters. Even more particularly, AT and CT errors can be
assumed as independent, with each having a separate set of
Laplace parameters. For example, AT can assume an error
value &,, this can define a Laplace distribution Laplace
(€.~ b,7). Furthermore, the loss can be minimized by
minimizing the Kullback-Leibler (KL) divergence between
the ground-truth Laplace (0, b,;) and the predicted Laplace
(.7 b,r). wherein minimizing the Kullback-Leibler (KL.)
divergence between the ground-truth Laplace (0, b,;) and
the predicted Laplace (€ ,1, b,;) can be computed as follows:

[arl)
Bar brexp Bt [e47]
KL = log— _ \ “4r; 00

+ -1
bar

bar

Similarly, KL, can be computed for the CT errors, and
KLAT and KLCT can be used instead of the smooth —¢,
loss for bounding box centers introduced in the previous
section.

In some implementations, the ground-truth diversity can
be linearly increased with time,

b.)=a, + Bt

where parameters o, and B, can be empirically determined,
with separate parameters for AT and for CT components.
This can be achieved by training models with varying o, and
B, and choosing the parameter set for which reliability
diagrams indicate that the model outputs are the most
calibrated.

In some implementations, in response to the object detec-
tion data 408 and object motion prediction data 410, a
second stage 414 can be leveraged where further refinement
of motion prediction for the detected objects can be per-
formed. In particular, the second stage 414 can discard the
object detection data 408 and object motion prediction data
410 and instead take the inferred object center &, and
heading 8,, as well as the final feature layer from the main



US 12,259,694 B2

21

network. The second stage 414 can then take the learned
features and crop and rotate for each actor, such that the
actor is oriented pointing up in the rotated image to output
a rotated ROI per detection image 416. Even more particu-
larly, the cropped and rotated feature map can be associated
with the second stage backbone network 420 which can be
fed through a lightweight CNN network (e.g., before the
final prediction of future trajectory and uncertainty is per-
formed). Specifically, both first stage 402 and second stage
414 networks can be trained jointly. Even more specifically,
portions of the first stage 402 and second stage 414 can be
used. For example, the full loss L in the first stage 402 and
the future prediction loss in the second stage 414 can be
used. Continuing the example, the second stage 414 predic-
tion can be used as a final output trajectory, or the final
output data 424.

In some implementations, the output can be standardized
in the actor frame. In some implementations, in the first
stage 402 the output trajectories can radiate in any direction
from the actor position, while in the actor frame the majority
of the future trajectories grow from the origin forward. In
addition, the second stage 414 can concentrate on extracting
features for a single actor of interest and discard irrelevant
information. For example, a purpose of a two-stage
approach as depicted in FIG. 4 can be to refine the trajec-
tories and not the detections.

In some implementations, the machine-learned model 400
can output a fixed number of M trajectories. In particular,
trajectory modes output by the machine-learned model 400
can be denoted as {p,,},,_,". Even more particularly, one of
the M modes can be identified as a ground-truth mode, m,,.
Specifically, a novel direction-based policy can be designed
to decide the ground-truth mode. More specifically, an angle
Ag=0,-0,, can be computed between the last and current
ground-truth heading where Age (—n, xt]. Furthermore, the
range (—T, 7] can be divided into M bins such that m,, can
be decided based on where A, falls. In this way, during
training, each mode can be specialized to be responsible for
a distinct behavior (e.g., for M=3, a left, right, and straight
going mode can be present)

In some implementations, the multimodal trajectory loss
can include a trajectory loss of the m_-th trajectory mode
and a cross-entropy loss for the trajectory probabilities
computed as:

M
Lecis == ) Inemg 108D,

m=1

In particular, unimodal prediction loss can be continued to
use in the first stage to improve the model training. Even
more particularly, the multimodal trajectory loss can be
applied to train the second-stage network.

In some implementations, multiple actor type behaviors
can be modeled simultaneously. In particular, vehicles,
pedestrians, and bicyclists. Even more particularly, each set
of outputs can be separated after the backbone networks 404
and 420 compute the shared BEV learned features. For
example, in some cases (e.g., pedestrians, bicyclists, etc.) a
unimodal output can result in a better performance, thus the
multimodal loss and refinement stage can be not used in
those cases. Continuing the example, M can be set for 3 in
cases where multimodal loss and refinement is used and 1
for unimodal use. Specifically, the final loss of the model can

20

25

30

35

40

45

50

55

60

65

22

be the sum of per-type losses where each per-type loss can
include detection loss as well as uncertainty-aware trajectory
loss.

FIG. 5 depicts a flowchart of a method 600 for training a
machine learning model using sensor dropout according to
aspects of the present disclosure. One or more portion(s) of
the method 600 can be implemented by a computing system
that includes one or more computing devices such as, for
example, the computing systems described with reference to
the other figures (e.g., robotic platform 105, vehicle com-
puting system 210, operations computing system(s) 290A,
remote computing system(s) 290B, etc.). Each respective
portion of the method 600 can be performed by any (or any
combination) of one or more computing devices. Moreover,
one or more portion(s) of the method 600 can be imple-
mented as an algorithm on the hardware components of the
device(s) described herein (e.g., as in FIGS. 1-3, 8, etc.), for
example, to generate object determination data and object
motion data. FIG. 5 depicts elements performed in a par-
ticular order for purposes of illustration and discussion.
Those of ordinary skill in the art, using the disclosures
provided herein, will understand that the elements of any of
the methods discussed herein can be adapted, rearranged,
expanded, omitted, combined, or modified in various ways
without deviating from the scope of the present disclosure.
FIG. 5 is described with reference to elements/terms
described with respect to other systems and figures for
exemplary illustrated purposes and is not meant to be
limiting. One or more portions of method 600 can be
performed additionally, or alternatively, by other systems.

At 602, the method 600 can include obtaining sensor data
from a plurality of sensors comprising at least two different
sensor modalities. In particular, the sensor data can be
obtained of a surrounding environment by employing a
robotic platform (e.g., a three-hundred-and-sixty-degree
view). The robotic platform can include an autonomous
vehicle. For example, a computing system (e.g., robotic
platform 105, vehicle computing system 210, operations
computing system(s) 290A, remote computing system(s)
290B, etc.) can obtain sensor data. As another example, the
environment can include a real-world environment or a
simulated environment. In some instances, the sensor data
obtained at 602 can include radar sweep input 302, raster-
ized map data 304, lidar input 306, and RGB camera image
308 as depicted in FIG. 3.

At 604, the method 600 can include independently apply-
ing sensor dropout to the at least two different sensor
modalities of the sensor data (e.g., point cloud data of
LIDAR sensor(s), RADAR sensor(s), cameras, etc.). In
some instances, the sensor dropout independently applied at
604 can correspond to one or more of the LIDAR intensity
dropout data 314, radar feature dropout data 328, and/or
camera feature dropout data 342 depicted in FIG. 3. More
particularly, independently applied sensor dropout means
that sensor dropout can be applied to a first sensor modality
in a manner that is independent of when and/or how sensor
dropout can be applied to additional (e.g., second, third,
fourth, etc.) sensor modalities. As one example, the inde-
pendent sensor dropout can be applied with a fixed prob-
ability to one or more of the sensor modalities. As another
example, the sensor dropout can be applied to sensor data
obtained from the RADAR system and/or the camera by
zeroing out a final feature vector for a portion of the sensor
data. As yet another example, sensor dropout can be applied
to the sensor data obtained from the LIDAR system by
replacing a LIDAR intensity value with a sentinel value for
a portion of the sensor data.



US 12,259,694 B2

23

At 606, the method 600 can include fusing the sensor data
from the at least two different sensor modalities with sensor
dropout independently applied thereto to generate a fused
sensor sample. For example, creating a fused sensor sample
can include fusing a first portion of the sensor data from a
first branch comprising a range-view (RV) representation
with a second portion of the sensor data from a second
branch comprising a bird’s-eye view (BEV) representation,
as depicted in FIG. 3. In some instances, the fused sensor
sample created at 606 can correspond to the feature tensor
fusion data created at feature tensor fusion point 334 of FIG.
3. In particular, fusion weights can be adjusted, such that the
computing system can create a fused sensor sample with
more weight on one of the at least two different sensor
modalities.

At 608, the method 600 can include processing the fused
sensor sample with at least a portion of the object detection
model. For example, the fused sensor sample can correspond
with first stage backbone data 404 and the object detection
model can correspond with outputting detection data 408 in
FIG. 4. In particular, the first stage backbone data 404 can
be processed with at least a portion of the object detection
model to obtain detection data 408. In particular, the fused
sensor sample can be obtained through a neural network,
wherein the neural network can be considered a part of the
object detection model.

At 610, the method 600 can include updating one or more
weights of the object detection model based on labels
associated with the sensor data. In particular, the machine
learning model can be a supervised learning process. In
some implementations, the labels associated with the sensor
data provide ground truth information regarding one or more
objects and/or motion associated with the objects (e.g.,
perception data and/or prediction data).

FIG. 6 depicts another flowchart of a method 700 for
detecting and predicting the motion of objects within the
surrounding environment of a system such as an autono-
mous vehicle according to aspects of the present disclosure.
One or more portion(s) of the method 700 can be imple-
mented by a computing system that includes one or more
computing devices such as, for example, the computing
systems described with reference to the other figures (e.g.,
robotic platform 105, vehicle computing system 210, opera-
tions computing system(s) 290A, remote computing
system(s) 290B, etc.). Each respective portion of the method
700 can be performed by any (or any combination) of one or
more computing devices. Moreover, one or more portion(s)
of the method 700 can be implemented as an algorithm on
the hardware components of the device(s) described herein
(e.g., as in FIGS. 1-3, 8, etc.), for example, to generate object
determination data and object motion data. FIG. 6 depicts
elements performed in a particular order for purposes of
illustration and discussion. Those of ordinary skill in the art,
using the disclosures provided herein, will understand that
the elements of any of the methods discussed herein can be
adapted, rearranged, expanded, omitted, combined, or modi-
fied in various ways without deviating from the scope of the
present disclosure. FIG. 6 is described with reference to
elements/terms described with respect to other systems and
figures for exemplary illustrated purposes and is not meant
to be limiting. One or more portions of method 700 can be
performed additionally, or alternatively, by other systems.

At 702, the method 700 can include obtaining sensor data
from a plurality of sensors comprising at least two different
sensor modalities (e.g., the at least two different sensor
modalities can include a RADAR system, LIDAR system,
camera system, etc.). In particular, the sensor data can be

15

25

30

40

45

55

24

obtained of a surrounding environment by employing a
robotic platform (e.g., a three-hundred and sixty degree
view). The robotic platform can include an autonomous
vehicle. For example, a computing system (e.g., robotic
platform 105, vehicle computing system 210, operations
computing system(s) 290A, remote computing system(s)
290B, etc.) can obtain sensor data. As another example, the
environment can include a real-world environment or a
simulated environment. In some instances, the sensor data
obtained at 702 can include radar sweep input 302, raster-
ized map data 304, lidar input 306, and RGB camera image
308 such as depicted in FIG. 3 (but in a configuration that
excludes the sensor dropout at 314, 328, and/or 342).

At 704, the method 700 can include fusing the sensor data
from the at least two different sensor modalities to create a
fused sensor sample. For example, the computing system
can fuse a first portion of the sensor data from a first branch
comprising a range-view (RV) representation with a second
portion of the sensor data from a second branch comprising
a bird’s-eye view (BEV) representation. In some instances,
the fused sensor sample created at 704 can be similar to the
feature tensor fusion data created at feature tensor fusion
point 334 of FIG. 3 (but in a configuration that excludes the
sensor dropout at 314, 328, and/or 342).

At 706, the method 700 can include providing the fused
sensor sample as input to a machine learning model, the
machine learning model having been trained by indepen-
dently applying sensor dropout to the at least two different
sensor modalities. For example, the fused sensor sample can
be provided as input at 706 to a machine-learned model 400
such as depicted in FIG. 4 having been trained by indepen-
dently applying sensor dropout as implemented by the
system depicted in FIG. 3. The fused sensor sample can
additionally or alternatively be provided to any number of
different machine learned models, such as neural networks
and/or other machine learned models dedicated to one or
more autonomy tasks, including but not limited to object
detection and/or motion prediction and/or motion planning.

At 708, the method 700 can include receiving, as an
output of the machine learning model in response to receipt
of the fused sensor sample provided as input at 706, data
indicative of one or more objects within an environment.
Again, depending on the trained tasks of the machine
learning model, machine learning model outputs received at
708 can include object detection data, motion prediction
data, or other state data associated with one or more objects
in the environment.

Additional steps associated with method 700 of FIG. 6
can include steps associated with controlling an autonomous
vehicle based on the data indicative of the one or more
objects within the environment. For example, motion plan
data and/or vehicle control signals can be generated for
controlling motion of an autonomous vehicle based on the
object detection data, motion prediction data, or other state
data associated with one or more objects in the environment.

FIG. 7 depicts a flowchart of a method 800 for detecting
and predicting the motion of objects within the surrounding
environment of a system such as an autonomous vehicle
according to aspects of the present disclosure. One or more
portion(s) of the method 800 can be implemented by a
computing system that includes one or more computing
devices such as, for example, the computing systems
described with reference to the other figures (e.g., robotic
platform 105, vehicle computing system 210, operations
computing system(s) 290A, remote computing system(s)
290B, etc.). Each respective portion of the method 800 can
be performed by any (or any combination) of one or more



US 12,259,694 B2

25

computing devices. Moreover, one or more portion(s) of the
method 800 can be implemented as an algorithm on the
hardware components of the device(s) described herein
(e.g., as in FIGS. 1-3, 8, etc.), for example, to generate object
determination data and object motion data. FIG. 7 depicts
elements performed in a particular order for purposes of
illustration and discussion. Those of ordinary skill in the art,
using the disclosures provided herein, will understand that
the elements of any of the methods discussed herein can be
adapted, rearranged, expanded, omitted, combined, or modi-
fied in various ways without deviating from the scope of the
present disclosure. FIG. 7 is described with reference to
elements/terms described with respect to other systems and
figures for exemplary illustrated purposes and is not meant
to be limiting. One or more portions of method 800 can be
performed additionally, or alternatively, by other systems.

At 802, the method 800 can include obtaining sensor data
from a plurality of sensors comprising at least two different
sensor modalities (e.g., the at least two different sensor
modalities can include a RADAR system, LIDAR system,
camera system, etc.). In particular, the sensor data can be
obtained of a surrounding environment by employing a
robotic platform (e.g., a three-hundred and sixty degree
view). The robotic platform can include an autonomous
vehicle. For example, a computing system (e.g., robotic
platform 105, vehicle computing system 210, operations
computing system(s) 290A, remote computing system(s)
290B, etc.) can obtain sensor data. As another example, the
environment can include a real-world environment or a
simulated environment. In some instances, the sensor data
obtained at 802 can include radar sweep input 302, raster-
ized map data 304, lidar input 306, and RGB camera image
308 such as depicted in FIG. 3 (but in a configuration that
excludes the sensor dropout at 314, 328, and/or 342).

At 804, the method 800 can include fusing the sensor data
from the at least two different sensor modalities to create a
fused sensor sample. For example, the computing system
can fuse a first portion of the sensor data from a first branch
comprising a range-view (RV) representation with a second
portion of the sensor data from a second branch comprising
a bird’s-eye view (BEV) representation. In some instances,
the fused sensor sample created at 804 can be similar to the
feature tensor fusion data created at feature tensor fusion
point 334 of FIG. 3 (but in a configuration that excludes the
sensor dropout at 314, 328, and/or 342).

At 806, the method 800 can include providing the fused
sensor sample as input to a machine learning model for
object detection and motion prediction. In particular, the
machine-learning model for object detection and motion
prediction can be trained by independently applying sensor
dropout to the at least two different sensor modalities. For
example, the fused sensor sample can be provided as input
at 806 to a machine-learned model 400 such as depicted in
FIG. 4 having been trained by independently applying
sensor dropout as implemented by the system depicted in
FIG. 3. The fused sensor sample can additionally or alter-
natively be provided to any number of different machine
learned models, such as neural networks and/or other
machine learned models dedicated to one or more autonomy
tasks, including but not limited to object detection and/or
motion prediction and/or motion planning.

At 808, the method 800 can include receiving, as an
output of the machine learning model for object detection
and motion prediction in response to receipt of the fused
sensor sample provided as input, perception data indicative
of one or more states of the one or more objects within the

25

30

40

45

26

environment and prediction data indicative of one or more
predicted future locations of the one or more objects.

Additional steps associated with method 800 of FIG. 7
can include steps associated with controlling an autonomous
vehicle based on the perception data and/or prediction data.
For example, motion plan data and/or vehicle control signals
can be generated for controlling motion of an autonomous
vehicle based on the perception data and/or prediction data
and/or other data associated with one or more objects in the
environment.

FIG. 8 depicts a block diagram of an example system
1000 according to example embodiments of the present
disclosure. The example system 1000 includes a computing
system 1100 and a machine learning computing system 1200
that are communicatively coupled over one or more net-
works 1300.

In some implementations, the computing system 1100 can
perform one or more observation tasks such as, for example,
by obtaining sensor data associated with an environment. In
some implementations, the computing system 1100 can be
included in a robotic platform. For example, the computing
system 1100 can be on-board an autonomous vehicle. In
other implementations, the computing system 1100 is not
located on-board a robotic platform. The computing system
1100 can include one or more distinct physical computing
devices 1105.

The computing system 1100 (or one or more computing
device(s) 1105 thereof) can include one or more processors
1110 and a memory 1115. The one or more processors 1110
can be any suitable processing device (e.g., a processor core,
a microprocessor, an ASIC, a FPGA, a controller, a micro-
controller, etc.) and can be one processor or a plurality of
processors that are operatively connected. The memory 1115
can include one or more non-transitory computer-readable
storage media, such as RAM, ROM, EEPROM, EPROM,
one or more memory devices, flash memory devices, etc.,
and combinations thereof.

The memory 1115 can store information that can be
accessed by the one or more processors 1110. For instance,
the memory 1115 (e.g., one or more non-transitory com-
puter-readable storage mediums, memory devices, etc.) can
store data 1120 that can be obtained, received, accessed,
written, manipulated, created, or stored. The data 1120 can
include, for instance, sensor data, sensor data packets,
models, feature data, local feature maps, spatial maps, data
associated with objects (e.g., classifications, bounding
shapes, etc.), map data, simulation data, or any other data or
information described herein. In some implementations, the
computing system 1100 can obtain data from one or more
memory device(s) that are remote from the computing
system 1100.

The memory 1115 can also store computer-readable
instructions 1125 that can be executed by the one or more
processors 1110. The instructions 1125 can be software
written in any suitable programming language or can be
implemented in hardware. Additionally, or alternatively, the
instructions 1125 can be executed in logically or virtually
separate threads on processor(s) 1110. The memory 1115 can
include a multi-scale memory, as described herein.

For example, the memory 1115 can store instructions
1125 that when executed by the one or more processors 1110
cause the one or more processors 1110 (the computing
system 1100) to perform any of the operations, functions, or
methods/processes described herein, including, for example,
obtain sensor data, generate a local feature map, update a
spatial map, determine an object is in the environment,
control motion, generate simulation data, etc.



US 12,259,694 B2

27

According to an aspect of the present disclosure, the
computing system 1100 can store or include one or more
machine-learned models 1135. As examples, the machine-
learned models 1135 can be or can otherwise include various
machine-learned models such as, for example, inpainting
networks, generative adversarial networks, neural networks
(e.g., deep neural networks, etc.), support vector machines,
decision trees, ensemble models, k-nearest neighbors mod-
els, Bayesian networks, or other types of models including
linear models or non-linear models. Example neural net-
works include feed-forward neural networks, recurrent neu-
ral networks (e.g., long short-term memory recurrent neural
networks, etc.), convolutional neural networks, or other
forms of neural networks.

In some implementations, the computing system 1100 can
receive the one or more machine-learned models 1135 from
the machine learning computing system 1200 over
network(s) 1300 and can store the one or more machine-
learned models 1135 in the memory 1115. The computing
system 1100 can then use or otherwise implement the one or
more machine-learned models 1135 (e.g., by processor(s)
1110, etc.). In particular, the computing system 1100 can
implement the machine-learned model(s) 1135 to generate
local feature maps, update spatial maps, or determine objects
are in the environment.

The machine learning computing system 1200 can include
one or more computing devices 1205. The machine learning
computing system 1200 can include one or more processors
1210 and a memory 1215. The one or more processors 1210
can be any suitable processing device (e.g., a processor core,
a microprocessor, an ASIC, a FPGA, a controller, a micro-
controller, etc.) and can be one processor or a plurality of
processors that are operatively connected. The memory
1215 can include one or more non-transitory computer-
readable storage media, such as RAM, ROM, EEPROM,
EPROM, one or more memory devices, flash memory
devices, etc., and combinations thereof.

The memory 1215 can store information that can be
accessed by the one or more processors 1210. For instance,
the memory 1215 (e.g., one or more non-transitory com-
puter-readable storage mediums, memory devices, etc.) can
store data 1220 that can be obtained, received, accessed,
written, manipulated, created, or stored. The data 1220 can
include, for instance, sensor data, sensor data packets,
models, feature data, local feature maps, spatial maps, data
associated with objects (e.g., classifications, etc.), map data,
simulation data, data communicated to/from a vehicle, simu-
lation data, or any other data or information described
herein. In some implementations, the machine learning
computing system 1200 can obtain data from one or more
memory device(s) that are remote from the machine learning
computing system 1200.

The memory 1215 can also store computer-readable
instructions 1225 that can be executed by the one or more
processors 1210. The instructions 1225 can be software
written in any suitable programming language or can be
implemented in hardware. Additionally, or alternatively, the
instructions 1225 can be executed in logically or virtually
separate threads on processor(s) 1210.

For example, the memory 1215 can store instructions
1225 that when executed by the one or more processors 1210
cause the one or more processors 1210 (the computing
system) to perform any of the operations, functions, meth-
ods, or processes described herein, including, for example,
training a machine-learned convolutional model, interpola-
tion model, concatenation model, self-attention model, clas-
sification model, etc.

10

15

20

25

30

35

40

45

50

55

60

65

28

In some implementations, the machine learning comput-
ing system 1200 includes one or more server computing
devices. If the machine learning computing system 1200
includes multiple server computing devices, such server
computing devices can operate according to various com-
puting architectures, including, for example, sequential
computing architectures, parallel computing architectures,
or some combination thereof.

In addition, or alternatively to the model(s) 1235 at the
computing system 1100, the machine learning computing
system 1200 can include one or more machine-learned
models 1235. As examples, the machine-learned models
1235 can be or can otherwise include various machine-
learned models such as, for example, inpainting networks,
generative adversarial networks, neural networks (e.g., deep
neural networks, etc.), support vector machines, decision
trees, ensemble models, k-nearest neighbors models, Bayes-
ian networks, or other types of models including linear
models or non-linear models. Example neural networks
include feed-forward neural networks, recurrent neural net-
works (e.g., long short-term memory recurrent neural net-
works, etc.), convolutional neural networks, or other forms
of neural networks.

In some implementations, the machine learning comput-
ing system 1200 or the computing system 1100 can train the
machine-learned models 1135 or 1235 through use of a
model trainer 1240. The model trainer 1240 can train the
machine-learned models 1135 or 1235 using one or more
training or learning algorithms. One example training tech-
nique is backwards propagation of errors. In some imple-
mentations, the model trainer 1240 can perform supervised
training techniques using a set of labeled training data. In
other implementations, the model trainer 1240 can perform
unsupervised training techniques using a set of unlabeled
training data. The model trainer 1240 can perform a number
of generalization techniques to improve the generalization
capability of the models being trained. Generalization tech-
niques include weight decays, dropouts, or other techniques.

In particular, the model trainer 1240 can train a machine-
learned model 1135 or 1235 based on a set of training data
1245. The training data 1245 can include, for example,
labeled sequential sensor data indicative of portions of one
or more environments at different timesteps. In some imple-
mentations, the training data can include environment(s)
previously recorded by the autonomous vehicle with one or
more objects. The model trainer 1240 can be implemented in
hardware, firmware, or software controlling one or more
processors.

FIG. 9 depicts a block diagram of an example process
1400 for training one or more machine-learned models for
sensor data dropout and related processing according to
aspects of the present disclosure. More specifically, the
example process 1400 depicts an example training process
using a multi-task loss function.

The training process 1400 can include obtaining or gen-
erating a plurality of training datasets 1402. The training
datasets 1402 can include a plurality of training sensor data
packets, such as the outputs generated by example system
300 of FIG. 3. The training sensor data packets can include
sequential packets that may be input into the one or more
machine-learned models sequentially (e.g., chronologically,
etc.). The training sensor data packets can be descriptive or
indicative of one or more training environments with known
depths and known objects. The training datasets 1402 can
further include one or more labels (e.g., ground truth box
labels indicating the actual location of objects and features



US 12,259,694 B2

29

and ground truth classification labels indicating the actual
classification and score for the features identified in the
environment, etc.).

The training sensor data packets can be input into a first
machine-learned model 1404 to generate one or more local
feature maps indicative of one or more local features. The
one or more local feature maps can then be utilized to update
one or more spatial maps. The spatial maps can be updated
via interpolation and feature-wise concatenation techniques
and may be updated via one or more second machine-
learned models.

The updated spatial map can then be processed with the
object determination model 1406 (e.g., a detection model or
classification model, etc.). The object determination model
1406 can then output: (i) one or more bounding boxes 1408
indicative of feature clusters and their determined centroid
and (ii) one or more classifications 1410 indicative of
whether a feature cluster is indicative of an object or not.

The one or more bounding boxes 1408 can be compared
against one or more ground truth box labels in order to
evaluate a regression loss function 1418. Similarly, the one
or more classifications 1410 can be compared against one or
more ground truth classification labels in order to evaluate a
classification loss function 1420. The resulting evaluations
of the regression loss function 1418 and the classification
loss function 1420 can be backpropagated. In response to the
evaluations, one or more parameters of at least one of the
first machine-learned model 1404, the second machine-
learned model, or the object determination model 1406 may
be adjusted based at least in part on the regression loss
function 1418 or the classification loss function 1420.

FIG. 10 depicts a flowchart of a method 1500 for training
an example machine-learned model according to aspects of
the present disclosure. One or more portion(s) of the method
1500 can be implemented by a computing system that
includes one or more computing devices such as, for
example, the computing systems described with reference to
the other figures (e.g., a system of FIG. 7, etc.). Each
respective portion of the method 1500 can be performed by
any (or any combination) of one or more computing devices.
Moreover, one or more portion(s) of the method 1500 can be
implemented as an algorithm on the hardware components
of the device(s) described herein (e.g., as in FIGS. 1-3, 7,
etc.), for example, to train machine-learned models. FIG. 10
depicts elements performed in a particular order for pur-
poses of illustration and discussion. Those of ordinary skill
in the art, using the disclosures provided herein, will under-
stand that the elements of any of the methods discussed
herein can be adapted, rearranged, expanded, omitted, com-
bined, or modified in various ways without deviating from
the scope of the present disclosure. FIG. 10 is described with
reference to elements/terms described with respect to other
systems and figures for exemplary illustrated purposes and
is not meant to be limiting. One or more portions of method
1500 can be performed additionally, or alternatively, by
other systems.

At 1502, the method 1500 can include generating training
data for training a first machine-learned model. For example,
a computing system (e.g., a model trainer, etc.) can generate
the training data for training the first machine-learned
model. The training data can include a plurality of training
fused sensor samples having independent sensor dropout or
a set of respective training labels for the plurality of training
fused sensor samples having independent sensor dropout.

The training data can be collected using one or more
robotic platforms (e.g., robotic platform 105, etc.) or the
sensors thereof as the robotic platform is within its envi-

10

15

20

25

30

35

40

45

50

55

60

65

30

ronment. By way of example, the training data can be
collected using one or more autonomous vehicle(s) (e.g.,
robotic platform 105, vehicle 205, etc.) or sensors thereof as
the vehicle(s) operates along one or more travel ways. The
training data can include LIDAR point clouds (e.g., col-
lected using LIDAR sensors of a robotic platform, etc.),
RADAR sweeps (e.g., collected using RADAR sensors of a
robotic platform, etc.), images (e.g., collected using camera
sensors of a robotic platform, etc.) or high definition map
information (e.g., structured lane topology data, etc.). The
plurality of fused sensor samples and the plurality of maps
can be scaled training and evaluation. In some implemen-
tations, a “ground-truth” labels or ground truth maps can be
created in which objects, boxes, or features can be identified.

Due to the sequential nature of the spatial memory, the
one or more machine-learned models can be trained sequen-
tially through examples that contain a plurality of fused
sensor samples, and backpropagation through time can be
used to compute gradients across the memory. Furthermore,
the one or more machine-learned models (e.g., the first
machine learned model 1404, the second machine-learned
model, and the classification model (e.g., the object deter-
mination model 1406), etc.) may also be trained to remem-
ber by supervising the model(s) on objects with O points as
long as it was seen in any of the previous samples, as
previously described herein. In practice, due to GPU
memory constraints, the system may only compute the
forward pass in the first subset of samples, then forward and
backward through time in the last subset of samples.

At 1504, the method 1500 can include selecting a training
instance based, at least in part, on the training data. For
example, a computing system can select the training
instance based, at least in part, on the training data. The
training instance can include training fused sensor samples
indicative of at least a portion of a surrounding environment
with at least one object for detection.

For example, as described above, the training datasets
1402 can include a plurality of fused sensor samples from a
plurality of different degree slices over a plurality of differ-
ent timesteps. In addition, in some implementations, the
training datasets can include a plurality of objects (e.g.,
synthetic three-dimensional object meshes such as car
meshes, pedestrian meshes, etc.) rendered within the fused
sensor samples. Each object can be assigned one or more
feasible trajectories and rendered within at least one of the
plurality of fused sensor samples of the training dataset
based, at least in part, on the respectively assigned trajectory.
In some implementations, the feasible trajectories can be
determined based, at least in part, on one or more heuristics
such as, for example, vehicle (1) can only travel along lanes;
(2) can randomly turn left, right, or continue straight at each
intersection; (3) cannot interfere with one another; or any
other heuristic for controlling the motion of objects rendered
within the training sequence.

At 1506, the method 1500 can include inputting the
training instance into the first machine-learned model. For
example, a computing system can input the training instance
into the first machine-learned model.

At 1508, the method 1500 can include generating loss
metric(s) for the first machine-learned model based on
output(s) of at least a portion of the first machine-learned
model in response to the training instance. For example, a
computing system can generate the loss metric(s) for the first
machine-learned model based on the output(s) of at least the
portion of the first machine-learned model in response to the
training instance. The loss metric(s), for example, can
include at least one of a regression loss (e.g., a weighted sum



US 12,259,694 B2

3

of L1 losses, etc.), a classification loss, adversarial loss, a
multi-task loss, or a perceptual loss.

In some implementations, the loss metric(s) can be asso-
ciated with a plurality of loss terms. The loss terms can
include at least a first loss term associated with the deter-
mination or generation of bounding boxes, a second loss
term associated with the classification of features, or a third
loss term associated with the generation of a two-dimen-
sional representations, or a fourth loss term associated with
the extraction of local features from a two-dimensional
representation. For example, the regression loss metric (e.g.,
the first loss term associated with the determination or
generation of bounding boxes, etc.) can quantify the accu-
racy of the predicted bounding boxes output by at least a
portion of the one or more machine-learned model(s). As
another example, the fine-classification loss metric (e.g., the
second loss term associated with the classification of fea-
tures, etc.) can quantify the accuracy of the classification or
object determination output by at least another portion of the
one or more machine-learned model(s).

At 1510, the method 1500 can include modifying at least
the portion of the first machine-learned model based, at least
in part, on at least one of the loss metric(s). For example, a
computing system can modify at least the portion of the first
machine-learned model based, at least in part, on at least one
of the loss metric(s). For example, the first machine-learned
model can be trained with a multi-task loss function (de-
noted as [ ).

The first machine-learned model (or portion thereof) can
be modified to minimize a loss function associated with the
loss metric(s). For example, the first machine-learned model
can be trained with a multi-task loss function (denoted as [ )
to minimize a Wasserstein distance. By way of example, the
model can be trained over the overall training function:

L= Log+ Ly

The terms of the overall training function can include a
first term indicative of the regression loss metric. The
regression loss can include a weighted sum of the smooth L1
loss between the predicted box parameters and the ground
truth (as denoted below).

N

Lt 9=5Y

i=0 de(x,plogw,logh] 62)

Y4 X smoothy; (y; - j);)

05x2  if x =1

smoothy; (x :{ .
01 (%) |x| = 0.5 otherwise

The regression loss can include v values of 1.0 for x, y, log
w, log 1, and 2.0 for 6,, 8, can be used. For pedestrians the
log w, log 1, 8,, and 0, can be omitted as the metric may only
be concerned with predicting the centroid (x and y).

In addition, the terms can include a second term indicative
of the classification loss metric. The classification loss can
include a binary cross entropy between the predicted clas-
sification scores and the ground truth. Due to a severe
imbalance between positive and negative anchors given that
most pixels in the BEV scene do not contain an object, the
metric can employ hard negative mining. Thus, the loss can
become:

20

25

30

35

40

45

50

55

60

65

32
1y 11X ,
Loy 9= F;Y'pgﬁzgﬂ[l € Nel(1 = §ogllog(l -y,

where K can be a set containing K hard negative anchors.
The set can be obtained by first randomly sampling different
classes of objects, and then picking a certain number (e.g.,
20, etc.) with highest loss for each class.

In addition, the terms of the overall training function can
include one or more other terms for evaluating one or more
other parameters of the one or more machine-learned mod-
els. Although FIG. 10 describes systems and methods for
training the first machine-learned model, similar methods
and systems can be applied to train the one or more second
machine-learned models and the one or more object deter-
mination models disclosed herein.

Returning to FIG. 8, the computing system 1100 and the
machine learning computing system 1200 can each include
a communication interface 1130 and 1250, respectively. The
communication interfaces 1130/1250 can be used to com-
municate with one or more systems or devices, including
systems or devices that are remotely located from the
computing system 1100 and the machine learning comput-
ing system 1200. A communication interface 1130/1250 can
include any circuits, components, software, etc. for commu-
nicating with one or more networks 1300. In some imple-
mentations, a communication interface 1130/1250 can
include, for example, one or more of a communications
controller, receiver, transceiver, transmitter, port, conduc-
tors, software or hardware for communicating data.

The network(s) 1300 can be any type of network or
combination of networks that allows for communication
between devices. In some embodiments, the network(s) can
include one or more of a local area network, wide area
network, the Internet, secure network, cellular network,
mesh network, peer-to-peer communication link or some
combination thereof and can include any number of wired or
wireless links. Communication over the network(s) 1300
can be accomplished, for instance, through a network inter-
face using any type of protocol, protection scheme, encod-
ing, format, packaging, etc.

FIG. 8 illustrates one example computing system 1000
that can be used to implement the present disclosure. Other
computing systems can be used as well. For example, in
some implementations, the computing system 1100 can
include the model trainer 1240 and the training dataset 1245.
In such implementations, the machine-learned models 1235
can be both trained and used locally at the computing system
1100. As another example, in some implementations, the
computing system 1100 is not connected to other computing
systems.

In addition, components illustrated or discussed as being
included in one of the computing systems 1100 or 1200 can
instead be included in another of the computing systems
1100 or 1200. Such configurations can be implemented
without deviating from the scope of the present disclosure.
The use of computer-based systems allows for a great
variety of possible configurations, combinations, and divi-
sions of tasks and functionality between and among com-
ponents. Computer-implemented operations can be per-
formed on a single component or across multiple
components. Computer-implemented tasks or operations can
be performed sequentially or in parallel. Data and instruc-
tions can be stored in a single memory device or across
multiple memory devices.



US 12,259,694 B2

33

While the present subject matter has been described in
detail with respect to specific example embodiments and
methods thereof, it will be appreciated that those skilled in
the art, upon attaining an understanding of the foregoing can
readily produce alterations to, variations of, and equivalents
to such embodiments. Accordingly, the scope of the present
disclosure is by way of example rather than by way of
limitation, and the subject disclosure does not preclude
inclusion of such modifications, variations or additions to
the present subject matter as would be readily apparent to
one of ordinary skill in the art. Moreover, terms are
described herein using phrases, sentences, lists, etc. of
example elements joined by conjunctions such as “and,”
“or,” “but,” etc. It should be understood that such conjunc-
tions are provided for explanatory purposes only. Lists
joined by a particular conjunction such as “or,” for example,
can refer to “at least one of”, “and/or”, or “any combination
of” example elements listed therein.

What is claimed is:

1. A computer-implemented method comprising:

(a) obtaining sensor data from a plurality of sensors
comprising at least two different sensor modalities;

(b) applying independent sensor dropout to the at least
two different sensor modalities;

(c) fusing the sensor data from the at least two different
sensor modalities with sensor dropout independently
applied thereto to generate a fused sensor sample;

(d) generating a training data set comprising the fused
sensor sample; and

(e) training a machine-learned model for object detection
using the training data set, wherein the trained
machine-learned model is employed by a robotic plat-
form operating within an environment.

2. The computer-implemented method of claim 1,
wherein the robotic platform comprises an autonomous
vehicle.

3. The computer-implemented method of claim 1,
wherein the environment comprises a real-world environ-
ment or a simulated environment.

4. The computer-implemented method of claim 1,
wherein the trained machine-learned model comprises an
end-to-end model that is configured to jointly perform object
detection and motion prediction.

5. The computer-implemented method of claim 1,
wherein (b) comprises independently applying sensor drop-
out to each of the at least two different sensor modalities at
a fixed probability associated with the sensor modality.

6. The computer-implemented method of claim 1,
wherein the plurality of sensors comprise a RADAR system,
a LIDAR system, and a camera.

7. The computer-implemented method of claim 6,
wherein:

the at least two different sensor modalities comprise at
least one of the RADAR system or the camera; and

(b) comprises zeroing out a final feature vector for a
portion of the sensor data obtained from the at least one
of the RADAR system or the camera.

8. The computer-implemented method of claim 6,

wherein:

the at least two different sensor modalities comprise the
LIDAR system; and

(b) comprises replacing a LIDAR intensity value with a
sentinel value for a portion of the sensor data obtained
from the LIDAR system.

9. The computer-implemented method of claim 1,

wherein (e) comprises:

20

25

30

40

45

50

55

65

34

inputting the fused sensor sample into the machine-

learned model;

generating a loss metric for the machine-learned model

based on output of at least a portion of the machine-

learned model in response to the fused sensor sample as
input; and

modifying at least a portion of the machine-learned model

based on the loss metric.

10. The computer-implemented method of claim 9,
wherein the loss metric comprises at least one of a regression
loss, a classification loss, an adversarial loss, a multi-task
loss, or a perceptual loss.

11. The computer-implemented method of claim 9,
wherein the loss metric is associated with a plurality of loss
terms, the plurality of loss terms comprising at least a first
loss term associated with a determination or generation of
bounding shapes.

12. The computer-implemented method of claim 11, the
plurality of loss terms further comprising at least a second
loss term associated with a classification of features.

13. A training computing system, comprising:

one or more processors; and

one or more non-transitory computer-readable medium

storing instructions that when executed by the one or

more processors cause the training computing system
to perform operations, the operations comprising:

(a) obtaining sensor data from a plurality of sensors
comprising at least two different sensor modalities;

(b) applying independent sensor dropout to the at least
two sensor modalities;

(c) fusing the sensor data from the at least two different
sensor modalities with sensor dropout independently
applied thereto to generate a fused sensor sample;

(d) generating a training data set comprising the fused
sensor sample; and

(e) training a machine-learned model for object detec-
tion using the training data set, wherein the trained
machine-learned model is employed by a robotic
platform operating within an environment.

14. The training computing system of claim 13, wherein
the robotic platform comprises an autonomous vehicle.

15. The training computing system of claim 13, wherein
the environment comprises a real-world environment or a
simulated environment.

16. The training computing system of claim 13, wherein
the trained machine-learned model comprises an end-to-end
model that is configured to jointly perform object detection
and motion prediction.

17. The training computing system of claim 13, wherein
(b) comprises independently applying sensor dropout to
each of the at least two different sensor modalities at a fixed
probability associated with the sensor modality.

18. The training computing system of claim 13, wherein
(e) comprises:

inputting the fused sensor sample into the machine-

learned model;

generating a loss metric for the machine-learned model

based on output of at least a portion of the machine-

learned model in response to the fused sensor sample as
input; and

modifying at least a portion of the machine-learned model

based on the loss metric.

19. The training computing system of claim 18, wherein
the loss metric comprises one or more of a regression loss
and a classification loss.

20. One or more non-transitory computer-readable
medium storing instructions that when executed by one or



US 12,259,694 B2
35

more processors cause the one or more processors to per-
form operations, the operations comprising:

(a) obtaining sensor data from a plurality of sensors
comprising at least two different sensor modalities;

(b) applying independent sensor dropout to the at least 5
two sensor modalities;

(c) fusing the sensor data from the at least two different
sensor modalities with sensor dropout independently
applied thereto to generate a fused sensor sample;

(d) generating a training data set comprising the fused 10
sensor sample; and

(e) training a machine-learned model for object detection
using the training data set, wherein the trained
machine-learned model is employed by a robotic plat-
form operating within an environment. 15

#* #* #* #* #*



