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MULTIPLE STAGE IMAGE BASED OBJECT
DETECTION AND RECOGNITION

RELATED APPLICATION

The present application is a continuation-in-part of U.S.
patent application Ser. No. 17/007,969 having a filing date
of Aug. 31, 2020, which is a continuation of U.S. application
Ser. No. 15/972,566 having a filing date of May 7, 2018,
which claims the benefit of U.S. Provisional Application Ser.
No. 62/594,631 filed Dec. 5, 2017. Applicant claims priority
to and the benefit of each of such applications and hereby
incorporates the entirety of all such applications herein by
reference.

FIELD

The present disclosure relates generally to operation of an
autonomous vehicle including the detection and recognition
of one or more characteristics of an object using multiple
stage classification.

BACKGROUND

Vehicles, including autonomous vehicles, can receive data
based on the state of the environment around the vehicle
including the state of objects in the environment. This data
can be used by the autonomous vehicle to perform various
functions related to the movement of those objects through
the environment. Further, as the vehicle travels through the
environment the set of objects in the environment and the
state of those objects can also change. As such, the safe
operation of an autonomous vehicle in the environment
relies on an accurate determination of the state of the
environment. Accordingly, there exists a need for a com-
puting system that more effectively determines the state of
objects in an environment.

SUMMARY

Aspects and advantages of embodiments of the present
disclosure will be set forth in part in the following descrip-
tion, or may be learned from the description, or may be
learned through practice of the embodiments.

An example aspect of the present disclosure is directed to
a computer-implemented method of autonomous vehicle
operation. The computer-implemented method of autono-
mous vehicle operation can include receiving, by a comput-
ing system comprising one or more computing devices,
object data including one or more portions of sensor data.
The method can include determining, by the computing
system, in a first stage of a multiple stage classification using
one or more hardware components, one or more first stage
characteristics of the one or more portions of sensor data
based in part on a first machine-learned model. Further, the
method can include determining, by the computing system,
in a second stage of the multiple stage classification, one or
more second stage characteristics of the one or more por-
tions of sensor data based in part on a second machine-
learned model. The method can include generating, by the
computing system, an object output based in part on the one
or more first stage characteristics and the one or more second
stage characteristics. The object output can include one or
more indications associated with detection of one or more
objects in the one or more portions of sensor data.

Another example aspect of the present disclosure is
directed to one or more tangible, non-transitory computer-
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readable media storing computer-readable instructions that
when executed by one or more processors cause the one or
more processors to perform operations. The operations can
include receiving object data including one or more portions
of sensor data. The operations can include determining, in a
first stage of a multiple stage classification using one or more
hardware components, one or more first stage characteristics
of the one or more portions of sensor data based in part on
a first machine-learned model. Further, the operations can
include determining, in a second stage of the multiple stage
classification, one or more second stage characteristics of the
one or more portions of sensor data based in part on a second
machine-learned model. The operations can include gener-
ating an object output based in part on the one or more first
stage characteristics and the one or more second stage
characteristics. The object output can include one or more
indications associated with detection of one or more objects
in the one or more portions of sensor data.

Another example aspect of the present disclosure is
directed to an autonomous vehicle comprising one or more
processors and one or more non-transitory computer-read-
able media storing instructions that when executed by the
one or more processors cause the one or more processors to
perform operations. The operations can include receiving
object data including one or more portions of sensor data.
The operations can include determining, in a first stage of a
multiple stage classification using one or more hardware
components, one or more first stage characteristics of the
one or more portions of sensor data based in part on a first
machine-learned model. Further, the operations can include
determining, in a second stage of the multiple stage classi-
fication, one or more second stage characteristics of the one
or more portions of sensor data based in part on a second
machine-learned model. The operations can include gener-
ating an object output based in part on the one or more first
stage characteristics and the one or more second stage
characteristics. The object output can include one or more
indications associated with detection of one or more objects
in the one or more portions of sensor data.

Other example aspects of the present disclosure are
directed to other systems, methods, vehicles, apparatuses,
tangible non-transitory computer-readable media, and
devices for autonomous vehicle operation including the
detection and recognition of one or more characteristics of
an object using multiple stage classification.

These and other features, aspects and advantages of
various embodiments will become better understood with
reference to the following description and appended claims.
The accompanying drawings, which are incorporated in and
constitute a part of this specification, illustrate embodiments
of the present disclosure and, together with the description,
serve to explain the related principles.

BRIEF DESCRIPTION OF THE DRAWINGS

Detailed discussion of embodiments directed to one of
ordinary skill in the art are set forth in the specification,
which makes reference to the appended figures, in which:

FIG. 1 is a diagram of a system according to some
embodiments of the present disclosure;

FIG. 2 is a diagram of a multiple stage classification
system according to some embodiments of the present
disclosure;

FIG. 3 depicts object detection from an overhead view
using a multiple stage classifier according to some embodi-
ments of the present disclosure;
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FIG. 4 depicts object detection and use of decision trees
by a multiple stage classifier according to some embodi-
ments of the present disclosure;

FIG. 5 depicts object detection and use of a decision tree
by a multiple stage classifier according to some embodi-
ments of the present disclosure;

FIG. 6 is a flow diagram of a method of object detection
and recognition according to some embodiments of the
present disclosure;

FIG. 7 is a second flow diagram of a method of object
detection and recognition according to some embodiments
of the present disclosure;

FIG. 8 is a third flow diagram of a method of object
detection and recognition according to some embodiments
of the present disclosure;

FIG. 9 is a second diagram of a system according to some
embodiments of the present disclosure;

FIG. 10 is a diagram of an example object classifier
system according to some embodiments of the present
disclosure;

FIG. 11A is a block diagram of at least a portion of an
object detection model according to some embodiments of
the present disclosure;

FIG. 11B is a block diagram of at least a portion of an
object detection model according to some embodiments of
the present disclosure;

FIG. 11C is a block diagram of at least a portion of an
object detection model according to some embodiments of
the present disclosure; and

FIG. 12 is a fourth flow diagram of a method of object
detection and recognition according to some embodiments
of the present disclosure.

DETAILED DESCRIPTION

Example aspects of the present disclosure are directed to
image classification or object detection (e.g., detecting,
identifying, and/or recognizing objects represented in one or
more images) using multiple stage classification that can be
applied to vehicle technologies (e.g., autonomous vehicles,
manually operated vehicles, and/or semi-autonomous
vehicles). In particular, aspects of the present disclosure
include receiving object data that is associated with one or
more images (e.g., object data based on images captured by
one or more cameras), determining, in a first stage of a
multiple stage classification, one or more first stage charac-
teristics of the object data using a first machine-learned
model, determining, in a second stage of the multiple stage
classification, one or more second stage characteristics of the
object data using a second machine-learned model, and
generating indications associated with detection of one or
more objects in the one or more images.

By way of example, the disclosed technology can receive
object data that is based in part on sensor data that can
include images of an environment (e.g., an urban street with
vehicles and pedestrians). The images can be based in part
on output from one or more sensors including one or more
light detection and ranging devices (LIDAR). The object
data can be processed in a first stage of a multiple stage
classification process that uses a first machine-learned model
(e.g., a first decision tree model or a first neural network
model) to determine one or more first stage characteristics
including the portions of the one or more images that are
background (e.g., the portions of the one or more images that
are less likely to include objects of interest) and the portions
of the one or more images that are foreground (e.g., the
portions of the one or more images that are more likely to
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include objects of interest). For example, the first machine-
learned model can be stored in, and implemented by, a
hardware system including one or more programmable logic
devices (e.g., a field programmable gate array (FPGA)
device or an application specific integrated circuit (ASIC)
device).

In the second stage of the multiple stage classification
process, the disclosed technology can use a second machine-
learned model (e.g., a second decision tree model or a
second neural network model) to determine one or more
second stage characteristics including the identity and loca-
tion of objects (e.g., vehicles and/or pedestrians) with a
greater level of confidence. In some implementations, the
second machine-learned model can be stored in, and imple-
mented by, a software system including one or more pro-
cessing units, processor cores, microprocessors, and/or cen-
tral processing units (CPUs)). The disclosed technology can
then generate one or more indications that can be used in
various ways, for example by an autonomous vehicle, to
perform actions including detecting and/or tracking objects;
activating vehicle systems based on the detection of the
detected objects (e.g., vehicle notification systems); and/or
modifying the path of the vehicle to avoid the detected
objects (e.g., vehicle motion planning and/or autonomy
systems).

As such, the disclosed technology can more effectively
(e.g., more rapidly and accurately) detect and/or identify one
or more objects in one or more portions of sensor data. In
particular, the disclosed technology can achieve superior
results by leveraging the capabilities of different types of
hardware at different stages of the classification process,
including using hardware that is specially configured in a
first stage of the process and a more software driven
approach using specially adapted software in a second stage
of the process.

The disclosed technology can include an object detection
system (e.g., a computing system including one or more
computing devices with one or more processors and a
memory) that can detect or identify one or more objects
and/or a vehicle computing system that can control a variety
of vehicle systems and communicate with the object detec-
tion system. The object detection system can process, gen-
erate, or exchange (e.g., send or receive) signals or data,
including signals or data exchanged with various computing
systems including the vehicle computing system, vehicle
systems (e.g., vehicle engines, vehicle motors, vehicle elec-
trical systems, and/or vehicle notification systems), and/or
remote computing systems (e.g., computing devices at a
remote location).

For example, the object detection system can exchange
signals (e.g., electronic signals) or data with vehicle com-
ponents or vehicle computing system including sensor sys-
tems (e.g., sensors that generate output based on the state of
the physical environment in range of the sensors including
LIDAR, cameras, microphones, radar, or sonar); communi-
cation systems (e.g., wired or wireless communication sys-
tems that can exchange signals or data with other devices);
navigation systems (e.g., devices that can receive signals
from GPS, GLONASS, or other systems used to determine
avehicle’s geographical location); notification systems (e.g.,
devices used to provide notifications to pedestrians, cyclists,
and vehicles, including electronic communication devices,
display devices, status indicator lights, and/or audio output
systems); braking systems (e.g., brakes of the vehicle
including mechanical and/or electric brakes); propulsion
systems (e.g., motors or engines including electric engines
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or internal combustion engines); and/or steering systems
used to change the path, course, or direction of travel of the
vehicle.

The object detection system can receive object data that is
associated with one or more portions of sensor data (e.g.,
data output from one or more sensors including one or more
LIDAR devices, one or more cameras, one or more RADAR
devices, one or more sonar devices, and/or one or more
thermal imaging devices, doppler LIDAR, infrared imaging
devices, etc.). For example, the sensor data can include
two-dimensional images including images captured by one
or more cameras and/or three-dimensional point clouds
captured by a LIDAR device. The one or more portions of
sensor data can be analyzed to detect one or more objects
including one or more pedestrians (e.g., one or more persons
laying down, sitting, crouching, standing, walking, or run-
ning); one or more other vehicles (e.g., automobiles, trucks,
buses, trolleys, motorcycles, mopeds, aircraft, boats,
amphibious vehicles, and/or trains); one or more cyclists
(e.g., a person sitting and/or riding on a bicycle); and/or one
or more buildings (e.g., houses and/or apartment buildings).
Further, the object data can include a set of three-dimen-
sional points (e.g., X, ¥, and z coordinates) associated with
one or more physical dimensions (e.g., the length, width,
and/or height) of the one or more objects in the one or more
images. The portions of sensor data and/or the associated
object data can be used to determine physical properties or
characteristics (e.g., visual properties or characteristics) of
the one or more objects including the shape, texture, bright-
ness, saturation, and/or physical dimensions (e.g., length,
width, and/or height).

In some embodiments the one or more portions of sensor
data, which can be associated with other data including the
object data, can be based in part on sensor output from one
or more sensors including one or more LIDAR devices, one
or more cameras, one or more radar devices, one or more
sonar devices, or one or more thermal imaging devices.

The object detection system can determine, in a first stage
of a multiple stage classification, one or more first stage
characteristics of the one or more portions of sensor data
based in part on traversal of a first decision tree of a first
machine-learned model (e.g., a first machine-learned model
associated with data which can include the object data). In
some embodiments, the first machine-learned model used by
the object detection system can be based in part on one or
more classification techniques including a random forest
classifier, gradient boosting, a support vector machine, a
logistic regression classifier, and/or a boosted forest classi-
fier.

In some embodiments, the first stage of the multiple stage
classification can include traversal of a first decision tree that
includes a first plurality of nodes associated with a plurality
of classifier labels. Each of the first plurality of nodes in the
first decision tree can be associated with a classifier label
that is used to classify, categorize and/or determine the one
or more first stage characteristics of the one or more portions
of sensor data. For example, the first stage of the multiple
stage classification can include a determination of the one or
more first stage characteristics including the portions of the
one or more portions of sensor data that are background and
the portions of the one or more portions of sensor data that
are foreground. As such, the object detection system can
provide a first stage output (i.e., the one or more first stage
characteristics) that allows the second stage of the multiple
stage classification to more efficiently process the one or
more portions of sensor data by determining in advance the
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areas of the one or more portions of sensor data to focus on
for purposes of object detection.

In some embodiments, the first stage of the multiple stage
classification can be performed by one or more hardware
components of the one or more computing devices including
an FPGA, a digital signal processor (DSP), an application
specific integrated circuit (ASIC), or a graphics processing
unit (GPU). By way of example, using an FPGA can allow
for an improvement in processing effectiveness through
processing of the one or more images in parallel, which can
result in image processing that exceeds the speed of other
techniques that do not process the images in parallel (e.g.,
serial processing of the one or more images).

The object detection system can determine, in a second
stage of the multiple stage classification, one or more second
stage characteristics of the one or more objects based in part
on traversal of a second decision tree of a second machine-
learned model (e.g., a second machine-learned model asso-
ciated with data which can include the object data). In some
embodiments, the second machine-learned model can
include, or be the same as, the first machine-learned model.

The second stage of the multiple stage classification can
include traversal of a second decision tree that includes a
second plurality of nodes associated with the second plu-
rality of classifier labels. For example, each of the plurality
of nodes in the second decision tree can be associated with
a classifier label that is used to classify, categorize and/or
determine the one or more first stage characteristics of the
one or images. For example, the second stage of the multiple
stage classification can include a determination of the one or
more second stage characteristics of the one or more images
including the location and identity of one or more objects
(e.g., the location of pedestrians in the one or more images).

The second stage of the multiple stage classification can
include determining one or more second stage characteris-
tics of the one or more images that are based in part on the
output of the first stage. The one or more second stage
characteristics can include the one or more first stage
characteristics (e.g., if a background characteristic is deter-
mined in the first stage a background characteristic can be
further determined, to a greater level of confidence, in the
second stage). Further, the one or more second stage char-
acteristics can include characteristics that were not deter-
mined in the first stage. For example, if one or more objects
(e.g., pedestrians, vehicles, and/or cyclists) were not deter-
mined in the first stage, the one or more objects can be
determined in the second stage.

In some embodiments, the second decision tree can
include an equal or greater number of nodes than the first
plurality of nodes. For example, the first decision tree can
include one-thousand nodes and the second decision tree can
include five-thousand nodes which can allow for a deeper
decision tree that can include more classifier labels and can
be traversed for greater accuracy in detecting and/or iden-
tifying the one or more objects in the one or more images.

In some embodiments, parts of the second stage of the
multiple stage classification can be performed by one or
more software components of the one or more computing
devices including one or more software components that
operate or are executed on one or more central processing
units. The use of software components can allow for more
flexible adjustment and customization of the second
machine-learned model.

The object detection system can determine, based in part
on the object data and a machine-learned model that can be
the first machine-learned model or the second machine-
learned model, an amount (e.g., a number of occurrences) of
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false positive determinations of the one or more first stage
characteristics (when the first machine-learned model is
used) or the one or more second stage characteristics (when
the second machine-learned model is used) of the one or
more objects that has occurred. For example, a false positive
determination of the one or more first stage characteristics
can include a determination that a portion of the background
(e.g., the Sun in the sky) is part of the foreground. Further,
the object detection system can terminate traversal of a
decision tree including the first decision tree or the second
decision tree when the amount of false positive determina-
tions exceeds a predetermined threshold level.

In some embodiments, the determination of the predeter-
mined threshold level to terminate traversal of the decision
tree can be based on performance (e.g., false positive rate)
of the first machine-learned model or the second machine-
learned model on a known data set (e.g., training data in
which all of the objects have been correctly identified) at the
various depths of the decision tree. For example, the pre-
determined threshold level to terminate traversal of the
decision tree can be based in part on the depth of the first
decision tree when the amount of false positives exceeds a
predetermined percentage of identified objects (e.g., ten
percent of the identified objects) or a predetermined number
of objects per image (e.g., two objects per image).

The object detection system can include generating, based
in part on the object data, visual descriptor output associated
with the one or more images. When the one or more portions
of sensor data include images, the visual descriptor output
can include various properties or characteristics of the one or
more images including color hue information, color satura-
tion information, brightness information, or histogram of
oriented gradients information. In some embodiments, the
one or more first stage characteristics can be based in part on
the visual descriptor output.

The object detection system can generate, based in part on
the visual descriptor output, a heat map associated with the
one or more images. The heat map can include a plurality of
areas associated with a probability of at least one of the one
or more objects being within the respective one of the
plurality of areas. For example, the object detection system
can segment the one or images in the plurality of areas and,
for each of the plurality of areas, determine a probability of
an object being within that area. In some embodiments, the
one or more second stage characteristics can be based in part
on the heat map.

The object detection system can determine, based in part
on the visual descriptor output or the heat map, one or more
portions of the one or more images that are associated with
one or more background images (i.e., the portions of the one
or more images that are background in contrast with a
foreground of the one or more images that contains the one
or more objects). In some embodiments, the second stage of
the multiple stage classification can exclude the one or more
portions of the one or more images that are associated with
the one or more background images. In this way, the second
stage of the multiple stage classification can focus more
resources on a smaller portion of the object data (e.g., the
foreground images of the one or more images) and conserve
resources by not analyzing portions of the one or more
images that are part of the background.

In some embodiments, at least one node of the second
plurality of nodes in the second decision tree is a terminal
node (e.g., the last node/leaf of the decision tree) of the first
plurality of nodes in the first decision tree. For example, the
first node in the second decision tree can be the terminal
node in the first decision tree. In this way, the second
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decision tree can be a continuation of the first decision tree
and leverage the benefits of building upon the first decision
tree based in part on the outputs of the first decision tree.

In some embodiments, the second decision tree of the
second machine-learned model can include an equal number
of nodes as the first plurality of nodes or a greater number
of nodes than the first plurality of nodes. In some embodi-
ments, the first stage of the multiple stage classification can
be performed on a customized device (e.g., an FPGA) that
operates in parallel and can rapidly determine one or more
first stage characteristics of the one or more portions of
sensor data including whether a portion of sensor data (e.g.,
a portion of an image) is foreground or a background. After
determining one or more first stage characteristics, the
second stage of the multiple stage classification can use a
decision tree that is deeper (i.e., has more nodes along the
path from a root node to a terminal node) to determine one
or more second stage characteristics that can, with a higher
level of confidence, determine or identify one or more
objects including vehicles, pedestrians, and/or cyclists.

The object detection system can generate an object output
based in part on the one or more first stage characteristics
and/or the one or more second stage characteristics. The
object output can include one or more indications associated
with detection of one or more objects in the one or more
portions of sensor data. For example, the object output can
be exchanged with vehicle systems or remote computing
devices and can include one or more indications of whether
objects were detected; the type of objects that were detected;
the location of the objects detected; the physical character-
istics of the objects detected; the velocity and/or acceleration
of the objects detected; and/or a probability associated with
an estimated accuracy of the object detection.

In some embodiments, the object output can be used by
one or more vehicle systems to perform one or more actions
including activating vehicle systems based on detection of
the one or more objects (e.g., activating a headlight when an
object is detected at night); modifying the path of the vehicle
(e.g., to maneuver the vehicle around objects); and/or
exchange the object output with one or more vehicle systems
or remote computing systems.

The object detection system can determine, based in part
on the object output, locations for one or more bounding
shapes (e.g., two-dimensional or three-dimensional bound-
ing boxes and/or bounding polygons) associated with the
one or more objects in the one or more portions of sensor
data. The object detection system can use the first machine-
learned model and/or the second machine-learned model to
determine the one or more locations or areas of the sensor
data that are more likely to contain an object or a certain type
of'object (e.g., a pedestrian is more likely to be in the ground
portion of an image than the sky portion of an image).

The object detection system can select a set of the
locations for the one or more bounding shapes. An image
processing technique (e.g., a filter including non-maximum
suppression) can then be used to select a location including
an optimal location from the set of locations for the one or
more bounding shapes. For example, by analyzing the image
gradient direction, pixels that are not part of the local
maxima for the portion of the sensor data corresponding to
each of the set of locations can be suppressed. The object
detection system can, based on the set of locations for the
one or more bounding shapes, generate the one or more
bounding shapes in the selected locations.

The object detection system can include an object detec-
tion model. The object detection model can include a
segmentation network for generating a foreground/back-
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ground embedding configured to signal a foreground/back-
ground state of an input sensor datapoint. For instance, the
segmentation network can generate an additional feature
associated with a sensor datapoint indicating a probability
that the datapoint is associated with a foreground or a
background of a measured environment. In this manner, for
instance, downstream networks in the object detection
model can process the sensor datapoint(s) in view of pre-
dicted foreground/background status. In this manner, for
instance, the foreground/background status can provide a
contextual cue for improved object detection, can increase
efficiency of allocating compute resources to prioritize pro-
cessing (e.g., of foreground sensor data), can improve the
accuracy of detection, and the like.

In some implementations, the object detection model can
include a feature fusion processor for fusing features across
sensor datasets (e.g., to provide for a framework for features
to be represented in a common underlying sensor data
space). For instance, the object detection model can include
a LIDAR point feature module. The LIDAR point feature
module can process LIDAR points to generate or insert
feature values for the LIDAR points. In some implementa-
tions, the generated or inserted feature values can be inter-
mediate feature embeddings. In some implementations, the
generated or inserted feature values can be based on other
sensor data (e.g., camera data, such as pixel value features
anchored to a given LIDAR datapoint). In some implemen-
tations, the object detection model can include an object
detection backbone (e.g., an object detection backbone pro-
viding sensor data fusion), a segmentation network, and a
remaining detection network.

In some implementations, the object detection model can
receive or otherwise obtain LIDAR features. For instance,
the LIDAR features can be obtained from one or more
sensors on an autonomous vehicle or otherwise suitably
disposed such that the sensors are configured to generate a
plurality of LIDAR points. The LIDAR features can be
provided in any suitable format. As one example, the
LIDAR features can be provided as an 11xP tensor of
LIDAR features, where P is a number of LIDAR points. The
LIDAR features can include, for each LIDAR point, the X,
Y, and Z coordinates (e.g., in an absolute reference frame, a
relative reference frame, etc.), an intensity value, a height
above ground, a range rate and its validity, and the like. The
LIDAR features can be processed, by a LIDAR point feature
module, to provide additional LIDAR features.

In some implementations, the object detection model can
receive and/or otherwise obtain one or more camera fea-
tures. Camera features can include data captured by and/or
processed from one or more cameras disposed on a surface,
such as a body of an autonomous vehicle. In some imple-
mentations, a view of the one or more cameras may at least
partially overlap a view of the one or more LIDAR sensors.
Camera features can be provided as any suitable format. As
one example, the camera features can be provided as a KxP
tensor of camera features, where K is a shape of the camera
features. As examples, the camera features can include
image data and/or derivations thereof.

In some implementations, the sensor datapoints (e.g.,
LIDAR point, RADAR point, image pixel, etc.) and any
corresponding features (e.g., LIDAR features, camera fea-
tures, fused features, etc.) can be provided to a sensor data
fusion module. The sensor data fusion module can be
configured to fuse data from multiple sensors. In some
implementations, the sensor data fusion module can fuse
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data from multiple views of the sensors. As one example,
sensor data fusion module can be or can include a multi-
view fusion (MVF) module.

In some implementations, the sensor datapoints and any
corresponding features (e.g., LIDAR features, camera fea-
tures, fused sensor features, etc.) can be provided to a
segmentation network. The segmentation network can pro-
duce foreground/background embeddings associated with
the input datapoint(s). In some implementations, the seg-
mentation network can be or can include one or more neural
networks. Additionally or alternatively, the segmentation
network can include one or more batch normalization layers.
For instance, the batch normalization layer(s) can be con-
figured to fix means and variances of each layer’s inputs
over a batch of training data.

In some implementations, the segmentation network can
output a classification that indicates whether each sensor
datapoint (e.g., LIDAR point, RADAR point, image pixel,
etc.) is foreground or background. For instance, a LIDAR
point classified as being in the background can be unlikely
to correspond to an actor having a trajectory and can be
likely to be a background (e.g., stationary) object such as, for
example, a roadway, a sign, a hydrant, a bench, a billboard,
vegetation, construction equipment/markings, and/or other
noncritical object. Additionally, or alternatively, a LIDAR
feature classified as being in the foreground can be likely to
identify an actor having a trajectory which is to be accounted
for in motion planning. As examples, foreground objects
could include pedestrians, vehicles, moving objects in the
roadway (e.g., debris), cyclists, motorcyclists, etc.

In some implementations, the segmentation network can
output a binary classification. For instance, a foreground/
background embedding can be or can include, for each
sensor datapoint (e.g., LIDAR point, RADAR point, image
pixel, etc.), a classification (e.g., binary classification) indi-
cating whether the datapoint is foreground or background.
Additionally or alternatively, the segmentation network can
output a multi-class classification. For instance, a fore-
ground/background embedding can be or can include a
classification of a respective datapoint (e.g., LIDAR point,
RADAR point, image pixel, etc.) as belonging to one of one
or more foreground classes or one or more background
classes. As one example, the one or more foreground classes
can include a vehicle class, a pedestrian class, a cyclist (e.g.,
bicyclist) class, and/or a motorcyclist class. Additionally, or
alternatively, the one or more background classes can
include a construction zone class, an unknown zone class,
and/or another background class. In some implementations,
the unknown zone class can represent uncertainty regarding
whether a datapoint is foreground or background and/or may
be treated as a foreground class in some situations.

In some implementations, the foreground/background
embedding can be discrete. For example, the embedding can
be a binary or one-hot encoding of which class each LIDAR
feature is classified as. Additionally and/or alternatively, the
embedding can be probabilistic. For example, the embed-
ding can include a probability or likelihood that a LIDAR
point belongs to each class. As another example, the embed-
ding can include a classification and/or an associated con-
fidence score. In some implementations, the embedding can
include an n-dimensional floating point vector.

The foreground/background embedding, containing infor-
mation related to foreground/background classifications of
each datapoint, can be passed to sensor data fusion module
along with any corresponding features. The sensor data
fusion module can produce fused sensor data that is passed
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to the remaining detection network to classity and identify
objects (e.g., actors) in view of the sensors.

The information regarding foreground/background clas-
sifications contained in foreground/background embedding
can inform sensor data fusion and/or subsequent object
recognition processing. The present disclosure recognizes,
for instance, that sensor datapoints belonging to the fore-
ground can have a higher inherent likelihood of describing
an actor. Similarly, sensor datapoints belonging to the back-
ground can be less likely to describe an actor. This infor-
mation can inform detection of false positive (FP) conditions
on LIDAR features. For instance, an object detection model
utilizing foreground/background embedding can better rec-
ognize FP conditions where an object that, by sensor data
alone, would appear to be an actor, but is instead recognized
as a false positive because the object belongs to the back-
ground.

In some implementations according to the present disclo-
sure, the segmentation network can be trained jointly with
the rest of the object detection model, such as the detection
network. In particular, jointly training the segmentation
network with the rest of the model can improve efficiency of
training the model by better utilizing network resources to
learn features of positive actors with lessened contributions
from false positive actors. This can provide advantages
compared to, for example, cascading models where the
segmentation network is trained separately from the remain-
der of the model (e.g., where foreground/background detec-
tion is performed separately from object recognition).

For instance, a foreground/background loss can be
defined between ground truth data associated with the sensor
datapoints and the foreground/background embedding. For
instance, the sensor datapoints can be labeled with ground
truth data informing a model trainer of a proper classifica-
tion for a given sensor datapoint. A foreground/background
loss can penalize incorrect classifications in foreground/
background embedding compared to this ground truth data
and flow a gradient along with losses from the remaining
detection network and/or other components of the model.
The loss can penalize incorrect foreground/background
determinations and/or incorrect classifications within fore-
ground and background classes (e.g., incorrectly classifying
a bicyclist as a motorcyclist).

The systems, methods, devices, and tangible, non-transi-
tory computer-readable media in the disclosed technology
can provide a variety of technical effects and benefits to the
overall operation of autonomous vehicles including vehicle
computing systems that use machine-learned models for the
detection of objects. In particular, the disclosed technology
leverages the advantages of a multi-stage classifier to reduce
the time to create an output while maintaining a high level
of accuracy with respect to object detection and identifica-
tion. For example, a first stage of classification that uses
hardware components that can process inputs (e.g., object
data based on sensor outputs from one or more sensors
including LIDAR and/or cameras) in parallel and can rap-
idly identify portions of images for further processing in
subsequent stages. Then, in a second stage of classification,
the disclosed technology can more thoroughly process the
one or more images using a deeper decision tree. As a result,
the disclosed technology can output highly accurate results
in less time. Additionally, the use of hardware components
including an FPGA can result in lower latency and greater
energy efficiency in comparison to general usage processors.

Furthermore, the disclosed technology can apply early
termination of traversing the decision tree at any of the
multiple stages of the classification process. Early termina-
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tion allows the disclosed technology to conserve computing
resources by not continuing to traverse a decision tree when
the estimated probability that the output of a decision tree
(e.g., detection of an object) is correct has reached a prede-
termined threshold level. For example, if after traversing
five hundred nodes along a thousand node long path of a
decision tree, the probability of correct object detection is
ninety-nine point nine (99.9) percent, computational
resources could be conserved by terminating early and not
traversing the remaining five hundred nodes of the decision
tree.

The disclosed technology can more effectively determine
one or more characteristics of one or more images including
shapes, physical dimensions, colors, and/or textures of
objects through use of one or more machine-learned models
that allows such object characteristics to be determined more
rapidly and with greater precision, speed, and accuracy.

As a result of more effective determinations of one or
more characteristics of sensor data (e.g., background char-
acteristics, foreground characteristics, object shapes, and/or
object physical dimensions) the disclosed technology can
enable improvements in safety through earlier and more
accurate object detection. Further, when paired with vehicle
systems including steering, propulsion, braking, or notifica-
tion systems the disclosed technology can respectively
change course, increase velocity, reduce velocity, or provide
notifications to other vehicles, pedestrians, and/or cyclists.

Accordingly, the disclosed technology provides more
effective detection or identification of objects in one or more
images by leveraging the operational benefits of a multiple
stage classifier. In this way, various technologies including
autonomous vehicles can benefit from the improved object
detection.

Additionally, aspects of the disclosed technology provide
reduced occurrences of false positive tracks being allocated
to static environmental objects. Reducing occurrence of
erroneous motion tracks assigned to static objects, such as
signs, vegetation, mailboxes, traffic cones, etc., can preserve
computing resources. In addition, reducing erroneous
motion tracks can improve safety and efficiency through
more accurate object detection. For instance, determining
foreground/background sensor data used in object detection
can reduce the occurrence of false positive tracks.

With reference now to FIGS. 1-12, example embodiments
of the present disclosure will be discussed in further detail.
FIG. 1 is a diagram of a system according to some embodi-
ments of the present disclosure. As illustrated, a system 100
can include a plurality of vehicles 102; a vehicle 104; a
vehicle computing system 108 that includes one or more
computing devices 110; one or more data acquisition sys-
tems 112; an autonomy system 114; one or more control
systems 116; one or more human machine interface systems
118; other vehicle systems 120; a communications system
122; a network 124; one or more image capture devices 126;
one or more sensors 128; one or more remote computing
devices 130; a communications network 140; and an opera-
tions computing system 150.

The operations computing system 150 can be associated
with a service provider that provides one or more vehicle
services to a plurality of users via a fleet of vehicles that
includes, for example, the vehicle 104. The vehicle services
can include transportation services (e.g., rideshare services),
courier services, delivery services, and/or other types of
services.

The operations computing system 150 can include mul-
tiple components for performing various operations and
functions. For example, the operations computing system
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150 can include and/or otherwise be associated with one or
more remote computing devices that are remote from the
vehicle 104. The one or more remote computing devices can
include one or more processors and one or more memory
devices. The one or more memory devices can store instruc-
tions that when executed by the one or more processors
cause the one or more processors to perform operations and
functions associated with operation of the vehicle including:
receiving object data including portions of sensor data;
determining, in a first stage of a multiple stage classification,
first stage characteristics of the portions of sensor data based
in part on a first machine-learned model; determining, in a
second stage of the multiple stage classification, second
stage characteristics of the portions of sensor data based in
part on a second machine-learned model; and generating, an
object output based in part on the first stage characteristics
and the second stage characteristics, the object output
including indications associated with detection of objects in
the portions of sensor data. Additionally and/or alternatively,
the one or more memory devices can store instructions that
when executed by the one or more processors cause the one
or more processors to perform operations and functions
associated with operation of the vehicle including: receiving
object data including portions of sensor data; determining a
foreground portion of the sensor data and/or a background
portion of the sensor data; generating an object classification
based on the foreground portion of the sensor data; and
generating an object output based at least in part on the
object classification.

For example, the operations computing system 150 can be
configured to monitor and communicate with the vehicle
104 and/or its users to coordinate a vehicle service provided
by the vehicle 104. To do so, the operations computing
system 150 can manage a database that includes data includ-
ing vehicle status data associated with the status of vehicles
including the vehicle 104. The vehicle status data can
include a location of the plurality of vehicles 102 (e.g., a
latitude and longitude of a vehicle), the availability of a
vehicle (e.g., whether a vehicle is available to pick-up or
drop-oft passengers or cargo), or the state of objects external
to the vehicle (e.g., the physical dimensions, velocity, accel-
eration, and/or orientation of objects external to the vehicle).

An indication, record, and/or other data indicative of the
state of the one or more objects, including the state (e.g.,
physical dimensions, velocity, acceleration, color, location,
and/or orientation) of the one or more objects, can be stored
locally in one or more memory devices of the vehicle 104.
Furthermore, the vehicle 104 can provide data indicative of
the state of the one or more objects (e.g., objects external to
the vehicle) within a predefined distance of the vehicle 104
to the operations computing system 150, which can store an
indication, record, and/or other data indicative of the state of
the one or more objects within a predefined distance of the
vehicle 104 in one or more memory devices associated with
the operations computing system 150.

The operations computing system 150 can communicate
with the vehicle 104 via one or more communications
networks including the communications network 140. The
communications network 140 can exchange (send or
receive) signals (e.g., electronic signals) or data (e.g., data
from a computing device) and include any combination of
various wired (e.g., twisted pair cable) and/or wireless
communication mechanisms (e.g., cellular, wireless, satel-
lite, microwave, and radio frequency) and/or any desired
network topology (or topologies). For example, the com-
munications network 140 can include a local area network
(e.g. intranet), wide area network (e.g. Internet), wireless
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LAN network (e.g., via Wi-Fi), cellular network, a SAT-
COM network, VHF network, a HF network, a WiMAX
based network, and/or any other suitable communications
network (or combination thereof) for transmitting data to
and/or from the vehicle 104.

The vehicle 104 can be a ground-based vehicle (e.g., an
automobile, and/or a truck), an aircraft, a watercraft, and/or
another type of vehicle. The vehicle 104 can be an autono-
mous vehicle that can perform various actions including
driving, navigating, and/or operating, with minimal and/or
no interaction from a human driver. The autonomous vehicle
104 can be configured to operate in one or more modes
including, for example, a fully autonomous operational
mode, a semi-autonomous operational mode, a park mode,
and/or a sleep mode. A fully autonomous (e.g., self-driving)
operational mode can be one in which the vehicle 104 can
provide driving and navigational operation with minimal
and/or no interaction from a human driver present in the
vehicle. A semi-autonomous operational mode can be one in
which the vehicle 104 can operate with some interaction
from a human driver present in the vehicle. Park and/or sleep
modes can be used between operational modes while the
vehicle 104 performs various actions including waiting to
provide a subsequent vehicle service, and/or recharging
between operational modes.

The vehicle 104 can include or be associated with a
vehicle computing system 108. The vehicle computing sys-
tem 108 can include various components for performing
various operations and functions. For example, the vehicle
computing system 108 can include one or more computing
devices 110 on-board the vehicle 104. The one or more
computing devices 110 can include one or more processors
and one or more memory devices, each of which are
on-board the vehicle 104. The one or more memory devices
can store instructions that when executed by the one or more
processors cause the one or more processors to perform
operations and functions, including taking the vehicle 104
out-of-service, stopping the motion of the vehicle 104,
determining the state of one or more objects within a
predefined distance of the vehicle 104, or generating indi-
cations associated with the state of one or more objects
within a predefined distance of the vehicle 104, as described
herein. Further, the vehicle computing system 108 can
perform one or more operations including: receiving object
data including portions of sensor data; determining, in a first
stage of a multiple stage classification, first stage character-
istics of the portions of sensor data based in part on a first
machine-learned model; determining, in a second stage of
the multiple stage classification, second stage characteristics
of the portions of sensor data based in part on a second
machine-learned model; and generating, an object output
based in part on the first stage characteristics and the second
stage characteristics, the object output including indications
associated with detection of objects in the portions of sensor
data. Additionally and/or alternatively, the vehicle comput-
ing system 108 can perform one or more operations includ-
ing: receiving object data including portions of sensor data;
determining a foreground portion of the sensor data and/or
a background portion of the sensor data; generating an
object classification based on the foreground portion of the
sensor data; and generating an object output based at least in
part on the object classification.

The one or more computing devices 110 can implement,
include, and/or otherwise be associated with various other
systems on-board the vehicle 104. The one or more com-
puting devices 110 can be configured to communicate with
these other on-board systems of the vehicle 104. For
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instance, the one or more computing devices 110 can be
configured to communicate with one or more data acquisi-
tion systems 112, an autonomy system 114 (e.g., including
a navigation system), one or more control systems 116, one
or more human machine interface systems 118, other vehicle
systems 120, and/or a communications system 122. The one
or more computing devices 110 can be configured to com-
municate with these systems via a network 124. The network
124 can include one or more data buses (e.g., controller area
network (CAN)), on-board diagnostics connector (e.g.,
OBD-II), and/or a combination of wired and/or wireless
communication links. The one or more computing devices
110 and/or the other on-board systems can send and/or
receive data, messages, and/or signals, amongst one another
via the network 124.

The one or more data acquisition systems 112 can include
various devices configured to acquire data associated with
the vehicle 104. This can include data associated with the
vehicle including one or more of the vehicle’s systems (e.g.,
health data), the vehicle’s interior, the vehicle’s exterior, the
vehicle’s surroundings, and/or the vehicle users. The one or
more data acquisition systems 112 can include, for example,
one or more image capture devices 126. The one or more
image capture devices 126 can include one or more cameras,
LIDAR systems), two-dimensional image capture devices,
three-dimensional image capture devices, static image cap-
ture devices, dynamic (e.g., rotating) image capture devices,
video capture devices (e.g., video recorders), lane detectors,
scanners, optical readers, electric eyes, and/or other suitable
types of image capture devices. The one or more image
capture devices 126 can be located in the interior and/or on
the exterior of the vehicle 104. The one or more image
capture devices 126 can be configured to acquire image data
to be used for operation of the vehicle 104 in an autonomous
mode. For example, the one or more image capture devices
126 can acquire image data to allow the vehicle 104 to
implement one or more machine vision techniques (e.g., to
detect objects in the surrounding environment).

Additionally, or alternatively, the one or more data acqui-
sition systems 112 can include one or more sensors 128. The
one or more sensors 128 can include impact sensors, motion
sensors, pressure sensors, mass sensors, weight sensors,
volume sensors (e.g., sensors that can determine the volume
of'an object in liters), temperature sensors, humidity sensors,
RADAR, sonar, radios, medium-range and long-range sen-
sors (e.g., for obtaining information associated with the
vehicle’s surroundings), global positioning system (GPS)
equipment, proximity sensors, and/or any other types of
sensors for obtaining data indicative of parameters associ-
ated with the vehicle 104 and/or relevant to the operation of
the vehicle 104. The one or more data acquisition systems
112 can include the one or more sensors 128 dedicated to
obtaining data associated with a particular aspect of the
vehicle 104, including, the vehicle’s fuel tank, engine, oil
compartment, and/or wipers. The one or more sensors 128
can also, or alternatively, include sensors associated with
one or more mechanical and/or electrical components of the
vehicle 104. For example, the one or more sensors 128 can
be configured to detect whether a vehicle door, trunk, and/or
gas cap, is in an open or closed position. In some imple-
mentations, the data acquired by the one or more sensors 128
can help detect other vehicles and/or objects, road condi-
tions (e.g., curves, potholes, dips, bumps, and/or changes in
grade), measure a distance between the vehicle 104 and
other vehicles and/or objects.

The vehicle computing system 108 can also be configured
to obtain map data. For instance, a computing device of the
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vehicle (e.g., within the autonomy system 114) can be
configured to receive map data from one or more remote
computing device including the operations computing sys-
tem 150 or the one or more remote computing devices 130
(e.g., associated with a geographic mapping service pro-
vider). The map data can include any combination of two-
dimensional or three-dimensional geographic map data
associated with the area in which the vehicle can travel
including areas the vehicle is currently travelling, has pre-
viously travelled, or will travel to in the future.

The data acquired from the one or more data acquisition
systems 112, the map data, and/or other data can be stored
in one or more memory devices on-board the vehicle 104.
The on-board memory devices can have limited storage
capacity. As such, the data stored in the one or more memory
devices may need to be periodically removed, deleted,
and/or downloaded to another memory device (e.g., a data-
base of the service provider). The one or more computing
devices 110 can be configured to monitor the memory
devices, and/or otherwise communicate with an associated
processor, to determine how much available data storage is
in the one or more memory devices. Further, one or more of
the other on-board systems (e.g., the autonomy system 114)
can be configured to access the data stored in the one or more
memory devices.

The autonomy system 114 can be configured to allow the
vehicle 104 to operate in an autonomous mode. For instance,
the autonomy system 114 can obtain the data associated with
the vehicle 104 (e.g., acquired by the one or more data
acquisition systems 112). The autonomy system 114 can also
obtain the map data. The autonomy system 114 can control
various functions of the vehicle 104 based, at least in part,
on the acquired data associated with the vehicle 104 and/or
the map data to implement the autonomous mode. For
example, the autonomy system 114 can include various
models to perceive road features, signage, and/or objects,
people, animals, based on the data acquired by the one or
more data acquisition systems 112, map data, and/or other
data. In some implementations, the autonomy system 114
can include machine-learned models that use the data
acquired by the one or more data acquisition systems 112,
the map data, and/or other data to help operate the autono-
mous vehicle. Moreover, the acquired data can help detect
other vehicles and/or objects, road conditions (e.g., curves,
potholes, dips, bumps, changes in grade, or the like), mea-
sure a distance between the vehicle 104 and other vehicles
and/or objects. The autonomy system 114 can be configured
to predict the position and/or movement (or lack thereof) of
such elements (e.g., using one or more odometry tech-
niques). The autonomy system 114 can be configured to plan
the motion of the vehicle 104 based, at least in part, on such
predictions. The autonomy system 114 can implement the
planned motion to appropriately navigate the vehicle 104
with minimal or no human intervention. For instance, the
autonomy system 114 can include a navigation system
configured to direct the vehicle 104 to a destination location.
The autonomy system 114 can regulate vehicle speed, accel-
eration, deceleration, steering, and/or operation of other
components to operate in an autonomous mode to travel to
such a destination location.

The autonomy system 114 can determine a position and/or
route for the vehicle 104 in real-time and/or near real-time.
For instance, using acquired data, the autonomy system 114
can calculate one or more different potential routes (e.g.,
every fraction of a second). The autonomy system 114 can
then select which route to take and cause the vehicle 104 to
navigate accordingly. By way of example, the autonomy
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system 114 can calculate one or more different straight paths
(e.g., including some in different parts of a current lane), one
or more lane-change paths, one or more turning paths,
and/or one or more stopping paths. The vehicle 104 can
select a path based, at last in part, on acquired data, current
traffic factors, travelling conditions associated with the
vehicle 104. In some implementations, different weights can
be applied to different criteria when selecting a path. Once
selected, the autonomy system 114 can cause the vehicle 104
to travel according to the selected path.

The one or more control systems 116 of the vehicle 104
can be configured to control one or more aspects of the
vehicle 104. For example, the one or more control systems
116 can control one or more access points of the vehicle 104.
The one or more access points can include features including
the vehicle’s door locks, trunk lock, hood lock, fuel tank
access, latches, and/or other mechanical access features that
can be adjusted between one or more states, positions,
and/or locations. For example, the one or more control
systems 116 can be configured to control an access point
(e.g., door lock) to adjust the access point between a first
state (e.g., lock position) and a second state (e.g., unlocked
position). Additionally, or alternatively, the one or more
control systems 116 can be configured to control one or more
other electrical features of the vehicle 104 that can be
adjusted between one or more states. For example, the one
or more control systems 116 can be configured to control one
or more electrical features (e.g., hazard lights, microphone)
to adjust the feature between a first state (e.g., off) and a
second state (e.g., on).

The one or more human machine interface systems 118
can be configured to allow interaction between a user (e.g.,
human), the vehicle 104 (e.g., the vehicle computing system
108), and/or a third party (e.g., an operator associated with
the service provider). The one or more human machine
interface systems 118 can include a variety of interfaces for
the user to input and/or receive information from the vehicle
computing system 108. For example, the one or more human
machine interface systems 118 can include a graphical user
interface, direct manipulation interface, web-based user
interface, touch user interface, attentive user interface, con-
versational and/or voice interfaces (e.g., via text messages,
chatter robot), conversational interface agent, interactive
voice response (IVR) system, gesture interface, and/or other
types of interfaces. The one or more human machine inter-
face systems 118 can include one or more input devices
(e.g., touchscreens, keypad, touchpad, knobs, buttons, slid-
ers, switches, mouse, gyroscope, microphone, other hard-
ware interfaces) configured to receive user input. The one or
more human machine interfaces 118 can also include one or
more output devices (e.g., display devices, speakers, lights)
to receive and output data associated with the interfaces.

The other vehicle systems 120 can be configured to
control and/or monitor other aspects of the vehicle 104. For
instance, the other vehicle systems 120 can include software
update monitors, an engine control unit, transmission control
unit, and/or on-board memory devices. The one or more
computing devices 110 can be configured to communicate
with the other vehicle systems 120 to receive data and/or to
send to one or more signals. By way of example, the
software update monitors can provide, to the one or more
computing devices 110, data indicative of a current status of
the software running on one or more of the on-board systems
and/or whether the respective system requires a software
update.

The communications system 122 can be configured to
allow the vehicle computing system 108 (and its one or more

10

20

25

30

40

45

55

65

18

computing devices 110) to communicate with other com-
puting devices. In some implementations, the vehicle com-
puting system 108 can use the communications system 122
to communicate with one or more user devices over the
networks. In some implementations, the communications
system 122 can allow the one or more computing devices
110 to communicate with one or more of the systems
on-board the vehicle 104. The vehicle computing system
108 can use the communications system 122 to communi-
cate with the operations computing system 150 and/or the
one or more remote computing devices 130 over the net-
works (e.g., via one or more wireless signal connections).
The communications system 122 can include any suitable
components for interfacing with one or more networks,
including for example, transmitters, receivers, ports, con-
trollers, antennas, or other suitable components that can help
facilitate communication with one or more remote comput-
ing devices that are remote from the vehicle 104.

In some implementations, the one or more computing
devices 110 on-board the vehicle 104 can obtain vehicle data
indicative of one or more parameters associated with the
vehicle 104. The one or more parameters can include
information, including health and maintenance information,
associated with the vehicle 104, the vehicle computing
system 108, and/or one or more of the on-board systems. For
example, the one or more parameters can include fuel level,
engine conditions, tire pressure, conditions associated with
the vehicle’s interior, conditions associated with the vehi-
cle’s exterior, mileage, time until next maintenance, time
since last maintenance, available data storage in the on-
board memory devices, a charge level of an energy storage
device in the vehicle 104, current software status, needed
software updates, and/or other heath and maintenance data
of the vehicle 104.

At least a portion of the vehicle data indicative of the
parameters can be provided via one or more of the systems
on-board the vehicle 104. The one or more computing
devices 110 can be configured to request the vehicle data
from the on-board systems on a scheduled and/or as-needed
basis. In some implementations, one or more of the on-board
systems can be configured to provide vehicle data indicative
of one or more parameters to the one or more computing
devices 110 (e.g., periodically, continuously, as-needed, as
requested). By way of example, the one or more data
acquisitions systems 112 can provide a parameter indicative
of'the vehicle’s fuel level and/or the charge level in a vehicle
energy storage device. In some implementations, one or
more of the parameters can be indicative of user input. For
example, the one or more human machine interfaces 118 can
receive user input (e.g., via a user interface displayed on a
display device in the vehicle’s interior). The one or more
human machine interfaces 118 can provide data indicative of
the user input to the one or more computing devices 110. In
some implementations, the one or more remote computing
devices 130 can receive input and can provide data indica-
tive of the user input to the one or more computing devices
110. The one or more computing devices 110 can obtain the
data indicative of the user input from the one or more remote
computing devices 130 (e.g., via a wireless communication).

The one or more computing devices 110 can be config-
ured to determine the state of the vehicle 104 and the
environment around the vehicle 104 including the state of
one or more objects external to the vehicle including pedes-
trians, cyclists, motor vehicles (e.g., trucks, and/or automo-
biles), roads, waterways, and/or buildings. Further, the one
or more computing devices 110 can be configured to deter-
mine one or more physical characteristics of the one or more
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objects including physical dimensions of the one or more
objects (e.g., shape, length, width, and/or height of the one
or more objects). The one or more computing devices 110
can determine an estimated set of physical dimensions
and/or orientations of the one or more objects, including
portions of the one or more objects that are not detected by
the one or more sensors 128, through use of one or more
machine-learned models. Further, the one or more comput-
ing devices 110 can perform multiple-stage detection and/or
recognition of objects based in part on use of the one or more
machine-learned models. Further, the one or more comput-
ing devices 110 can perform foreground/background-based
object detection and/or recognition based at least in part on
use of the one or more machine-learned models.

FIG. 2 is a diagram of a multiple stage classifier system
according to some embodiments of the present disclosure.
As illustrated, a multiple stage classifier system 200 can
include one or more sensor devices 202; an interconnect
204/206/208; a first stage computing system 210; a field
programmable gate array (FPGA) 212; one or more pro-
grammable logic blocks and interconnects 214; a memory
216; data 218; instructions 220; a communication interface
222; a second stage computing system 230; a central pro-
cessing unit (CPU) 232; a memory 236; data 238; instruc-
tions 240; a communication interface 242; and one or more
output devices 250. Further, the multiple stage classifier
system 200 can perform one or more functions including
receiving object data including portions of sensor data;
determining, in a first stage of a multiple stage classification,
first stage characteristics of the portions of sensor data based
in part on a first machine-learned model; determining, in a
second stage of the multiple stage classification, second
stage characteristics of the portions of sensor data based in
part on a second machine-learned model; and generating, an
object output based in part on the first stage characteristics
and the second stage characteristics, the object output
including indications associated with detection of objects in
the portions of sensor data.

In this example, the multiple stage classifier system 200
includes two computing systems, the first stage computing
system 210 and the second stage computing system 230.
However, in other embodiments the multiple stage classifier
system 200 can include three or more computing systems,
which can include any of the features, components, and/or
devices included in the first stage computing system 210 and
the second stage computing system 230.

The multiple stage classifier system 200 can include one
or more sensor devices 202. The one or more sensor devices
202 can include one or more physical sensors that can
generate one or more sensor outputs (e.g., sensor data) based
in part on the detection of an environment including one or
more objects. The one or more physical sensors can include
one or more LIDAR devices, one or more cameras, one or
more RADAR devices, one or more sonar devices, one or
more image sensors, and/or one or more thermal imaging
devices. Further, the one or more sensor devices 202 can
include one or more simulated sensors that can generate one
or more simulated sensor outputs (e.g., simulated sensor
data) based in part on one or more simulated objects (e.g.,
simulated objects based in part on data structures generated
by a computing device including the vehicle computing
system 108, the one or more remote computing devices 130,
and/or the operations computing system 150).

The object data output by the one or more sensor devices
202 can be used in the detection and/or recognition of one
or more objects including one or more pedestrians (e.g., one
or more persons standing, laying down, sitting, squatting,
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crouching, climbing, running, and/or walking); one or more
other vehicles (e.g., motor vehicles including automobiles,
trucks, buses, trolleys, trams, motorcycles, mopeds, aircraft,
helicopters, boats, amphibious vehicles, and/or trains); one
or more cyclists (e.g., one or more persons sitting and/or
riding on a bicycle); transportation infrastructure (e.g.,
roads, streets, railroads, sidewalks, high-ways, parking lots,
and/or pavement); and/or one or more buildings (e.g.,
houses, office buildings, stadia, and/or apartment buildings).

Further, the object data output by the one or more sensor
devices 202 can include a set of three-dimensional points
(e.g., X, y, and z coordinates) associated with one or more
physical dimensions (e.g., the length, width, and/or height)
of the one or more objects in the one or more images. One
or more portions of the sensor data and/or the associated
object data can be used to determine physical properties,
attributes, and/or characteristics (e.g., visual properties and/
or characteristics) of the one or more objects including the
shape, texture, brightness, saturation, and/or physical
dimensions (e.g., length, width, and/or height), of the one or
more objects.

The object data generated by the one or more sensor
devices 202 can be output as object data that includes one or
more portions of the sensor data and/or one or more portions
of the simulated sensor data. The one or more sensor devices
202 can generate object data that includes one or more
two-dimensional images (e.g., two-dimensional images cap-
tured by one or more cameras) and/or three-dimensional
images (e.g., three-dimensional point clouds captured by a
LIDAR device). One or more portions of the object data can
be sent to one or more computing devices and/or computing
systems via one or more communication networks and/or
interconnects including the interconnect 204 which can be
used to exchange (e.g., send and/or receive) one or more
signals and/or data including signals and/or data between the
one or more sensor devices 202, the first stage computing
system 210, and/or the second stage computing system 230.

The first stage computing system 210 can perform various
operations and/or functions including sending, receiving,
analyzing, detecting, recognizing, and/or processing one or
more signals and/or data including the object data. For
example, the first stage computing system 210 can receive
(e.g., receive via the interconnect 204) object data from the
one or more sensor devices 202, perform one or more
operations (e.g., detect and/or recognize one or more
objects) based on the object data, and send (e.g., send via the
interconnect 206) the object data to the second stage com-
puting device 230.

The first stage computing system 210 can include one or
more computing devices including the one or more FPGAs
212 and the memory 216. The one or more FPGAs 212 can
include any suitable processing device (e.g., a processor
core, a microprocessor, an ASIC, a FPGA, a graphics
processing unit, a digital signal processor, a controller,
and/or a microcontroller) and can include one processor or
a plurality of processors that are operatively connected. In
this example, the one or more FPGAs 212 can include the
one or more programmable logic blocks and interconnects
214 which can be configured according to the type of
operations (e.g., processing data including the detection
and/or recognition of objects) to be performed by the one or
more FPGAs 212. In other embodiments, the one or more
processors 212 can be configured not to include or not to use
the one or more programmable logic blocks and intercon-
nects 214.

The memory 216 can include one or more non-transitory
computer-readable storage media, including RAM, ROM,
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EEPROM, EPROM, NVRAM, one or more memory
devices, flash memory devices, and/or combinations thereof.
The memory 216 can store information that can be accessed
by the one or more FPGAs 212. For instance, the memory
216 (e.g., one or more non-transitory computer-readable
storage mediums, memory devices) can store the data 218
that can be obtained, received, accessed, written, manipu-
lated, created, and/or stored. The data 218 can include the
object data from the one or more sensor devices 202, data
identifying detected and/or classified objects including cur-
rent object states and predicted object locations and/or
trajectories, motion plans, classification models, and/or
rules, as described herein. In some implementations, the first
stage computing system 210 can obtain data from one or
more memory devices that are remote from the first stage
computing system 210 including, for example, the one or
more sensor devices 202, and/or the second stage computing
system 230.

The memory 216 can also store computer-readable
instructions 220 that can be executed by the one or more
processors 212. The instructions 220 can be software written
in any suitable programming language or can be imple-
mented in hardware. Additionally, or alternatively, the
instructions 220 can be executed in logically and/or virtually
separate threads on the one or more processors 212.

Further, the data 218 and/or the instructions 220 stored in
the memory 216 can include one or more machine-learned
models including one or more machine-learned models that
can be used to generate classified object labels based on the
object data. In some embodiments, the classified object
labels associated with the one or more objects can be
generated in the same format as the classified object labels
generated by the machine-learned model.

For example, the first stage computing system 210 can
include, use, and/or operate a machine-learned object detec-
tion and recognition model stored in the memory 216. The
machine-learned object detection and recognition model can
include one or more models including, neural networks (e.g.,
deep neural networks), or other multi-layer non-linear mod-
els.

Neural networks can include convolutional neural net-
works, recurrent neural networks (e.g., long short-term
memory recurrent neural networks), feed-forward neural
networks, and/or other forms of neural networks. Supervised
training techniques can be performed to train the machine-
learned object detection and recognition model to detect,
recognize, and/or classify one or more objects in the object
data. In some implementations, training data for the
machine-learned object detection and recognition model can
be based at least in part on the predicted detection outcomes
determined using a rules-based model that can be used to
train the machine-learned object detection and recognition
model to detect, recognize, and/or classify one or more
objects associated with the object data. Further, the training
data can be used to train the machine-learned object detec-
tion and recognition model offline.

In some embodiments, the first stage computing system
210 can input data into the machine-learned object detection
and recognition model and receive an output. For instance,
the first stage computing system 210 can obtain data indica-
tive of a machine-learned object detection and recognition
model from the one or more remote computing devices that
store various machine-learned object detection and recog-
nition models. The input data can include the data associated
with the one or more objects including one or more vehicles,
pedestrians, cyclists, buildings, and/or environments asso-
ciated with the one or more objects (e.g., roads, bodies of
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water, mountains, hills, and/or foliage). In some embodi-
ments, the input data can include data associated with a
visual descriptor including color, brightness, and/or satura-
tion information associated with the one or more objects.

Further, the input data can include the object data, pre-
diction data (e.g., data predicting the state and/or location of
the one or more objects), a motion plan (e.g., the motion plan
for a vehicle to navigate relative to the one or more objects),
and/or map data associated with the one or more objects.

The machine-learned object detection and recognition
model can process the input data to detect, recognize, and/or
classify the one or more objects. Moreover, the machine-
learned object detection and recognition model can predict
one or more interactions for the one or more objects. Further,
the first stage computing system 210 can obtain an output
from the machine-learned object detection and recognition
model. The output from the machine-learned object detec-
tion and recognition model can be indicative of the one or
more predicted detections, recognitions, and/or classifica-
tions of the one or more objects. In some implementations,
the output can also be indicative of a probability associated
with each respective detection, recognition, and/or classifi-
cation. Further, the machine-learned object detection and
recognition model can process the input data to determine
which of the one or more portions of an input image in the
input data is background (e.g., an area in an input image
included in the input data that does not include one or more
objects of interest) or foreground (e.g., an area in an input
image included in the input data that includes one or more
objects that are of interest). For example, the machine-
learned object detection and recognition model can deter-
mine, in a first stage of processing the input data performed
by the first stage computing system 210, that an area of an
input image is determined to be background (e.g., a portion
of the input image that includes an object that is the sky or
the ground) and the machine-learned object detection and
recognition model can determine in a second stage of
processing the input data performed by the second stage
computing system 230, that an area of an input image is
determined to be foreground (e.g., a portion of the input
image that includes an object that is a vehicle or a pedes-
trian). The first stage computing system 210 can also include
a communication interface 222 that can be used to commu-
nicate with one or more systems or devices, including
systems or devices that are remote from the first stage
computing system 210. The communication interface 222
can include any circuits, components, and/or software, for
communicating with one or more networks. In some imple-
mentations, the communication interface 222 can include,
for example, one or more of a communications controller,
receiver, transceiver, transmitter, port, conductors, software
and/or hardware for communicating data. Further, the first
stage computing system 210 can send one or more signals
and/or data (e.g., one or more signals associated with the
object data) to one or more computing systems including the
second stage computing system 230 and/or the one or more
output devices 250.

The second stage computing system 230 can perform
various operations and/or functions including sending,
receiving, analyzing, detecting, recognizing, and/or process-
ing one or more signals and/or data including the object data.
For example, the second stage computing system 230 can
receive (e.g., receive via the interconnect 204) object data
from the first stage computing system 210, perform one or
more operations (e.g., detect and/or recognize one or more
objects) based on the object data, and send (e.g., send via the
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interconnect 208) one or more signals associated with the
object data to the one or more output devices 250.

The second stage computing system 230 can include one
or more computing devices including the one or more
processors 232 and the memory 236. The one or more
processors 232 can include any suitable processing device
(e.g., a processor core, a microprocessor, an ASIC, a FPGA,
a graphics processing unit, a digital signal processor, a
controller, and/or a microcontroller) and can include one
processor or a plurality of processors that are operatively
connected. In some embodiments, the one or more proces-
sors 232 can include one or more programmable logic
blocks and interconnects (not shown) which can be config-
ured according to the type of operations (e.g., processing
data including the detection and/or recognition of objects) to
be performed by the one or more processors 232.

The memory 236 can include one or more non-transitory
computer-readable storage media, including RAM, ROM,
EEPROM, EPROM, NVRAM, one or more memory
devices, flash memory devices, and/or combinations thereof.
The memory 236 can store information that can be accessed
by the one or more processors 232. For instance, the memory
236 (e.g., one or more non-transitory computer-readable
storage mediums, memory devices) can store the data 238
that can be obtained, received, accessed, written, manipu-
lated, created, and/or stored. The data 238 can include the
object data from the one or more sensor devices 202, the first
stage computing system 210, data identitying detected and/
or classified objects including current object states and
predicted object locations and/or trajectories, motion plans,
classification models, rules, as described herein. In some
implementations, the second stage computing system 230
can obtain data from one or more memory devices that are
remote from the second stage computing system 230 includ-
ing, for example, the one or more sensor devices 202, and/or
the first stage computing system 210.

The memory 236 can also store computer-readable
instructions 240 that can be executed by the one or more
processors 232. The instructions 240 can be software written
in any suitable programming language or can be imple-
mented in hardware. Additionally, or alternatively, the
instructions 240 can be executed in logically and/or virtually
separate threads on the one or more processors 232.

Further, the data 238 and/or the instructions 240 stored in
the memory 236 can include one or more machine-learned
models including one or more machine-learned models that
can be used to generate classified object labels based on the
object data and/or data associated with the object data (e.g.,
data received from the first stage computing system 210). In
some embodiments, the classified object labels associated
with the one or more objects can be generated in the same
format as the classified object labels generated by the
machine-learned model.

For example, the second stage computing system 230 can
include, use, and/or operate a machine-learned object detec-
tion and recognition model stored in the memory 236. The
machine-learned object detection and recognition model can
include one or more models including, neural networks (e.g.,
deep neural networks), or other multi-layer non-linear mod-
els.

Neural networks can include convolutional neural net-
works, recurrent neural networks (e.g., long short-term
memory recurrent neural networks), feed-forward neural
networks, and/or other forms of neural networks. Supervised
training techniques can be performed to train the machine-
learned object detection and recognition model to detect,
recognize, and/or classify one or more objects in the object
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data. In some implementations, training data for the
machine-learned object detection and recognition model can
be based at least in part on the predicted detection outcomes
determined using a rules-based model that can be used to
train the machine-learned object detection and recognition
model to detect, recognize, and/or classify one or more
objects associated with the object data. Further, the training
data can be used to train the machine-learned object detec-
tion and recognition model offline.

In some embodiments, the second stage computing sys-
tem 230 can input data into the machine-learned object
detection and recognition model and receive an output. For
instance, the second stage computing system 230 can obtain
data indicative of a machine-learned object detection and
recognition model from the one or more remote computing
devices that store various machine-learned object detection
and recognition models. The input data can include the data
associated with the one or more objects including one or
more vehicles, pedestrians, cyclists, buildings, and/or envi-
ronments associated with the one or more objects (e.g.,
roads, bodies of water, mountains, hills, and/or foliage).
Further, the input data can include the object data, prediction
data (e.g., data predicting the state and/or location of the one
or more objects), a motion plan (e.g., the motion plan for the
one or more object), and/or map data associated with the one
or more objects.

The machine-learned object detection and recognition
model can process the input data to detect, recognize, and/or
classify the one or more objects. Moreover, the machine-
learned object detection and recognition model can predict
one or more interactions for the one or more objects. Further,
the second stage computing system 230 can obtain an output
from the machine-learned object detection and recognition
model. The output from the machine-learned object detec-
tion and recognition model can be indicative of the one or
more predicted detections, recognitions, and/or classifica-
tions of the one or more objects. In some implementations,
the output can also be indicative of a probability associated
with each respective detection, recognition, and/or classifi-
cation.

The second stage computing system 230 can also include
a communication interface 242 that can be used to commu-
nicate with one or more systems or devices, including
systems or devices that are remote from the second stage
computing system 230. The communication interface 242
can include any circuits, components, and/or software, for
communicating with one or more networks. In some imple-
mentations, the communication interface 242 can include,
for example, one or more of a communications controller,
receiver, transceiver, transmitter, port, conductors, software
and/or hardware for communicating data. Further, the sec-
ond stage computing system 230 can send one or more
signals and/or data (e.g., one or more signals associated with
the object data) to one or more computing systems including
the first stage computing system 210 and/or the one or more
output devices 250.

The one or more output devices 250 can receive one or
more signals or data from one or more computing devices or
computing systems including the first stage computing sys-
tem 210 and/or the second stage computing system 230. The
one or more output devices 250 can receive (e.g., receive
one or more signals from the second stage computing system
230 via the interconnect 208) one or more signals associated
with the object data including one or more signals that are
used to produce one or more visual images associated with
the object data and/or output associated with the output data
(e.g., the results of processing the object data by the first
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stage computing system 210 and/or the second stage com-
puting system 230). For example, the one or more output
devices 250 can, based on one or more signals from the
second stage computing system 230, generate visual output
including an image and indications of portions of the image
that include one or more objects.

The one or more output devices 250 can include one or
more devices that are used to generate a representation
associated with one or more signals and/or data received by
the one or more output devices 250. For example, the one or
more output devices 250 can include one or more display
devices (e.g., organic light emitting diode display devices,
liquid crystal display devices, cathode ray tube display
devices, and/or plasma display devices); one or more audio
output devices (e.g., loud speakers); and/or one or more
haptic output devices (e.g., piezoelectric devices that can
produce one or more vibrations).

FIG. 3 depicts an example of object detection from an
overhead view using a multiple stage classifier according to
some embodiments of the present disclosure. The output can
be based in part on the detection, recognition, and/or pro-
cessing of one or more portions of an environment by one or
more devices (e.g., one or more computing devices) or
systems including, for example, the vehicle 104, the vehicle
computing system 108, or the operations computing system
150, shown in FIG. 1; or the multiple stage classifier system
200 shown in FIG. 2. Moreover, the detection, recognition,
and/or processing of one or more portions of an environment
can be implemented as an algorithm on the hardware com-
ponents of one or more devices or systems (e.g., the vehicle
104, the vehicle computing system 108, and/or the opera-
tions computing system 150, shown in FIG. 1 or the multiple
stage classifier system 200 shown in FIG. 2). Further, the
multiple stage classifier in FIG. 3 can perform one or more
operations including receiving object data including por-
tions of sensor data; determining, in a first stage of a multiple
stage classification, first stage characteristics of the portions
of sensor data based in part on a first machine-learned
model; determining, in a second stage of the multiple stage
classification, second stage characteristics of the portions of
sensor data based in part on a second machine-learned
model; and generating, an object output based in part on the
first stage characteristics and the second stage characteris-
tics, the object output including indications associated with
detection of objects in the portions of sensor data. As
illustrated, FIG. 3 shows an output image 300; an object 310;
a bounding shape 312; an object 314 (e.g., a pedestrian); an
object 320 (e.g., a road); an object 322 (e.g., a sidewalk); and
a segment 324.

The output image 300 depicts an image which can be
based on, or associated with object data (e.g., object data
from the multiple stage classifier system 200). For example,
the output image 300 can be based in part on sensor outputs
from one or more image sensors (e.g., one or more cameras)
including the one or more sensor devices 202. As shown, the
output image 300 includes an object 310 (e.g., an autono-
mous vehicle), a bounding shape 312 (e.g., a bounding shape
around the object 310), an object 314 (e.g., a pedestrian), an
object 320 (e.g., aroad), and an object 322 (e.g., a sidewalk).

As shown in FIG. 3, the output image 300 can be divided
into a plurality of segments including the segment 324,
although in other embodiments the output image 300 can
include more segments, fewer segments, or no segments at
all. In some embodiments, different segments within the
output image 300 can be obtained using a sliding window
having a predetermined segment size. In some embodi-
ments, the output image can be resized into a plurality of
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representations of data having different scales. By analyzing
multiple data representations using a sliding window of
fixed size, objects partially captured by a sliding window in
some image representations can be fully captured by a
sliding window in one or more other image representations.

Each of the plurality of segments can be analyzed (e.g.,
processed by using a machine-learned classification model
including the machine-learned object detection and recog-
nition model used by the multiple stage classifier system
200). For example, first stage computing system 210 within
a multiple stage classifier system 200 can process each of the
plurality of segments within output image 300 to determine
whether each segment corresponds to a portion of back-
ground (e.g., a segment that does not include one or more
objects of interest) or foreground (e.g., a segment that
includes one or more objects that are of interest). In this
example, the segment 324 is empty to indicate that the
segment 324 contains a background portion. In other
embodiments, the segments that are foreground and/or back-
ground can be indicated by different patterns, shapes, or
colors. Further, in some embodiments, determination of
whether each of the plurality of segments is foreground or
background can be based in part on map data which can
indicate for instance, the portions of a map associated with
an area that includes streets, buildings, and other areas that
can be classified as background.

Referring still to FIG. 3, for segments of output image 300
that are determined by a first stage computing system (e.g.,
first stage computing system 210 of FIG. 2) to correspond to
foreground portions, such segments can be provided to a
second stage computing system (e.g., second stage comput-
ing system 230 of FIG. 2) for further processing. Second
stage computing system 230 within multiple stage classifier
system 200 can process each of the plurality of segments
determined to correspond to foreground portions to more
particularly detect and classify particular objects of interest
(e.g., object 310 (e.g., an autonomous vehicle), object 314
(e.g., a pedestrian)

FIG. 4 depicts an example of object detection and use of
decision trees by a multiple stage classifier according to
some embodiments of the present disclosure. The output can
be based in part on the detection and/or processing of one or
more portions of an environment by one or more devices
(e.g., one or more computing devices) or systems including,
for example, the vehicle 104, the vehicle computing system
108, and/or the operations computing system 150, shown in
FIG. 1; or the multiple stage classifier system 200 shown in
FIG. 2. Moreover, the detection and processing of one or
more portions of an environment can be implemented as an
algorithm on the hardware components of one or more
devices or systems (e.g., the vehicle 104, the vehicle com-
puting system 108, and/or the operations computing system
150, shown in FIG. 1) to, for example, determine the
physical dimensions, position, shape, and/or orientation of
objects. Further, the multiple stage classifier in FIG. 4 can
perform one or more operations including receiving object
data including portions of sensor data; determining, in a first
stage of a multiple stage classification, first stage character-
istics of the portions of sensor data based in part on a first
machine-learned model; determining, in a second stage of
the multiple stage classification, second stage characteristics
of the portions of sensor data based in part on a second
machine-learned model; and generating, an object output
based in part on the first stage characteristics and the second
stage characteristics, the object output including indications
associated with detection of objects in the portions of sensor
data. As illustrated, FIG. 4 shows an output image 400; an
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object 410; a bounding area 412; a classification model 414;
an object 420; a bounding area 422; a classification model
424, and a sidewalk area 430.

The output image 400 depicts an image which can be
based on, or associated with object data (e.g., object data
from the multiple stage classifier system 200). As shown, the
output image includes an object 410 (e.g., a vehicle), a
bounding area 412 (e.g., an area surrounding the object 410),
a classification model 414 (e.g., a classification model
including one or more of the machine-learned object detec-
tion and recognition models used by the first stage comput-
ing system 210 of the multiple stage classifier system 200),
an object 420 (e.g., an object that is not a vehicle), a
bounding area 422 (e.g., an area surrounding the object 420),
and a classification model 424 (e.g., a classification model
including one or more of the machine-learned object detec-
tion and recognition models used by the second stage
computing system of the multiple stage classifier system
200).

When the portion of the output image 400 within the
bounding area 412 is provided as input to the classification
model 414, the classification model 414 can generate an
output indicating that the object detected within the bound-
ary area 412 is not a background (e.g., the object detected
within the boundary area 412 is of interest). When the
portion of the output image 400 within the bounding area
412 is provided as input to the classification model 424, the
classification model 424 can generate an output indicating
that the object detected within the boundary area 412 is a
vehicle.

In this example, the object 420 (e.g., the vehicle) is
located on the sidewalk area 430, which according to a heat
mayp associated with the output image 400 is a portion of the
output image 400 that is less likely to be occupied by a
vehicle. When the portion of the output image 400 within the
bounding area 422 is provided as input to the classification
model 414, the classification model 414 can generate an
output indicating that the object detected within the bound-
ary area 422 is not background (e.g., the object detected
within the boundary area 422 is of interest). When the
portion of the output image 400 within the bounding area
422 is provided as input to the classification model 424, the
classification model 424 can generate an output indicating
that the object detected within the boundary area 422 is a
vehicle. In this example, the heat map decreased the prob-
ability of a vehicle being within the bounding area 422,
however, the other characteristics of the object 420 deter-
mined by the multiple stage classifier system 200 can result
in the determination that the object 420 is a vehicle.

FIG. 5 depicts a second example of object detection and
use of a decision tree by a multiple stage classifier according
to some embodiments of the present disclosure. The output
can be based in part on the detection and/or processing of
one or more portions of an environment by one or more
devices (e.g., one or more computing devices) or systems
including, for example, the vehicle 104, the vehicle com-
puting system 108, and/or the operations computing system
150, shown in FIG. 1; or the multiple stage classifier system
200 shown in FIG. 2. Moreover, the detection and process-
ing of one or more portions of an environment can be
implemented as an algorithm on the hardware components
of one or more devices or systems (e.g., the vehicle 104, the
vehicle computing system 108, and/or the operations com-
puting system 150, shown in FIG. 1) to, for example,
determine the physical dimensions, position, shape, and/or
orientation of objects. Further, the multiple stage classifier in
FIG. 5 can perform one or more operations including
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receiving object data including portions of sensor data;
determining, in a first stage of a multiple stage classification,
first stage characteristics of the portions of sensor data based
in part on a first machine-learned model; determining, in a
second stage of the multiple stage classification, second
stage characteristics of the portions of sensor data based in
part on a second machine-learned model; and generating, an
object output based in part on the first stage characteristics
and the second stage characteristics, the object output
including indications associated with detection of objects in
the portions of sensor data. As illustrated, FIG. 5 shows an
output image 500, an object 510; a bounding area 512; a
classification model 514; an object 520; a bounding area
522; and a classification model 524.

The output image 500 depicts an image which can be
based on, or associated with object data (e.g., object data
from the multiple stage classifier system 200). As shown, the
output image includes an object 510 (e.g., a pedestrian), a
bounding area 512 (e.g., an area surrounding the object 510),
a classification model 514 (e.g., a classification model
including one or more of the machine-learned object detec-
tion and recognition models used by first stage computing
system 210 of the multiple stage classifier system 200), an
object 520 (e.g., a pedestrian), a bounding area 522 (e.g., an
area surrounding the object 520), and a classification model
524 (e.g., a classification model including one or more of the
machine-learned object detection and recognition models
used by the second stage computing system 230 of the
multiple stage classifier system 200).

When the portion of the output image 500 within the
bounding area 512 is provided as input to the classification
model 514, the classification model 514 can generate an
output indicating that the object detected within the bound-
ary area 512 is foreground. Further, when the portion of the
output image 500 within the bounding area 512 is provided
as input to the classification model 524, the classification
model 524 can generate an output indicating that the object
detected within the boundary area 512 is a pedestrian.

Furthermore, in this example, the object 520 is located on
a portion of the output image, that according to a map (e.g.,
a map of the geographical area associated with the output
image 500) is a portion (e.g., a sidewalk portion) of the
output image 500 that is more likely to be occupied by a
pedestrian. When the portion of the output image 500 within
the bounding area 522 is provided as input to the classifi-
cation model 514, the classification model 514 can generate
an output indicating that the object detected within the
boundary area 522 is foreground. Further, when the portion
of the output image 500 within the bounding area 522 is
provided as input to the classification model 524, the clas-
sification model 524 can generate an output indicating that
the object detected within the boundary area 522 is a
pedestrian. In this example, the map associated with the
output image 500 increased the probability of a pedestrian
being within the bounding area 522, and, in conjunction with
the other characteristics of the object 520 determined by the
multiple stage classifier system 200, the classification model
514 has output the result that the object 520 is foreground
and the classification model 524 has output the result that the
object 520 is a pedestrian.

FIG. 6 is a flow diagram of a method of object detection
and recognition according to some embodiments of the
present disclosure. One or more portions of the method 600,
illustrated in FIG. 6, can be implemented by one or more
devices (e.g., one or more computing devices) or systems
including, for example, the vehicle 104, the vehicle com-
puting system 108, or the operations computing system 150,
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shown in FIG. 1; or the multiple stage classifier system 200,
shown in FIG. 2. Moreover, one or more portions of the
method 600 can be implemented as an algorithm on the
hardware components of the devices described herein (e.g.,
as in FIG. 1) to, for example, perform multiple-stage detec-
tion and/or recognition of objects including receiving object
data, determining characteristics of one or more objects, and
generating object output associated with detection of one or
more objects. FIG. 6 depicts elements performed in a
particular order for purposes of illustration and discussion.
Those of ordinary skill in the art, using the disclosures
provided herein, will understand that the elements of any of
the methods discussed herein can be adapted, rearranged,
expanded, omitted, combined, and/or modified in various
ways without deviating from the scope of the present
disclosure.

At 602, the method 600 can include receiving object data
including one or more portions of sensor data. For example,
the first stage computing system 210 of the multiple stage
classifier system 200 can receive object data from one or
more computing devices and/or one or more sensor devices
including the one or more sensor devices 202.

In some embodiments, the one or more portions of sensor
data (e.g., one or more portions or segments of one or more
images associated with the sensor data) can be based in part
on sensor output from one or more sensors (e.g., physical
sensors that detect actual objects and/or phenomena) and/or
one or more simulated sensors (e.g., simulated sensor out-
puts generated by one or more computing devices). The one
or more sensors can include one or more light detection and
ranging devices (LIDAR), one or more cameras, one or
more radar devices, one or more sonar devices, and/or one
or more thermal imaging devices.

For example, the one or more portions of sensor data
and/or the object data can include two-dimensional images
including images captured by one or more cameras and/or
three-dimensional point clouds captured by a LIDAR
device. The one or more portions of sensor data can be
analyzed to detect and/or recognize one or more objects
including one or more pedestrians; one or more other
vehicles; transportation infrastructure; one or more cyclists;
and/or one or more buildings. Further, the object data can
include a set of three-dimensional points (e.g., X, y, and z
coordinates) associated with one or more physical dimen-
sions (e.g., the length, width, and/or height) of the one or
more objects in the one or more images.

At 604, the method 600 can include determining one or
more characteristics of the one or more portions of sensor
data (e.g., the one or more portions of sensor data in 602).
In particular, the method 600 can include determining, in a
first stage of a multiple stage classification (e.g., classifica-
tion including two or more stages) which can include the use
of one or more hardware components (e.g., a configurable
hardware component which can include a FPGA), one or
more first stage characteristics of the one or more portions
of'sensor data based in part on a first machine-learned model
(e.g., the machine-learned object detection and recognition
model used by the first stage computing system 210). For
example, the first stage computing system 210 can deter-
mine one or more characteristics of one or more portions of
sensor data received from the one or more sensor devices
202, and can perform the determination using a machine-
learned object detection and recognition model that has been
trained to detect and/or recognize one or more objects
including streets, buildings, the sky, vehicles, pedestrians,
and/or cyclists.
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In some embodiments, the object detection system can
determine, in a first stage of a multiple stage classification,
one or more first stage characteristics of the one or more
portions of sensor data based in part on traversal of a first
portion of a first machine-learned model (e.g., a first
machine-learned model associated with data which can
include the object data). In some embodiments, the first
machine-learned model used by the object detection system
can be based in part on one or more classification techniques
including a random forest classifier, neural network, gradi-
ent boosting, a support vector machine, a logistic regression
classifier, and/or a boosted forest classifier.

In some embodiments, the first stage of the multiple stage
classification can include traversal of a first portion that
includes a first plurality of nodes associated with a plurality
of classifier labels (e.g., machine-learned model classifier
labels). Each of the first plurality of nodes in the first portion
can be associated with a classifier label that is used to
classify, categorize and/or determine the one or more first
stage characteristics of the one or more portions of sensor
data. For example, the first stage of the multiple stage
classification can include a determination of the one or more
first stage characteristics including the portions of the one or
more portions of sensor data that are background (e.g., the
one or more portions of the sensor data that are associated
with objects that are not of interest including a street surface
and/or a sky) and the portions of the one or more portions of
sensor data that are foreground (e.g., the one or more
portions of the sensor data that are associated with objects
that are of interest including a vehicle, a pedestrian, and/or
a cyclist). Accordingly, the object detection system can
provide a first stage output (i.e., data associated with the one
or more first stage characteristics) that allows the second
stage of the multiple stage classification to more efficiently
process the one or more portions of sensor data by deter-
mining in advance (e.g., in the first or earlier stages of the
multiple stage classification) the areas of the one or more
portions of sensor data to focus on for purposes of object
detection and/or recognition.

In some embodiments, the first stage of the multiple stage
classification can be performed by one or more hardware
components of the one or more computing devices including
an FPGA, a digital signal processor (DSP), an application
specific integrated circuit (ASIC), or a graphics processing
unit (GPU). By way of example, using a GPU can leverage
the parallel processing capabilities of the GPU, which can
improve processing effectiveness and result in object detec-
tion, recognition, and/or image processing that exceeds the
speed of other techniques that do not process the images in
parallel (e.g., serial processing of the one or more images).

At 606, the method 600 can include determining, char-
acteristics of the one or more portions of sensor data. In
some embodiments, the method 600 can include determin-
ing characteristics of the one or more portions of sensor data
(e.g., the one or more portions of sensor data in 602 and/or
604) in a second stage of the multiple stage classification,
one or more second stage characteristics of the one or more
portions of sensor data based in part on a second machine-
learned model. For example, the second stage computing
system 230 can determine one or more characteristics of one
or more portions of sensor data received from the one or
more sensor devices 202 and/or the first stage computing
system 210, and can perform the determination using a
machine-learned object detection and recognition model that
has been trained to detect and/or recognize one or more
objects including streets, buildings, the sky, vehicles, pedes-
trians, and/or cyclists.
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In some embodiments, the one or more first stage char-
acteristics and/or the one or more second stage characteris-
tics can be determined using a first machine-learned model
and a second machine-learned model respectively. The first
machine-learned model can include a first plurality of nodes
associated with a first plurality of classifier labels and the
second machine-learned model can include a second plural-
ity of nodes associated with a second plurality of classifier
labels.

In some embodiments, the first machine-learned model
(the machine-learned object detection and recognition
model in 604) and/or the second machine-learned model (the
machine-learned object detection and recognition model in
606) can be based in part on one or more classification
techniques including a neural network, a random forest
classifier, gradient boosting, a support vector machine, a
logistic regression classifier, or a boosted forest classifier.

In some embodiments, the one or more first stage char-
acteristics determined at 604 can include an indication of
when or whether a portion of the one or more portions of
sensor data is foreground or background and the one or more
second stage characteristics determined at 606 can include
an object classification of a foreground portion of the one or
more portions of sensor data. For example, the first stage
computing system 210 can determine the one or more
portions of sensor data that include background (e.g., the sky
and/or street surfaces). These background portions can be
excluded from subsequent analysis by the second stage
computing system. When the first stage computing system
determines one or more portions of sensor data to include
foreground, then the second stage computing system 230
can further analyze the one or more foreground portions of
sensor data to detect and/or classify objects therein (e.g.,
vehicles and/or pedestrians or other objects of interest).

The second stage of the multiple stage classification can
include implementation of a second machine-learned model
that includes a second plurality of nodes associated with the
second plurality of classifier labels. For example, each of the
plurality of nodes in the second machine-learned model can
be associated with a classifier label that is used to classify,
categorize and/or determine the one or more first stage
characteristics of the one or images. For example, the second
stage of the multiple stage classification can include a
determination of the one or more second stage characteris-
tics of the one or more images including the location and
identity of one or more objects (e.g., the location of pedes-
trians in the one or more images).

The second stage of the multiple stage classification can
include determining one or more second stage characteris-
tics of the one or more images that are based in part on the
output of the first stage. The one or more second stage
characteristics can include the one or more first stage
characteristics (e.g., if a background characteristic is deter-
mined in the first stage a background characteristic can be
further determined, to a greater level of confidence, in the
second stage). Further, the one or more second stage char-
acteristics can include characteristics that were not deter-
mined in the first stage. For example, if one or more objects
(e.g., pedestrians, vehicles, and/or cyclists) were not deter-
mined in the first stage, the one or more objects can be
determined in the second stage.

In some embodiments, the second machine-learned model
can include a second plurality of nodes that is equal or
greater in number than the first plurality of nodes in the first
machine-learned model. For example, the first machine-
learned model can include five-hundred (500) nodes, while
the second machine-learned model can include one-thou-
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sand five-hundred (1500) nodes. Because a subset of the
object data received at 602 is analyzed by both the first
machine-learned model and the second machine-learned
model (e.g., second stage characteristics determined at 606
can be determined for foreground portions of object data),
then data processing using separate first and second models
can be significantly faster as compared with a single model
that includes two-thousand (2000) nodes of similar nature.
In addition, the second machine-learned model can allow for
a deeper second-model analysis that can include more
classifier labels and can be traversed for greater accuracy in
detecting and/or identitying the one or more objects after the
first model analysis.

In some embodiments, parts of the second stage of the
multiple stage classification can be performed by one or
more software components (e.g., software applications that
execute one or more program instructions) of the one or
more computing devices including one or more software
components that operate or are executed on one or more
central processing units.

At 608, the method 600 can include generating an object
output based in part on the one or more first stage charac-
teristics and the one or more second stage characteristics.
The object output can include one or more indications
associated with detection of one or more objects in the one
or more portions of sensor data.

For example, the multiple stage classifier system 200 can
generate an object output based in part on data associated
with the one or more first stage characteristics (e.g., data
generated by the first stage computing system 210) and/or
data associated with the one or more second stage charac-
teristics (e.g., data generated by the second stage computing
system 230). The object output can include one or more
indications or signs associated with detection of one or more
objects in the one or more portions of sensor data. In some
embodiments, the object output can include, for each of the
one or more objects, one or more indications of whether an
object was detected; the type of object that was detected; the
location of the object detected; the physical characteristics
of'the object detected; the velocity and/or acceleration of the
object detected; and/or a probability associated with an
estimated accuracy of the object detection.

In some embodiments, the object output generated at 608
can be used by one or more vehicle systems (e.g., vehicle
systems used to control the operation of a vehicle including
an autonomous vehicle) to perform one or more actions
including activating vehicle systems based on detection of
the one or more objects (e.g., activating brakes when an
object is within a predetermined proximity of the vehicle);
modifying the path of the vehicle (e.g., maneuver the vehicle
around objects including buildings, vehicles, and/or pedes-
trians); and/or exchange the object output with one or more
vehicle systems or remote computing systems (e.g., the
object output can be sent to other vehicles to improve object
detection by other vehicles that may have reduced sensor
coverage or capacity).

At 610, the method 600 can include determining, based in
part on the object output generated at 608, locations for one
or more bounding shapes associated with the one or more
objects in the one or more images. For example, the multiple
stage classifier system 200 can determine, based in part on
the object output, locations for one or more bounding shapes
(e.g., two-dimensional or three-dimensional bounding poly-
gons and/or bounding ellipses) associated with the one or
more objects in the one or more portions of sensor data. The
object detection system can use the first machine-learned
model and/or the second machine-learned model to deter-
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mine the one or more locations or areas of the sensor data
that are more likely to contain an object or a certain type of
object (e.g., in an image in which the ground is part of the
lower half of the image and the sky is part of the upper half
of the image, a motor vehicle or cyclist is more likely to be
in the lower half of the image than the upper half of an
image).

At 612, the method 600 can include selecting, based in
part on an image processing technique including non-maxi-
mum suppression, a set of the locations for the one or more
bounding shapes. For example, the multiple stage classifier
system 200 can select a set of the locations in which to
generate the one or more bounding shapes. For example, by
analyzing the image gradient direction, pixels that are not
part of the local maxima for the portion of the sensor data
corresponding to each of the set of locations can be sup-
pressed.

At 614, the method 600 can include generating the one or
more bounding shapes in the set of the locations for the one
or more bounding shapes. For example, the multiple stage
classifier system 200 can, based on the set of locations for
the one or more bounding shapes, generate the one or more
bounding shapes in the selected locations. In some embodi-
ments, the one or more bounding shapes can be represented
on a display device (e.g., an LCD display) as polygons (e.g.,
one or more squares and/or rectangles) and/or ellipses (e.g.,
one or more circles and/or ovals) generated to fully enclose
or partly cover a portion of the display output in which an
object is detected.

FIG. 7 is a second flow diagram of a method of object
detection and recognition according to some embodiments
of the present disclosure. One or more portions of the
method 700, illustrated in FIG. 7, can be implemented by
one or more devices (e.g., one or more computing devices)
or systems including, for example, the vehicle 104, the
vehicle computing system 108, or the operations computing
system 150, shown in FIG. 1; or the multiple stage classifier
system 200 shown in FIG. 2. Moreover, one or more
portions of the method 700 can be implemented as an
algorithm on the hardware components of the devices
described herein (e.g., as in FIG. 1) to, for example, perform
multiple-stage detection and/or recognition of objects
including receiving object data, determining characteristics
of one or more objects, and generating object output asso-
ciated with detection of one or more objects. FIG. 7 depicts
elements performed in a particular order for purposes of
illustration and discussion. Those of ordinary skill in the art,
using the disclosures provided herein, will understand that
the elements of any of the methods discussed herein can be
adapted, rearranged, expanded, omitted, combined, and/or
modified in various ways without deviating from the scope
of the present disclosure.

At 702, the method 700 can include generating, in the first
stage of a multiple stage classification (e.g., the first stage of
the multiple stage classification in the method 600) and
based in part on the object data (e.g., the object data in the
method 600), visual descriptor output associated with the
one or more images (e.g., the one or more images in the
method 600), the visual descriptor output can include color
hue information, color saturation information, brightness
information, and/or histogram of oriented gradients infor-
mation. In some embodiments, the one or more first stage
characteristics (e.g., the one or more first stage characteris-
tics of the method 600) can be determined based in part on
the visual descriptor output. For example, the first stage
computing system 210 of the multiple stage classifier system
200 can generate, in the first stage of a multiple stage
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classification, and based in part on the object data, data
including visual descriptor output associated with the one or
more images (e.g., visual images). In some embodiments,
the one or more first stage characteristics can be based in
part on the visual descriptor output (e.g., the multiple stage
classifier system 200 can use the visual descriptor output to
determine the one or more first stage characteristics of the
one or more portions of the sensor data). For example, the
multiple stage classifier system 200 can use brightness
information to determine the one or more first stage char-
acteristics associated with the sky (e.g., the sky will tend to
be brighter than the ground).

At 704, the method 700 can include generating, in the
second stage of the multiple stage classification (e.g., the
second stage of the multiple stage classification in the
method 600) and based in part on the visual descriptor
output from the first stage, a heat map associated with the
one or more images (e.g., the one or more images in the
method 600). The heat map can include a plurality of areas
associated with a probability of at least one of the one or
more objects being within the respective one of the plurality
of areas. For example, the multiple stage classifier system
200 can generate a heat map indicating that the probability
of a vehicle object being in the sky is a very low probability.
Further, the multiple stage classifier system 200 can segment
the one or images into a plurality of areas and, for each of
the plurality of areas, determine a probability of an object
being within that area. In some embodiments, the one or
more second stage characteristics (e.g., the one or more
second stage characteristics in the method 600) can be
determined based in part on the heat map.

At 706, the method 700 can include determining, based in
part on the visual descriptor output from the first stage, one
or more portions of the one or more images that are
associated with a background portion. In some embodi-
ments, determining the one or more second stage character-
istics in the second stage can include determining the one or
more second stage characteristics in the second stage and
excluding (e.g., not using) the one or more portions of the
one or more images that are associated with the one or more
background images (e.g., the one or more portions of the one
or more images that are determined to not be of interest).
Accordingly, the second stage of the multiple stage classi-
fication can perform object detection and recognition more
rapidly by concentrating computational resources on a
smaller subset of the object data (e.g., the foreground images
of the one or more images) and avoiding the waste of
resources that results from the analysis and/or processing of
the one or more images that are part of the background.

FIG. 8 is a third flow diagram of a method of object
detection and recognition according to some embodiments
of the present disclosure. One or more portions of the
method 800, illustrated in FIG. 8, can be implemented by
one or more devices (e.g., one or more computing devices)
or systems including, for example, the vehicle 104, the
vehicle computing system 108, or the operations computing
system 150, shown in FIG. 1; or the multiple stage classifier
system 200 shown in FIG. 2. Moreover, one or more
portions of the method 800 can be implemented as an
algorithm on the hardware components of the devices
described herein (e.g., as in FIG. 1) to, for example, perform
multiple-stage detection and/or recognition of objects
including receiving object data, determining characteristics
of one or more objects, and/or generating object output
associated with detection of one or more objects. FIG. 8
depicts elements performed in a particular order for pur-
poses of illustration and discussion. Those of ordinary skill
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in the art, using the disclosures provided herein, will under-
stand that the elements of any of the methods discussed
herein can be adapted, rearranged, expanded, omitted, com-
bined, and/or modified in various ways without deviating
from the scope of the present disclosure.

At 802, the method 800 can include determining, based in
part on the object data (e.g., the object data in the method
600) and the second machine-learned model (e.g., the sec-
ond machine-learned model in the method 600), an amount
(e.g., a number of occurrences) of false positive determina-
tions of the one or more second stage characteristics (e.g.,
the one or more second stage characteristics in the method
600) of the one or more objects (e.g., the one or more objects
in the method 600) that has occurred. For example, the
second stage computing system 230 can determine, based in
part on the object data received from the first stage com-
puting system 210, an amount of false positive determina-
tions (e.g., the determination of the number of the one or
more second stage characteristics that were detected but
were not actually present) of the one or more second stage
characteristics of the one or more objects that has occurred.

In some embodiments, the object detection system can
determine, based in part on the object data and a second
machine-learned model subsequent to the first machine-
learned model, an amount of false positive determinations of
the one or more second stage characteristics (when the
second machine-learned model is used) of the one or more
objects that has occurred. For example, a false positive
determination of the one or more second stage characteris-
tics can include a false determination that a portion of the
object data that is foreground (e.g., a pedestrian laying
down) is part of the background. The second stage of the
multiple stage classification can subsequently correctly
determine that the portion of the object data is actually
foreground and not background. Accordingly, the number of
times that false determinations occur can be determined
(e.g., determined by the multiple stage classifier system
200).

At 804, the method 800 can include terminating the
traversal of a portion of the second machine-learned model
(e.g., terminating traversal of a second decision tree, includ-
ing terminating traversal of the second plurality of nodes in
the second classification model in the method 600) when the
amount of the false positives determined to have occurred
exceeds a predetermined threshold level. For example, the
second stage computing system 230 can use the portion of
the second machine-learned model (e.g., the second decision
tree). Further, the multiple stage classifier system 200 can
terminate traversal of a portion of the second machine-
learned model (e.g., the second decision tree) by the second
stage computing system 230 when the amount of false
positive determinations by the second stage computing
system 230 exceeds a predetermined amount (e.g., a number
of false positive determinations and/or a proportion of false
positive determinations of the one or more second stage
characteristics with respect to the total number of the one or
more second stage characteristics).

In some embodiments, at least one node of the second
plurality of nodes in the second classification model is a
terminal node of the first plurality of nodes (e.g., the first
plurality of nodes in the method 600) in the first classifica-
tion model (e.g., the first machine-learned model in the
method 600); the second classification model can include an
equal number of nodes as the first plurality of nodes; and/or
the second classification model includes a greater number of
nodes than the first plurality of nodes. For example, the first
node in the second classification model can be the terminal
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node in the first classification model. As such, the second
classification model can be a continuation of the first clas-
sification model and build upon the first classification model
without starting classification analysis anew.

In some embodiments, the determination of the predeter-
mined threshold level to terminate traversal of the machine-
learned model can be based on performance (e.g., false
positive rate) of the first machine-learned model or the
second machine-learned model on a previously established
data set (e.g., a training dataset in which all of the objects
have been correctly identified) at the various depths of the
portion of the second machine learned model (e.g., the
decision tree). For example, the predetermined threshold
level to terminate traversal of the portion of the second
machine-learned model (e.g., decision tree) can be based in
part on the depth of the portion of the first machine-learned
model (e.g., the first decision tree) when the amount of false
positives exceeds a predetermined percentage of detected
objects (e.g., one percent of the detected objects) or a
predetermined number of objects per image (e.g., four
objects per image).

In some embodiments, the first stage of the multiple stage
classification can be performed on a customized device (e.g.,
a customized FPGA) that operates in parallel and can rapidly
determine one or more first stage characteristics of the one
or more portions of sensor data including whether a portion
of sensor data (e.g., a portion of an image) is foreground or
a background. After determining one or more first stage
characteristics, the second stage of the multiple stage clas-
sification can use a classification model with greater depth
(i.e., has more nodes along the path from a root node to a
terminal node) to determine one or more second stage
characteristics that can, with a higher level of confidence,
detect, recognize, and/or identify one or more objects
including vehicles, pedestrians, streets, buildings, the sky,
and/or cyclists.

FIG. 9 is a diagram of a system according to some
embodiments of the present disclosure. As illustrated, an
example system 900 includes a computing system 902 and
a machine learning computing system 930 that are commu-
nicatively coupled (e.g., configured to send and/or receive
signals and/or data) over one or more networks 980. Further,
the example system 900 can perform one or more operations
including receiving object data including portions of sensor
data; determining, in a first stage of a multiple stage clas-
sification, first stage characteristics of the portions of sensor
data based in part on a first machine-learned model; deter-
mining, in a second stage of the multiple stage classification,
second stage characteristics of the portions of sensor data
based in part on a second machine-learned model; and
generating, an object output based in part on the first stage
characteristics and the second stage characteristics, the
object output including indications associated with detection
of objects in the portions of sensor data.

In some implementations, the computing system 902 can
perform various operations including multiple-stage detec-
tion and/or recognition of objects. In some implementations,
the computing system 902 can be included in an autonomous
vehicle. For example, the computing system 902 can be
on-board the autonomous vehicle. In other implementations,
the computing system 902 is not located on-board the
autonomous vehicle. For example, the computing system
902 can operate offline to perform multiple-stage detection
and/or recognition of objects. The computing system 902
can include one or more distinct physical computing
devices.
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The computing system 902 includes one or more proces-
sors 912 and a memory 914. The one or more processors 912
can be any suitable processing device (e.g., a processor core,
a microprocessor, an ASIC, a FPGA, a controller, and/or a
microcontroller) and can be one processor or a plurality of
processors that are operatively connected. The memory 914
can include one or more non-transitory computer-readable
storage media, including RAM, ROM, EEPROM, EPROM,
one or more memory devices, and/or flash memory devices.

The memory 914 can store information that can be
accessed by the one or more processors 912. For instance,
the memory 914 (e.g., one or more non-transitory computer-
readable storage mediums, and/or memory devices) can
store data 916 that can be obtained, received, accessed,
written, manipulated, created, and/or stored. The data 916
can include, for instance, include examples as described
herein. In some implementations, the computing system 902
can obtain data from one or more memory devices that are
remote from the computing system 902.

The memory 914 can also store computer-readable
instructions 918 that can be executed by the one or more
processors 912. The instructions 918 can be software written
in any suitable programming language or can be imple-
mented in hardware. Additionally, or alternatively, the
instructions 918 can be executed in logically and/or virtually
separate threads on the one or more processors 912.

For example, the memory 914 can store instructions 918
that when executed by the one or more processors 912 cause
the one or more processors 912 to perform any of the
operations and/or functions described herein, including, for
example, performing multiple-stage detection and/or recog-
nition of objects.

According to an aspect of the present disclosure, the
computing system 902 can store or include one or more
machine-learned models 910. As examples, the one or more
machine-learned models 910 can include various machine-
learned models including, for example, neural networks
(e.g., deep neural networks), support vector machines, deci-
sion trees, ensemble models, k-nearest neighbors models,
Bayesian networks, logistic regression classification,
boosted forest classification, or other types of models
including linear models and/or non-linear models. Example
neural networks include feed-forward neural networks,
recurrent neural networks (e.g., long short-term memory
recurrent neural networks), or other forms of neural net-
works. The one or more machine-learned models 910 can
include, for example, a first machine-learned model associ-
ated with first stage computing system 210 and/or a second
machine-learned model associated with second stage com-
puting system 230 within the multiple stage classifier system
200 of FIG. 2. As another example, the one or more
machine-learned models 910 can include models associated
with object detection computing system 1010 of FIG. 10. As
yet another example, the one or more machine-learned
models 910 can include models including pre-processing
submodel 1100 of FIG. 11A/B/C.

In some implementations, the computing system 902 can
receive the one or more machine-learned models 910 from
the machine learning computing system 930 over the one or
more networks 980 and can store the one or more machine-
learned models 910 in the memory 914. The computing
system 902 can then use or otherwise implement the one or
more machine-learned models 910 (e.g., by the one or more
processors 912). In particular, the computing system 902 can
implement the one or more machine-learned models 910 to
perform multiple-stage detection and/or recognition of
objects.
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The machine learning computing system 930 includes one
or more processors 932 and a memory 934. The one or more
processors 932 can be any suitable processing device (e.g.,
a processor core, a microprocessor, an ASIC, a FPGA, a
controller, and/or a microcontroller) and can be one proces-
sor or a plurality of processors that are operatively con-
nected. The memory 934 can include one or more non-
transitory computer-readable storage media, including
RAM, ROM, EEPROM, EPROM, one or more memory
devices, and/or flash memory devices.

The memory 934 can store information that can be
accessed by the one or more processors 932. For instance,
the memory 934 (e.g., one or more non-transitory computer-
readable storage mediums, memory devices) can store data
936 that can be obtained, received, accessed, written,
manipulated, created, and/or stored. The data 936 can, for
instance, include examples as described herein. In some
implementations, the machine learning computing system
930 can obtain data from one or more memory devices that
are remote from the machine learning computing system
930.

The memory 934 can also store computer-readable
instructions 938 that can be executed by the one or more
processors 932. The instructions 938 can be software written
in any suitable programming language or can be imple-
mented in hardware. Additionally, or alternatively, the
instructions 938 can be executed in logically and/or virtually
separate threads on the one or more processors 932.

For example, the memory 934 can store instructions 938
that when executed by the one or more processors 932 cause
the one or more processors 932 to perform any of the
operations and/or functions described herein, including, for
example, performing multiple-stage detection and/or recog-
nition of objects.

In some implementations, the machine learning comput-
ing system 930 includes one or more server computing
devices. If the machine learning computing system 930
includes multiple server computing devices, such server
computing devices can operate according to various com-
puting architectures, including, for example, sequential
computing architectures, parallel computing architectures,
or some combination thereof.

In addition or alternatively to the one or more machine-
learned models 910 at the computing system 902, the
machine learning computing system 930 can include one or
more machine-learned models 940. As examples, the one or
more machine-learned models 940 can include various
machine-learned models including, for example, neural net-
works (e.g., deep neural networks), support vector
machines, decision trees, ensemble models, k-nearest neigh-
bors models, Bayesian networks, logistic regression classi-
fication, boosted forest classification, or other types of
models including linear models and/or non-linear models.
Example neural networks include feed-forward neural net-
works, recurrent neural networks (e.g., long short-term
memory recurrent neural networks, or other forms of neural
networks).

As an example, the machine learning computing system
930 can communicate with the computing system 902
according to a client-server relationship. For example, the
machine learning computing system 930 can implement the
one or more machine-learned models 940 to provide a web
service to the computing system 902. For example, the web
service can provide results including the type, identity,
and/or class of objects that have been detected and/or
recognized.
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Thus, one or more machine-learned models 910 can be
located and used at the computing system 902 and/or the one
or more machine-learned models 940 can be located and
used at the machine learning computing system 930.

In some implementations, the machine learning comput-
ing system 930 and/or the computing system 902 can train
the one or more machine-learned models 910 and/or the one
or more machine-learned models 940 through use of a model
trainer 960. The model trainer 960 can train the one or more
machine-learned models 910 and/or the one or more
machine-learned models 940 using one or more training or
learning algorithms. One example training technique is
backwards propagation of errors. In some implementations,
the model trainer 960 can perform supervised training
techniques using a set of labeled training data. In other
implementations, the model trainer 960 can perform unsu-
pervised training techniques using a set of unlabeled training
data. The model trainer 960 can perform a number of
generalization techniques to improve the generalization
capability of the models being trained. Generalization tech-
niques include weight decays, dropouts, or other techniques.

In particular, the model trainer 960 can train one or more
machine-learned models 910 and/or one or more machine-
learned models 940 based on a set of training data 962. The
training data 962 can include, for example, various features
of one or more objects. The model trainer 960 can be
implemented in hardware, firmware, and/or software con-
trolling one or more processors.

The computing system 902 can also include a network
interface 924 used to communicate with one or more sys-
tems or devices, including systems or devices that are
remotely located from the computing system 902. The
network interface 924 can include any circuits, components,
software, for communicating with one or more networks
(e.g., the one or more networks 980). In some implementa-
tions, the network interface 924 can include, for example,
one or more of a communications controller, receiver, trans-
ceiver, transmitter, port, conductors, software and/or hard-
ware for communicating data. Further, the machine learning
computing system 930 can include a network interface 964.

The one or more networks 980 can include any type of
network or combination of networks that allows for com-
munication between devices. In some embodiments, the one
or more networks 980 can include one or more of a local area
network, wide area network, the Internet, secure network,
cellular network, mesh network, peer-to-peer communica-
tion link and/or some combination thereof and can include
any number of wired or wireless links. Communication over
the one or more networks 980 can be accomplished, for
instance, via a network interface using any type of protocol,
protection scheme, encoding, format, and/or packaging.

FIG. 9 illustrates one example computing system 900 that
can be used to implement the present disclosure. Other
computing systems can be used as well. For example, in
some implementations, the computing system 902 can
include the model trainer 960 and the training data 962. In
such implementations, the one or more machine-learned
models 910 can be both trained and used locally at the
computing system 902. As another example, in some imple-
mentations, the computing system 902 is not connected to
other computing systems.

In addition, components illustrated and/or discussed as
being included in one of the computing systems 902 or 930
can instead be included in another of the computing systems
902 or 930. Such configurations can be implemented with-
out deviating from the scope of the present disclosure. The
use of computer-based systems allows for a great variety of

25

30

40

45

50

55

40

possible configurations, combinations, and divisions of tasks
and functionality between and among components. Com-
puter-implemented operations can be performed on a single
component or across multiple components. Computer-
implemented tasks and/or operations can be performed
sequentially or in parallel. Data and instructions can be
stored in a single memory device or across multiple memory
devices.

FIG. 10 is a diagram of an object classifier system
according to some embodiments of the present disclosure.
As illustrated, the object classifier system 1000 can include
one or more sensor devices 1002; an interconnect 1004/
1006; object detection computing system 1010; one or more
processing unit(s) 1012; memory 1016; data 1018; instruc-
tions 1020; a communication interface 1022; and one or
more output devices 1050. Further, the object classifier
system 1000 can perform one or more functions including
receiving object data including portions of sensor data;
determining a foreground portion of the sensor data and/or
a background portion of the sensor data; generating an
object classification based on the foreground portion of the
sensor data; and generating an object output based at least in
part on the object classification.

The object classifier system 1000 can include one or more
sensor devices 1002. The one or more sensor devices 1002
can include one or more physical sensors that can generate
one or more sensor outputs (e.g., sensor data) based in part
on the detection of an environment including one or more
objects. The one or more physical sensors can include one or
more LIDAR devices, one or more cameras, one or more
RADAR devices, one or more sonar devices, one or more
image sensors, and/or one or more thermal imaging devices.
Further, the one or more sensor devices 1002 can include
one or more simulated sensors that can generate one or more
simulated sensor outputs (e.g., simulated sensor data) based
in part on one or more simulated objects (e.g., simulated
objects based in part on data structures generated by a
computing device including the vehicle computing system
108, the one or more remote computing devices 130, and/or
the operations computing system 150).

The object data output by the one or more sensor devices
1002 can be used in the detection and/or recognition of one
or more objects including one or more pedestrians (e.g., one
or more persons standing, laying down, sitting, squatting,
crouching, climbing, running, and/or walking); one or more
other vehicles (e.g., motor vehicles including automobiles,
trucks, buses, trolleys, trams, motorcycles, mopeds, aircraft,
helicopters, boats, amphibious vehicles, and/or trains); one
or more cyclists (e.g., one or more persons sitting and/or
riding on a bicycle); transportation infrastructure (e.g.,
roads, streets, railroads, sidewalks, high-ways, parking lots,
and/or pavement); and/or one or more buildings (e.g.,
houses, office buildings, stadia, and/or apartment buildings).

Further, the object data output by the one or more sensor
devices 1002 can include a set of three-dimensional points
(e.g., X, y, and z coordinates) associated with one or more
physical dimensions (e.g., the length, width, and/or height)
of the one or more objects in the one or more images. One
or more portions of the sensor data and/or the associated
object data can be used to determine physical properties,
attributes, and/or characteristics (e.g., visual properties and/
or characteristics) of the one or more objects including the
shape, texture, brightness, saturation, and/or physical
dimensions (e.g., length, width, and/or height), of the one or
more objects.

The object data generated by the one or more sensor
devices 1002 can be output as object data that includes one
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or more portions of the sensor data and/or one or more
portions of the simulated sensor data. The one or more
sensor devices 1002 can generate object data that includes
one or more two-dimensional images (e.g., two-dimensional
images captured by one or more cameras) and/or three-
dimensional images (e.g., three-dimensional point clouds
captured by a LIDAR device). One or more portions of the
object data can be sent to one or more computing devices
and/or computing systems via one or more communication
networks and/or interconnects including the interconnect
1004 which can be used to exchange (e.g., send and/or
receive) one or more signals and/or data including signals
and/or data between the one or more sensor devices 1002
and the object detection computing system 1010.

The object detection computing system 1010 can perform
various operations and/or functions including sending,
receiving, analyzing, detecting, recognizing, and/or process-
ing one or more signals and/or data including the object data.
For example, the object detection computing system 1010
can receive (e.g., receive via the interconnect 1004) object
data from the one or more sensor devices 1002, perform one
or more operations (e.g., detect and/or recognize one or
more objects) based on the object data, and send (e.g., send
via the interconnect 1006) the object data to the output
device 1050.

The object detection computing system 1010 can include
one or more computing devices including the one or more
processing units 1012 and the memory 1016. The one or
more processing units 1012 can include any suitable pro-
cessing device (e.g., a processor core, a microprocessor, an
ASIC, a FPGA, a graphics processing unit, a digital signal
processor, a controller, and/or a microcontroller) and can
include one processor or a plurality of processors that are
operatively connected. In some implementations, the one or
more processing units 1012 can include the one or more
programmable logic blocks and interconnects which can be
configured according to the type of operations (e.g., pro-
cessing data including the detection and/or recognition of
objects) to be performed by the one or more processing units
1012 (e.g., FPGAs). In other embodiments, the one or more
processors 1012 can be configured not to include or not to
use the one or more programmable logic blocks and inter-
connects.

The memory 1016 can include one or more non-transitory
computer-readable storage media, including RAM, ROM,
EEPROM, EPROM, NVRAM, one or more memory
devices, flash memory devices, and/or combinations thereof.
The memory 1016 can store information that can be
accessed by the one or more processing units 1012. For
instance, the memory 1016 (e.g., one or more non-transitory
computer-readable storage mediums, memory devices) can
store data 1018 that can be obtained, received, accessed,
written, manipulated, created, and/or stored. The data 1018
can include the object data from the one or more sensor
devices 1002, data identifying detected and/or classified
objects including current object states and predicted object
locations and/or trajectories, motion plans, classification or
detection models, and/or rules, as described herein. In some
implementations, the object detection computing system
1010 can obtain data from one or more memory devices that
are remote from the object detection computing system 1010
including, for example, the one or more sensor devices 1002,
and/or the output device 1050.

The memory 1016 can also store computer-readable
instructions 1020 that can be executed by the one or more
processors 1012. The instructions 1020 can be software
written in any suitable programming language or can be
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implemented in hardware. Additionally, or alternatively, the
instructions 1020 can be executed in logically and/or virtu-
ally separate threads on the one or more processors 1012.

Further, the data 1018 and/or the instructions 1020 stored
in the memory 1016 can include one or more machine-
learned models including one or more machine-learned
models that can be used to generate classified object labels
based on the object data. In some embodiments, the classi-
fied object labels associated with the one or more objects can
be generated in the same format as the classified object
labels generated by the machine-learned model.

For example, the object detection computing system 1010
can include, use, and/or operate a machine-learned object
detection and recognition model stored in the memory 1016.
The machine-learned object detection and recognition
model can include one or more models including, neural
networks (e.g., deep neural networks), or other multi-layer
non-linear models.

Neural networks can include convolutional neural net-
works, recurrent neural networks (e.g., long short-term
memory recurrent neural networks), feed-forward neural
networks, and/or other forms of neural networks. Supervised
training techniques can be performed to train the machine-
learned object detection and recognition model to detect,
recognize, and/or classify one or more objects in the object
data. In some implementations, training data for the
machine-learned object detection and recognition model can
be based at least in part on the predicted detection outcomes
determined using a rules-based model that can be used to
train the machine-learned object detection and recognition
model to detect, recognize, and/or classify one or more
objects associated with the object data. Further, the training
data can be used to train the machine-learned object detec-
tion and recognition model offline.

In some embodiments, the object detection computing
system 1010 can input data into the machine-learned object
detection and recognition model and receive an output. For
instance, the object detection computing system 1010 can
obtain data indicative of a machine-learned object detection
and recognition model from the one or more remote com-
puting devices that store various machine-learned object
detection and recognition models. The input data can include
the data associated with the one or more objects including
one or more vehicles, pedestrians, cyclists, buildings, and/or
environments associated with the one or more objects (e.g.,
roads, bodies of water, mountains, hills, and/or foliage). In
some embodiments, the input data can include data associ-
ated with a visual descriptor including color, brightness,
and/or saturation information associated with the one or
more objects.

Further, the input data can include the object data, pre-
diction data (e.g., data predicting the state and/or location of
the one or more objects), a motion plan (e.g., the motion plan
for a vehicle to navigate relative to the one or more objects),
and/or map data associated with the one or more objects.

The machine-learned object detection and recognition
model can process the input data to detect, recognize, and/or
classify the one or more objects. Moreover, the machine-
learned object detection and recognition model can predict
one or more interactions for the one or more objects. Further,
the object detection computing system 1010 can obtain an
output from the machine-learned object detection and rec-
ognition model. The output from the machine-learned object
detection and recognition model can be indicative of the one
or more predicted detections, recognitions, and/or classifi-
cations of the one or more objects. In some implementations,
the output can also be indicative of a probability associated
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with each respective detection, recognition, and/or classifi-
cation. Further, the machine-learned object detection and
recognition model can process the input data to determine
which of the one or more portions of an input image in the
input data is background (e.g., an area in an input image
included in the input data that does not include one or more
objects of interest) or foreground (e.g., an area in an input
image included in the input data that includes one or more
objects that are of interest). For example, the machine-
learned object detection and recognition model can deter-
mine, based at least in part on a foreground/background
detection submodel that an area of an input image is deter-
mined to be background (e.g., a portion of the input image
that includes an object that is the sky or the ground) and that
an area of an input image is determined to be foreground
(e.g., a portion of the input image that includes an object that
is a vehicle or a pedestrian). The object detection computing
system 1010 can also include a communication interface
1022 that can be used to communicate with one or more
systems or devices, including systems or devices that are
remote from the object detection computing system 1010.
The communication interface 1022 can include any circuits,
components, and/or software, for communicating with one
or more networks. In some implementations, the communi-
cation interface 1022 can include, for example, one or more
of a communications controller, receiver, transceiver, trans-
mitter, port, conductors, software and/or hardware for com-
municating data. Further, the object detection computing
system 1010 can send one or more signals and/or data (e.g.,
one or more signals associated with the object data) to one
or more computing systems including the one or more
output devices 1050.

The one or more output devices 1050 can receive one or
more signals or data from one or more computing devices or
computing systems including the object detection comput-
ing system 1010. The one or more output devices 1050 can
receive one or more signals associated with the object data
including one or more signals that are used to produce one
or more visual images associated with the object data and/or
output associated with the output data (e.g., the results of
processing the object data by the object detection computing
system 1010). For example, the one or more output devices
1050 can, based on one or more signals from the object
detection computing system 1010, generate a visual output
including an image and indications of portions of the image
that include one or more objects.

The one or more output devices 1050 can include one or
more devices that are used to generate a representation
associated with one or more signals and/or data received by
the one or more output devices 1050. For example, the one
or more output devices 1050 can include one or more display
devices (e.g., organic light emitting diode display devices,
liquid crystal display devices, cathode ray tube display
devices, and/or plasma display devices); one or more audio
output devices (e.g., loud speakers); and/or one or more
haptic output devices (e.g., piezoelectric devices that can
produce one or more vibrations).

FIG. 11A is a block diagram of at least a portion of an
object detection model 1100 according to some aspects of
embodiments of the present disclosure. A sensor data feature
fusion processor 1101 can provide fused sensor feature data
to a segmentation network 1103 and to a detection backbone
1105. The downstream processing network is collected in
FIG. 11A as remaining detection network 1107.

In some implementations, the sensor data feature fusion
processor 1101 can register sensor data from a plurality of
sensors into a common reference frame. For instance, in
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some implementations, a LIDAR point cloud can be used as
a common reference frame. Additional sensor inputs (e.g.,
RADAR data, image data, etc.) can be anchored to or
otherwise associated with corresponding LIDAR points in
the point cloud (e.g., based on volumetric overlap of the
RADAR dataset, projection of the image data onto the
LIDAR point cloud, projection of the point cloud onto the
image data, a learned mapping, etc.). In this manner, for
instance, respective LIDAR points in the LIDAR point
cloud can be associated with additional features from other
sensors. Although discussed in the context of the LIDAR
point cloud as the common reference frame, it is to be
understood that another common reference frame can be
adopted, such as mapping features of a plurality of images
to a common pixel grid, and the like.

In some implementations, the segmentation network 1103
can process the output of the sensor data fusion processor
1101 to generate segmentation data. Segmentation data can
include a segmentation map over the LIDAR point cloud
indicating a foreground/background status. For instance,
segmentation data can include a foreground/background
embedding provided as additional feature for respective
points of the point cloud.

In some implementations, the detection backbone 1105
can process some or all of the features associated with the
input datapoints. For instance, the detection backbone 1105
can process sensor datasets (e.g., points and features) indi-
vidually, in parallel, or in a fused manner. For instance, a
sensor dataset can include LIDAR and image features fused
by the sensor data feature fusion processor 1101 as well as
one or more features representing a foreground/background
embedding generated by the segmentation network 1103.
Some or all of the features can be processed by the detection
backbone 1105 for performing object detection (e.g., clas-
sification, recognition, etc.). In some implementations,
object detection can be based on the segmentation feature
(e.g., the segmentation embedding). For instance, object
detection can be performed on foreground datapoints (e.g.,
with high priority, exclusively, etc.) based on respective
values of the foreground/background embedding.

FIG. 11B is a block diagram of at least a portion of
another object detection model according to some embodi-
ments of the present disclosure. Example object detection
model can include a LIDAR point feature module 1104, a
sensor data fusion module 1110, a segmentation network
1112, and a remaining detection network 1120.

The object detection model can receive or otherwise
obtain LIDAR features 1102. For instance, the LIDAR
features 1102 can be obtained from one or more sensors on
an autonomous vehicle or otherwise suitably disposed such
that the sensors are configured to generate a plurality of
LIDAR points. The LIDAR features 1102 can be provided in
any suitable format. As one example, as depicted in FIG.
11B, the LIDAR features 1102 can be provided as an 11xP
tensor of LIDAR features, where P is a number of LIDAR
points. The LIDAR features may include, for each LIDAR
point, the X, Y, and Z coordinates, an intensity value, a
height above ground, a range rate and its validity, and the
like. The LIDAR features can include, for each LIDAR
point, the X, Y, and Z coordinates (e.g., in an absolute
reference frame, a relative reference frame, etc.), an inten-
sity value, a height above ground, a range rate and its
validity, and the like. The LIDAR features can be processed,
by a LIDAR point feature module, to provide additional
LIDAR features.

Additionally or alternatively, the object detection model
can receive and/or otherwise obtain camera features 1108.
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Camera features 1108 can include data captured by and/or
processed from one or more cameras disposed on a surface,
such as a body of an autonomous vehicle. In some imple-
mentations, a view of the one or more cameras may at least
partially overlap a view of the one or more LIDAR sensors.
Camera features 1108 can be provided in any suitable
format. As one example, as depicted in FIG. 11B, the camera
features 1108 can be provided as a KxP tensor of camera
features, where K is a shape of the camera features 1108. As
examples, the camera features 1108 can include image data
and/or derivations thereof.

The LIDAR features 1106 and camera features 1108 can
be provided to the sensor data fusion module 1110. The
sensor data fusion module 1110 can be configured to fuse
data from multiple sensors. Additionally or alternatively, the
sensor data fusion module 1110 can fuse data from multiple
views of the sensor(s). As one example, the sensor data
fusion module 1110 can be or can include a multi-view
fusion (MVF) module.

Additionally or alternatively, the LIDAR features 1106
and camera features 1108 can be provided to the segmen-
tation network 1112. The segmentation network 1112 can
receive LIDAR features 1106 and camera features 1108 and
produce foreground/background embedding 1113. In some
implementations, the segmentation network 1112 can be or
can include one or more neural networks. Additionally or
alternatively, in some implementations, the segmentation
network 1112 can include one or more batch normalization
layers. For instance, the batch normalization layer(s) can be
configured to fix means and variances of each layer’s inputs
over a batch of training data.

The segmentation network 1112 can output a classifica-
tion for a respective LIDAR point (e.g., corresponding to
LIDAR features 1106) indicated whether the datapoint is
foreground or background. For instance, a LIDAR point
classified as being in the background can be unlikely to
identify an actor having a trajectory and can be likely to be
a background (e.g., stationary) object such as, for example,
aroadway, a sign, a hydrant, a bench, a billboard, vegetation,
construction equipment/markings, or other noncritical
object. Additionally or alternatively, a LIDAR point classi-
fied as being in the foreground can be likely to identify an
actor having a trajectory which is to be accounted for in
motion planning. As examples, foreground objects could
include pedestrians, vehicles, moving objects in the roadway
(e.g., debris), cyclists, motorcyclists, etc.

In some implementations, segmentation network 1112 can
output a binary classification. For instance, foreground/
background embedding 1113 can be or can include, for each
LIDAR point (e.g., corresponding to LIDAR features 1106),
a (e.g., binary) classification of a respective LIDAR point as
being foreground or background. Additionally or alterna-
tively, in some implementations, the segmentation network
1112 can output a multi-class classification. For instance,
foreground/background embedding 1113 can be or can
include a classification of a respective LIDAR point as
belonging to one of one or more foreground classes or one
or more background classes. As one example, the one or
more foreground classes can include a vehicle class, a
pedestrian class, a cyclist (e.g., bicyclist) class, and/or a
motorcyclist class. Additionally or alternatively, for
example, the one or more background classes can include a
construction zone class, an unknown zone class, or another
background class. In some implementations, the unknown
zone class can represent uncertainty regarding whether a
LIDAR point is foreground or background or may be treated
as a foreground class in some situations.
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In some implementations, the foreground/background
embedding 1113 can be discrete. For example, the embed-
ding 1113 can be a binary or one-hot encoding of which class
each LIDAR point is classified as. Additionally or alterna-
tively, in some implementations, the embedding 1113 can be
probabilistic. For example, the embedding 1113 can include
a probability or likelihood that a LIDAR point belongs to
each class. As another example, the embedding 1113 can
include a classification and/or an associated confidence
score.

The foreground/background embedding 1113, containing
information related to foreground/background classifica-
tions of each LIDAR point, can be passed to the sensor data
fusion module 1110 along with LIDAR features 1106 and/or
camera features 1108. The sensor data fusion module 1110
can produce fused sensor data that is passed to the remaining
detection network 1120 to classify and identify objects (e.g.,
actors) in view of the sensors.

The information regarding foreground/background clas-
sifications contained in foreground/background embedding
1113 can inform sensor data fusion and/or subsequent object
recognition processing. The present disclosure recognizes,
for instance, that LIDAR points belonging to the foreground
can have a higher inherent likelihood of describing an actor.
Similarly, LIDAR points belonging to the background can
be less likely to describe an actor. This information can
inform detection of false positive (FP) conditions on LIDAR
features. For instance, an object detection model utilizing
foreground/background embedding 1113 can better recog-
nize FP conditions where an object that, by sensor data
alone, would appear to be an actor, but is instead recognized
as a false positive because the object belongs to the back-
ground.

In some implementations according to the present disclo-
sure, the segmentation network 1112 can be trained jointly
with the rest of the object detection model, such as the
remaining detection network 1120. In particular, jointly
training segmentation network 1112 with the rest of the
model can improve efficiency of training the model by better
utilizing network resources to learn features of positive
actors with lessened contributions from false positive actors.
This can provide advantages compared to, for example,
cascading models where segmentation network 1112 is
trained separately from the remainder of the model (e.g.,
where foreground/background detection is performed sepa-
rately from object recognition).

For instance, as depicted in FIG. 11B, a foreground/
background loss 1114 can be defined between ground truth
data associated with the LIDAR features 1106 (e.g., a
ground truth segmentation feature) and the foreground/
background embedding 1113. For instance, the LIDAR
points can be labeled with ground truth data informing a
model trainer of a proper classification for a given LIDAR
point. Loss 1114 can penalize incorrect classifications in
foreground/background embedding 1113 compared to this
ground truth data and flow a gradient along with losses from
the remaining detection network 1120 and/or other compo-
nents of the model. The loss 1114 can penalize incorrect
foreground/background determinations and/or incorrect
classifications within foreground and background classes
(e.g., incorrectly classifying a bicyclist as a motorcyclist).

FIG. 11C is a block diagram depicting an object detection
model implementing a multi-view feature set 1120 accord-
ing to example aspects of the present disclosure. In some
implementations, different views of a scene can provide
different arrangements of what would be considered “fore-
ground” and what would be considered “background.” Addi-
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tionally, in some implementations, different views of a scene
can reveal or emphasize different aspects of interest. And in
some implementations, detection backbones or segmenta-
tion networks can be optimized for processing different
types of data (e.g., two dimensional, three dimensional,
etc.): for instance, in some implementations a segmentation
network can be optimized for processing an two-dimen-
sional view of a scene instead of a three-dimensional point
cloud. Accordingly, in some implementations, a segmenta-
tion network 1112 and (additionally or alternatively) a
sensor data fusion model 1110 (or other detection backbone)
can receive data descriptive of a scene from a plurality of
views. In some implementations, a plurality of views can be
provided by a plurality of images from different viewpoints.
In some implementations, a plurality of view can be pro-
vided by a plurality of projections from one or more three-
dimensional representations (e.g., point cloud(s), etc.). For
instance, in some implementations, a multi-view feature set
1120 can be constructed for a plurality of projections 1 . . .
N. LIDAR features 1102 can be projected in a first reference
frame and LIDAR features 1102' can be projected in a
second reference frame. Similarly, LIDAR features 1106 and
1106' can include different projections respectively corre-
sponding to 1102 and 1102".

In some implementations, the plurality of projections can
be used by the segmentation network 1112 to generate
segmentation data. In some implementations, the plurality of
projections aid in determining the segmentation data by
revealing different semantically meaningful information in
each projection. For instance, a birds eye view may reveal
boundaries or other aspects that can be obscured in, for
example, a range view projection. However, a range view
projection may, in some aspects provide for additional
context in a direction normal to the ground, which may be
obscured or flattened in a birds eye view. Furthermore, in
some implementations, providing multiple projections (e.g.,
instead of or in addition to processing on a point-by-point
basis in three dimensions) can provide for semantically
meaningful frameworks for object detection and recognition
by emphasizing certain reference frames for determining
“foreground” and “background.” In some implementations,
the plurality of projections can include one or more of a
birds eye view, a range view, a perimeter view, etc. The
segmentation network 1112 can receive the plurality of
projections directly or, in some implementations, the plu-
rality of projected LIDAR datapoints and features can first
be passed to a view fusion module 1122. The view fusion
module 1122 can, in some implementations, generate a fused
representation of the plurality of projections.

FIG. 12 is a fourth flow diagram of a method of object
detection and recognition according to some embodiments
of the present disclosure. One or more portions of the
method 1200, illustrated in FIG. 12, can be implemented by
one or more devices (e.g., one or more computing devices)
or systems including, for example, the vehicle 104, the
vehicle computing system 108, or the operations computing
system 150, shown in FIG. 1; the multiple stage classifier
system 200 shown in FIG. 2; and/or the object classifier
system 1000 of FIG. 10. Moreover, one or more portions of
the method 1200 can be implemented as an algorithm on the
hardware components of the devices described herein (e.g.,
as in FIGS. 1, 9, 10) to, for example, perform foreground/
background-based detection and/or recognition of objects
including receiving sensor data (e.g., object data, non-object
data), determining characteristics of one or more objects,
and/or generating object output associated with detection of
one or more objects. FIG. 12 depicts elements performed in
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a particular order for purposes of illustration and discussion.
Those of ordinary skill in the art, using the disclosures
provided herein, will understand that the elements of any of
the methods discussed herein can be adapted, rearranged,
expanded, omitted, combined, and/or modified in various
ways without deviating from the scope of the present
disclosure.

At 1202, the method 1200 can include receiving sensor
data. For example, the object detection computing system
1010 of the object classifier system 1000 can receive sensor
data from one or more computing devices and/or one or
more sensor devices including the one or more sensor
devices 1002.

In some embodiments, the one or more portions of sensor
data (e.g., one or more portions or segments of one or more
images associated with the sensor data) can be based in part
on sensor output from one or more sensors (e.g., physical
sensors that detect actual objects and/or phenomena) and/or
one or more simulated sensors (e.g., simulated sensor out-
puts generated by one or more computing devices). The one
or more sensors can include one or more light detection and
ranging devices (LIDAR), one or more cameras, one or
more radar devices, one or more sonar devices, and/or one
or more thermal imaging devices.

For example, the one or more portions of sensor data
and/or object data can include two-dimensional images
including images captured by one or more cameras and/or
three-dimensional point clouds captured by a LIDAR
device. The one or more portions of sensor data can be
analyzed to detect and/or recognize one or more objects
including one or more pedestrians; one or more other
vehicles; transportation infrastructure; one or more cyclists;
and/or one or more buildings. Further, the sensor data can
include a set of three-dimensional points (e.g., X, v, and z
coordinates) associated with one or more physical dimen-
sions (e.g., the length, width, and/or height) of the one or
more objects in the one or more images.

At 1204, the method 1200 can include determining a
foreground portion of the sensor data and a background
portion of the sensor data. For instance, in some implemen-
tations, a computing system can employ a machine-learned
object detection and recognition model according to
example aspects of the present disclosure to classify each
portion of the sensor data as belonging to the foreground
portion and/or the background portion. As one example, the
segmentation network 1112 of FIG. 11A/B/C can produce
data descriptive of the foreground portion and/or the back-
ground portion, such as foreground/background embedding
1113.

At 1206, the method 1200 can include generating an
object classification based on the foreground portion of the
sensor data. For example, the object classification can clas-
sify sensor data belonging to the foreground portion of the
sensor data as one or more classes associated with actors,
such as vehicles, pedestrians, etc.

At 1208, the method 1200 can include generating an
object output based in part on the object classification. The
object output can include one or more indications associated
with detection of one or more objects in the one or more
portions of sensor data.

For example, the object classifier system 1000 can gen-
erate an object output based in part on data associated with
the classifications of the sensor data as belonging to the
foreground portion or the background portion. The object
output can include one or more indications or signs associ-
ated with detection of one or more objects in the one or more
portions of sensor data. In some embodiments, the object
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output can include, for each of the one or more objects, one
or more indications of whether an object was detected; the
type of object that was detected; the location of the object
detected; the physical characteristics of the object detected;
the velocity and/or acceleration of the object detected;
and/or a probability associated with an estimated accuracy
of the object detection.

In some embodiments, the object output generated at
1208 can be used by one or more vehicle systems (e.g.,
vehicle systems used to control the operation of a vehicle
including an autonomous vehicle) to perform one or more
actions including activating vehicle systems based on detec-
tion of the one or more objects (e.g., activating brakes when
an object is within a predetermined proximity of the
vehicle); modifying the path of the vehicle (e.g., maneuver
the vehicle around objects including buildings, vehicles,
and/or pedestrians); and/or exchange the object output with
one or more vehicle systems or remote computing systems
(e.g., the object output can be sent to other vehicles to
improve object detection by other vehicles that may have
reduced sensor coverage or capacity).

At 1210, the method 1200 can include determining, based
in part on the object output generated at 1208, locations for
one or more bounding shapes associated with the one or
more objects in the one or more images. For example, the
object classifier system 1000 can determine, based in part on
the object output, locations for one or more bounding shapes
(e.g., two-dimensional or three-dimensional bounding poly-
gons and/or bounding ellipses) associated with the one or
more objects in the one or more portions of sensor data. The
object detection system can use the object detection model
to determine the one or more locations or areas of the sensor
data that are more likely to contain an object or a certain type
of object (e.g., in an image in which the ground is part of the
lower half of the image and the sky is part of the upper half
of the image, a motor vehicle or cyclist is more likely to be
in the lower half of the image than the upper half of an
image).

At 1212, the method 1200 can include selecting, based in
part on an image processing technique including non-maxi-
mum suppression, a set of the locations for the one or more
bounding shapes. For example, the object classifier system
1000 can select a set of the locations in which to generate the
one or more bounding shapes. For example, by analyzing the
image gradient direction, pixels that are not part of the local
maxima for the portion of the sensor data corresponding to
each of the set of locations can be suppressed.

At 1214, the method 1200 can include generating the one
or more bounding shapes in the set of the locations for the
one or more bounding shapes. For example, the object
classifier system 1000 can, based on the set of locations for
the one or more bounding shapes, generate the one or more
bounding shapes in the selected locations. In some embodi-
ments, the one or more bounding shapes can be represented
on a display device (e.g., an LCD display) as polygons (e.g.,
one or more squares and/or rectangles) and/or ellipses (e.g.,
one or more circles and/or ovals) generated to fully enclose
or partly cover a portion of the display output in which an
object is detected.

While the present subject matter has been described in
detail with respect to specific example embodiments and
methods thereof, it will be appreciated that those skilled in
the art, upon attaining an understanding of the foregoing can
readily produce alterations to, variations of, and equivalents
to such embodiments. Accordingly, the scope of the present
disclosure is by way of example rather than by way of
limitation, and the subject disclosure does not preclude
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inclusion of such modifications, variations and/or additions
to the present subject matter as would be readily apparent to
one of ordinary skill in the art.

What is claimed is:

1. An autonomous vehicle control system for an autono-
mous vehicle, the autonomous vehicle control system com-
prising:

one or more processors; and

one or more non-transitory, computer-readable media

storing instructions that are executable to cause the one

or more processors to perform operations comprising:

receiving sensor data descriptive of an environment of
the autonomous vehicle, the sensor data comprising
a plurality of portions;

generating, by a first network of a machine-learned
object detection and recognition model, a first clas-
sification value corresponding to a probability that a
respective portion of the plurality of portions of
sensor data corresponds to a foreground portion of
the sensor data or a background portion of the sensor
data;

generating, by a second network of the machine-
learned object detection and recognition model, and
based at least in part on the first classification value,
a second classification value corresponding to a
probability that the respective portion corresponds to
one of one or more foreground classes or one or more
background classes, the second network trained
jointly with the first network; and

generating, based at least in part on the second classi-
fication value, an object output indicating detection
of one or more objects in the sensor data.

2. The autonomous vehicle control system of claim 1,
wherein the machine-learned object detection model com-
prises a sensor data fusion module.

3. The autonomous vehicle control system of claim 1,
wherein the sensor data comprises one or more LIDAR
features and one or more camera features.

4. The autonomous vehicle control system of claim 1,
wherein the first network comprises a segmentation network
configured to output a foreground/background embedding
descriptive of the foreground portion of the sensor data and
the background portion of the sensor data.

5. The autonomous vehicle control system of claim 4,
wherein the segmentation network comprises one or more
batch normalization layers.

6. The autonomous vehicle control system of claim 4,
wherein the segmentation network is trained based at least in
part on backpropagation of a foreground/background loss
penalizing incorrect classifications in the foreground/back-
ground embedding.

7. The autonomous vehicle control system of claim 1,
wherein the first classification value corresponds to a prob-
ability that the respective portion corresponds to the fore-
ground portion of the sensor data, and wherein the second
classification value corresponds to the probability that the
respective portion corresponds to the one of the one or more
foreground classes, wherein the one or more foreground
classes comprise a plurality of foreground classes.

8. The autonomous vehicle control system of claim 7,
wherein the plurality of foreground classes comprises a
vehicle class, a pedestrian class, a cyclist class, and a
motorcyclist class.

9. The autonomous vehicle control system of claim 1,
wherein the first classification value corresponds to a prob-
ability that the respective portion corresponds to the back-
ground portion of the sensor data, and wherein the second
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classification value corresponds to the probability that the
respective portion corresponds to the one of the one or more
background classes, wherein the one or more background
classes comprise a plurality of background classes.

10. The computing system of claim 9, wherein the plu-
rality of background classes comprise: a construction zone
class or an unknown zone class.

11. The autonomous vehicle control system of claim 1,
wherein the operations further comprise:

determining, based at least in part on the object output,

locations for one or more bounding shapes associated
with the one or more objects in the one or more portions
of sensor data;

selecting, based at least in part on an image processing

technique comprising non-maximum suppression, a set
of the locations for the one or more bounding shapes;
and

generating the one or more bounding shapes in the set of

the locations for the one or more bounding shapes.

12. A computer-implemented method comprising:

receiving sensor data descriptive of an environment of an

autonomous vehicle, the sensor data comprising a
plurality of portions;
generating, by a first network of a machine-learned object
detection and recognition model, a first classification
value corresponding to a probability that a respective
portion of the plurality of portions of sensor data
corresponds to a foreground portion of the sensor data
or a background portion of the sensor data;

generating, by a second network of the machine-learned
object detection and recognition model, and based at
least in part on the first classification value, a second
classification value corresponding to a probability that
the respective portion corresponds to one of one or
more foreground classes or one or more background
classes, the second network trained jointly with the first
network; and

generating, based at least in part on the second classifi-

cation value, an object output indicating detection of
one or more objects in the sensor data.

13. The computer-implemented method of claim 12,
wherein the machine-learned object detection model com-
prises a sensor data fusion module.

14. The computer-implemented method of claim 12,
wherein the sensor data comprises one or more LIDAR
features and one or more camera features.

15. The computer-implemented method of claim 12,
wherein the first network comprises a segmentation network
configured to output a foreground/background embedding
descriptive of the foreground portion of the sensor data and
the background portion of the sensor data.

16. The computer-implemented method of claim 15,
wherein the segmentation network is trained based at least in
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part on backpropagation of a foreground/background loss
penalizing incorrect classifications in the foreground/back-
ground embedding.

17. The computer-implemented method of claim 12,
wherein the first classification value corresponds to a prob-
ability that the respective portion corresponds to the fore-
ground portion of the sensor data, and wherein the second
classification value corresponds to the probability that the
respective portion corresponds to the one of the one or more
foreground classes, wherein the one or more foreground
classes comprise a plurality of foreground classes.

18. The computer-implemented method of claim 17, fur-
ther comprising:

determining based at least in part on the object output,

locations for one or more bounding shapes associated
with the one or more objects in the one or more portions
of sensor data;

selecting based at least in part on an image processing

technique comprising non-maximum suppression, a set
of the locations for the one or more bounding shapes;
and

generating the one or more bounding shapes in the set of

the locations for the one or more bounding shapes.

19. The computer-implemented method of claim 12,
wherein the first classification value corresponds to a prob-
ability that the respective portion corresponds to the back-
ground portion of the sensor data, and wherein the second
classification value corresponds to the probability that the
respective portion corresponds to the one of the one or more
background classes, wherein the one or more background
classes comprise a plurality of background classes.

20. One or more tangible, non-transitory computer-read-
able media storing computer-readable instructions that are
executable by one or more processors to cause the one or
more processors to perform operations, the operations com-
prising:

receiving sensor data descriptive of an environment of an

autonomous vehicle, the sensor data comprising a
plurality of portions;

generating, by a first network of a machine-learned object

detection and recognition model, first classification
value indicating a foreground portion of the sensor
data;

generating, by a second network of the machine-learned

object detection and recognition model, and based at
least in part on the foreground portion of the sensor
data, a second classification value associating the
respective portion with one of one or more foreground
classes, the second network trained jointly with the first
network; and

generating, based at least in part on the second classifi-

cation value, an object output indicating detection of
one or more objects in the sensor data.
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