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1
PERCEPTION SYSTEM FOR AN
AUTONOMOUS VEHICLE

BACKGROUND

An autonomous platform can process data to perceive an
environment through which the autonomous platform trav-
els. For example, an autonomous vehicle can perceive its
environment using a variety of sensors and identify objects
around the autonomous vehicle. The autonomous vehicle
can identify an appropriate path through the perceived
surrounding environment and navigate along the path with
minimal or no human input.

SUMMARY

Motion planning for autonomous platforms can be based
on track acceleration for tasks such as decision making,
costing, and feasibility checking. Many contemporary per-
ception systems output only an instantaneous velocity and
acceleration, whereas future velocities and other compo-
nents of motion of actors in the environment of an autono-
mous platform can be predicted at downstream stages from
perception. However, some planning aspects, such as merg-
ing, lane changing, etc., would especially benefit from
predicted future velocities that consider a wider context of
the environment than is generally available to downstream
components. According to example aspects of the present
disclosure, predicted future velocities can be produced by a
perception model directly from multiple sweeps of sensor
data and/or refined by a motion state tracker model to
provide improved motion planning for autonomous plat-
forms such as autonomous vehicles.

In an aspect, a computer-implemented method includes:
(a) obtaining sensor data descriptive of (i) an actor in an
environment of an autonomous vehicle and (ii) at least a
portion of the environment of the autonomous vehicle that
does not include the actor, the sensor data including at least
one sweep of the environment of the autonomous vehicle;
(b) processing the sensor data with a machine-learned per-
ception model to generate a detection of the actor and one or
more predicted future velocities; and (c) determining a
motion trajectory for the autonomous vehicle based at least
in part on the detection and the one or more predicted future
velocities.

In some implementations, (a) includes fusing sensor data
from two or more distinct sensor modalities into a common
representation; and (b) is based at least in part on the
common representation of the sensor data.

In some implementations, (b) further includes processing
the sensor data with the machine-learned perception model
to generate one or more uncertainty scores respectively
associated with the one or more predicted future velocities.

In some implementations, the method further includes,
prior to (c), processing the one or more predicted future
velocities and the one or more uncertainty scores with a
machine-learned object tracker model configured to gener-
ate one or more second velocity outputs including data
descriptive of a velocity of the actor; and the motion
trajectory for the autonomous vehicle is based at least in part
on the one or more second velocity outputs.

In some implementations, the machine-learned object
tracker model is configured to smooth the one or more
predicted future velocities to generate the one or more
second velocity outputs, and the one or more second velocity
outputs include smoothed velocity outputs.
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In some implementations, the machine-learned object
tracker model includes a multi-view tracker model and the
machine-learned perception model includes a multi-view
perception model.

In some implementations, the machine-learned perception
model is simultaneously trained to generate the detection of
the actor and the one or more predicted future velocities.

In some implementations, the one or more predicted
future velocities are respectively associated with one or
more discrete future time steps.

In some implementations, the one or more predicted
future velocities are determined in increments up to a
prediction end time occurring at a given amount of time after
a current time associated with the sensor data.

In some implementations, (b) includes: determining
bounding box data associated with the actor in the sensor
data based on the machine-learned perception model, and
the machine-learned perception model is configured to
regress instantaneous velocities of the one or more objects;
and regressing the one or more predicted future velocities by
the machine-learned perception model.

In some implementations, the sensor data includes a
plurality of sweeps of the environment of the autonomous
vehicle.

In some implementations, the sensor data includes sweep
metadata indicative of a relative sweep of the plurality of
sweeps in which the sensor data is captured.

In some implementations, the machine-learned perception
model is trained on training data including training sensor
data labeled with actual state characteristics of one or more
actors depicted in the training sensor data.

In another aspect, an autonomous vehicle control system
includes: one or more processors; and one or more non-
transitory computer-readable media storing executable
instructions that cause the one or more processors to perform
operations including: (a) obtaining sensor data descriptive of
(1) an actor in an environment of an autonomous vehicle and
(ii) at least a portion of the environment of the autonomous
vehicle that does not include the actor, the sensor data
including at least one sweep of the environment of the
autonomous vehicle; (b) processing the sensor data with a
machine-learned perception model to generate a detection of
the actor and one or more predicted future velocities; and (c)
determining a motion trajectory for the autonomous vehicle
based at least in part on the detection and the one or more
predicted future velocities.

In some implementations, (a) includes fusing sensor data
from two or more distinct sensor modalities into a common
representation; and (b) is based at least in part on the
common representation of the sensor data.

In some implementations, (b) further includes processing
the sensor data with the machine-learned perception model
to generate one or more uncertainty scores respectively
associated with the one or more predicted future velocities.

In some implementations, the instructions further include,
prior to (c), processing the one or more predicted future
velocities and the one or more uncertainty scores with a
machine-learned object tracker model configured to gener-
ate one or more second velocity outputs including data
descriptive of a velocity of the actor; and the motion
trajectory for the autonomous vehicle is based at least in part
on the one or more second velocity outputs.

In another aspect, an autonomous vehicle includes: one or
more processors; and one or more non-transitory computer-
readable media storing executable instructions that cause the
one or more processors to perform operations including: (a)
obtaining sensor data descriptive of (i) an actor in an
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environment of an autonomous vehicle and (ii) at least a
portion of the environment of the autonomous vehicle that
does not include the actor, the sensor data including at least
one sweep of the environment of the autonomous vehicle;
(b) processing the sensor data with a machine-learned per-
ception model to generate a detection of the actor and one or
more predicted future velocities; and (c) determining a
motion trajectory for the autonomous vehicle based at least
in part on the detection and the one or more predicted future
velocities.

In some implementations, (b) further includes processing
the sensor data with the machine-learned perception model
to generate one or more uncertainty scores respectively
associated with the one or more predicted future velocities.

In some implementations, the instructions further include,
prior to (c), processing the one or more predicted future
velocities and the one or more uncertainty scores with a
machine-learned object tracker model configured to gener-
ate one or more second velocity outputs including data
descriptive of a velocity of the actor; and the motion
trajectory for the autonomous vehicle is based at least in part
on the one or more second velocity outputs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example operational
scenario according to some implementations of the present
disclosure.

FIG. 2 is a block diagram of an example autonomy system
for an autonomous platform according to some implemen-
tations of the present disclosure.

FIGS. 3A-3D are example operational environments for
an autonomous platform according to some implementations
of the present disclosure.

FIG. 4 is a block diagram of an example perception
system according to some implementations of the present
disclosure.

FIG. 5 is a block diagram of an example multi-head
perception model according to some implementations of the
present disclosure.

FIG. 6 is a block diagram of an example computing
ecosystem according to some implementations of the present
disclosure.

FIG. 7 is a flowchart of a method for generating motion
trajectories, according to some implementations of the pres-
ent disclosure.

DETAILED DESCRIPTION

The following describes the technology of this disclosure
within the context of an autonomous vehicle for example
purposes only. As described herein, the technology
described herein is not limited to an autonomous vehicle and
can be implemented for or within other autonomous plat-
forms and other computing systems.

Generally, example aspects of the present disclosure are
directed to improved perception systems for autonomous
platforms, such as for autonomous robots, autonomous
vehicles and/or semi-autonomous vehicles. A perception
system is one functional component of an autonomy com-
puting system, which is designed to provide a comprehen-
sive understanding of a surrounding environment. The per-
ception system can integrate map data and sensor data from
one or more sensors (e.g., cameras, LIDAR systems,
RADAR systems, etc.) into fused representations depicted in
one or more views (e.g., Euclidean view, range view, etc.)
Specific operations can be performed relative to the fused
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representations, including detection of actors and other
objects within the surrounding environment, recurrent track-
ing of detected actors/objects, and determination of envi-
ronmental context for use by other components of the
autonomy computing system (e.g., forecasting and/or
motion planning systems).

According to example aspects of the present disclosure, a
perception system is improved by including functionality for
predicting future actor velocities. More particularly, mul-
tiple sweeps of sensor data (e.g., LIDAR data) can be
captured and processed by the perception system to produce
object data including data descriptive of one or more pre-
dicted future velocities of the objects in the environment of
the vehicle. For instance, the predicted future velocity(s) can
be predicted at one or more discrete future time steps. In
some implementations, the discrete future time steps can be
in fixed or varied increments (e.g., 0.1 s, 0.5 s, 1.0 s) from
a current time up to a prediction end time occurring at a
given amount of time in the future (e.g., 200 ms, 500 ms, 1
ms, 2 ms, 3 ms, 5 ms after the current time). The predicted
future velocity(s) can have an associated uncertainty score
indicative of a confidence of the predicted future velocity.
The uncertainty score can be associated with the prediction
over some or all time steps and/or with a particular time step.
The predicted future velocities and the uncertainty scores
can be passed to an object tracker model that predicts one or
more smoothed velocity outputs associated with the objects
in the environment of the vehicle. The smoothed velocity
outputs can then be passed to a motion planning stage that
determines a motion plan for the autonomous vehicle based
at least in part on the smoothed velocity output(s). The
motion plan can be executed by control systems onboard the
vehicle to control various systems of the vehicle.

Learned velocity prediction models as described herein
can advantageously provide for use of the context available
in raw sensor data. This context can be beneficial relative to
models, such as object tracking models, which can some-
times rely only on state data and thus don’t have raw sensor
data available at subsequent processing stages. Training the
object tracker models and perception models jointly can also
provide an improved understanding of the environment
context, which can lead to improved accuracy in object
detection in addition to improved accuracy of future velocity
predictions. The raw sensor data available to the velocity
prediction models described herein can provide richer con-
text than state data alone. For instance, environments as a
whole can provide more information about the behavior of
objects (e.g., vehicles) than state data about the objects
alone, even in the aggregate for multiple objects in an
environment. As one example, if a first vehicle is leading a
second vehicle and the first vehicle begins to decelerate, that
can serve as a strong indication that the second vehicle will
decelerate in the future, even if there is no indication from
the behavior of the second vehicle at the time that the second
vehicle is decelerating. Similarly, a standstill vehicle with
other vehicles in front of the standstill vehicle accelerating
can serve as a strong indication that the standstill vehicle
will soon accelerate. This context of the environment allows
for predicting future velocities that, even if not as refined as
downstream future velocities, can more accurately represent
future movements that are understandable only from the
larger context.

Advantageously, the systems and methods described
herein provide a number of technical effects and benefits. As
one example, the learned velocity prediction models
described herein can more accurately predict future veloci-
ties of objects (e.g., compared to traditional physics-based
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models). The learned models described herein can operate
directly on raw sensor data, providing richer context than the
state data alone, which traditional physics-based models rely
on.

With reference to FIGS. 1-7, example embodiments of the
present disclosure are discussed in further detail. FIG. 1 is a
block diagram of an example operational scenario according
to example implementations of the present disclosure. In the
example operational scenario, an environment 100 contains
an autonomous platform 110 and a number of objects,
including first actor 120, second actor 130, and third actor
140. In the example operational scenario, the autonomous
platform 110 can move through the environment 100 and
interact with the object(s) that are located within the envi-
ronment 100 (e.g., first actor 120, second actor 130, third
actor 140, etc.). The autonomous platform 110 can option-
ally be configured to communicate with remote system(s)
160 through network(s) 170.

In some implementations, the environment 100 can
include an indoor environment (e.g., within one or more
facilities, etc.) or an outdoor environment. An indoor envi-
ronment, for example, can include environments enclosed
by a structure such as a building (e.g., a service depot,
maintenance location, manufacturing facility, etc.). An out-
door environment, for example, can include one or more
areas in the outside world such as, for example, one or more
rural areas (e.g., with one or more rural travel ways, etc.),
one or more urban areas (e.g., with one or more city travel
ways, highways, etc.), one or more suburban areas (e.g.,
with one or more suburban travel ways, etc.), or other
outdoor environments.

In some implementations, the autonomous platform 110
can include any type of platform configured to operate
within the environment 100. For example, the autonomous
platform 110 can include one or more different type(s) of
vehicle(s) configured to autonomously perceive and operate
within the environment 100. The vehicles, for example, can
include one or more ground-based autonomous vehicle(s)
such as, for example, one or more autonomous cars, trucks,
vans, etc. The autonomous platform 110 can include an
autonomous vehicle that can control, be connected to, or
otherwise associated with implements, attachments, and/or
accessories for transporting people or cargo. This can
include, for example, an autonomous tractor optionally
coupled to a cargo trailer. In addition, or alternatively, the
autonomous platform 110 can include any other type of
vehicle such as one or more aerial vehicles, water-based
vehicles, space-based vehicles, other ground-based vehicles,
etc.

In some implementations, the autonomous platform 110
can communicate with the remote system(s) 160. For
instance, the remote system(s) 160 can communicate with
the autonomous platform 110 for assistance (e.g., navigation
assistance, situation response assistance, etc.), control (e.g.,
fleet management, remote operation, etc.), maintenance
(e.g., updates, monitoring, etc.), or other local or remote
tasks. In some implementations, the remote system(s) 160
can provide data indicative of tasks for the autonomous
platform 110 to perform. For example, as further described
herein, the remote system(s) 160 can provide data indicating
that the autonomous platform 110 is to perform a trip/service
such as a user transportation trip/service, delivery trip/
service (e.g., for cargo, freight, items), etc.

The autonomous platform 110 can communicate with the
remote system(s) 160 using the network(s) 170. The
network(s) 170 can facilitate the transmission of signals
(e.g., electronic signals, etc.) or data (e.g., data from a
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6

computing device, etc.) and include any combination of
various wired (e.g., twisted pair cable, etc.) or wireless
communication mechanisms (e.g., cellular, wireless, satel-
lite, microwave, radio frequency, etc.) or any desired net-
work topology (or topologies). For example, the network(s)
170 can include a local area network (e.g., intranet, etc.), a
wide area network (e.g., the Internet, etc.), a wireless LAN
network (e.g., through Wi-Fi, etc.), a cellular network, a
SATCOM network, a VHF network, a HF network, a
WiMAX based network, or any other suitable communica-
tions network (or combination thereof) for transmitting data
to or from the autonomous platform 110.

As shown for example in FIG. 1, the environment 100 can
include one or more objects. This can include object(s) not
in motion or not predicted to move (“static objects™) or
object(s) in motion or predicted to be in motion (“dynamic
objects” or “actors”). In some implementations, the envi-
ronment 100 can include any number of actor(s) such as, for
example, one or more pedestrians, animals, vehicles, etc.
The actor(s) can move within the environment according to
one or more actor trajectories. For instance, the first actor
120 can move along any one of the first actor trajectories
122A-C, the second actor 130 can move along any one of the
second actor trajectories 132, the third actor 140 can move
along any one of the third actor trajectories 142, etc. In some
implementations, the first actor 120, the second actor 130,
and/or the third actor 140 can only have one associated
trajectory. In some implementations, uncertainty scores
(e.g., uncertainty and/or confidence score(s)) can be associ-
ated with the first actor trajectories 122A-C, second actor
trajectories 132, third actor trajectories 142, etc.

As further described herein, the autonomous platform 110
can utilize its autonomy system(s) to detect these actors (and
their movement) and plan its motion to navigate through the
environment 100 according to one or more platform trajec-
tories 112A-C. For example, the autonomous platform 110
can include onboard computing system(s) 180. The onboard
computing system(s) 180 can include one or more proces-
sors and one or more memory devices. The one or more
memory devices can store instructions executable by the one
or more processors to cause the one or more processors to
perform operations or functions associated with the autono-
mous platform 110, including implementing its autonomy
system(s).

FIG. 2 is a block diagram of example autonomy system(s)
200 for an autonomous platform according to example
implementations of the present disclosure. In some imple-
mentations, the autonomy system(s) 200 can be imple-
mented by a computing system of an autonomous platform
(e.g., the onboard computing system(s) 180 of the autono-
mous platform 110). For instance, the autonomy system(s)
200 can operate to obtain inputs from sensor(s) 202 or other
input devices. In some implementations, the autonomy sys-
tem(s) 200 can obtain (e.g., access, store, etc.) platform data
208 (e.g., map data 210). The autonomy system(s) 200 can
generate control outputs for controlling the autonomous
platform (e.g., through platform control devices 212, etc.)
based on sensor data 204, map data 210, or other data. The
autonomy system(s) 200 can include different subsystems
for performing various autonomy operations. For example,
autonomy operation subsystems can include a localization
system 230, a perception system 240, a planning system 250,
and a control system 260. For instance, the localization
system 230 can provide an autonomous platform with an
understanding of its position in an environment; the percep-
tion system 240 can provide for an autonomous platform’s
detection, understanding, and tracking of its environment
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(e.g., environmental features, objects in an environment,
etc.); the planning system 250 can provide for determining
how the autonomous platform is to interact with and in its
environment; and the control system 260 can provide for an
interface between the autonomy system(s) 200 and the
platform control devices 212 for controlling the autonomous
platform. The autonomy system(s) 200 can be implemented
by one or more onboard computing system(s). The subsys-
tems can include one or more processors and one or more
memory devices. The one or more memory devices can store
instructions executable by the one or more processors to
cause the one or more processors to perform operations or
functions associated with the subsystems. The computing
resources of the autonomy system(s) 200 can be shared
among its subsystems, or a subsystem can have a set of
dedicated computing resources.

In some implementations, the autonomy system(s) 200
can be implemented for or by an autonomous vehicle (e.g.,
a ground-based autonomous vehicle). For example, the
autonomy system(s) 200 can perform various processing
techniques on inputs (e.g., the sensor data 204, the map data
210) to perceive and understand the vehicle’s surrounding
environment and generate an appropriate set of control
outputs to implement a vehicle motion plan (e.g., including
one or more trajectories) for traversing the vehicle’s sur-
rounding environment (e.g., environment 100 of FIG. 1,
etc.). In some implementations, an autonomous vehicle
implementing the autonomy system(s) 200 can drive, navi-
gate, operate, etc. with minimal or no interaction from a
human operator (e.g., driver, pilot, etc.).

In some implementations, the autonomous platform can
be configured to operate in a plurality of operating modes.
For instance, the autonomous platform can be configured to
operate in a fully autonomous (e.g., self-driving, etc.) oper-
ating mode in which the autonomous platform is control-
lable without user input (e.g., can drive and navigate with no
input from a human operator present in the autonomous
vehicle or remote from the autonomous vehicle, etc.). The
autonomous platform can operate in a semi-autonomous
operating mode in which the autonomous platform can
operate with some input from a human operator present in
the autonomous platform (or a human operator that is remote
from the autonomous platform). In some implementations,
the autonomous platform can enter into a manual operating
mode in which the autonomous platform is fully controllable
by a human operator (e.g., human driver, etc.) and can be
prohibited or disabled (e.g., temporary, permanently, etc.)
from performing autonomous navigation (e.g., autonomous
driving, etc.). The autonomous platform can be configured to
operate in other modes such as, for example, park or sleep
modes (e.g., for use between tasks such as waiting to provide
a trip/service, recharging, etc.). In some implementations,
the autonomous platform can implement vehicle operating
assistance technology (e.g., collision mitigation system,
power assist steering, etc.), for example, to help assist the
human operator of the autonomous platform (e.g., while in
a manual mode, etc.).

The autonomy system(s) 200 can be located onboard
(e.g., on or within) an autonomous platform and can be
configured to operate the autonomous platform in various
environments. In some implementations, this can be a real-
world environment. In some implementations, the autonomy
system(s) 200 or its functionality can be utilized for a
simulation. This can include, for example, simulating the
operation of a simulated autonomous platform within a
simulated environment or operational scenario. In some
implementations, one or more simulation computing devices
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can simulate one or more of: the sensors 202, the sensor data
204, communication interface(s) 206, the platform data 208,
or the platform control devices 212 for simulating operation
of the autonomy system(s) 200.

In some implementations, the autonomy system(s) 200
can communicate with one or more networks or other
systems with the communication interface(s) 206. The com-
munication interface(s) 206 can include any suitable com-
ponents for interfacing with one or more network(s) (e.g.,
the network(s) 170 of FIG. 1, etc.), including, for example,
transmitters, receivers, ports, controllers, antennas, or other
suitable components that can help facilitate communication.
In some implementations, the communication interface(s)
206 can include a plurality of components (e.g., antennas,
transmitters, or receivers, etc.) that allow it to implement and
utilize various communication techniques (e.g., multiple-
input, multiple-output (MIMO) technology, etc.).

In some implementations, the autonomy system(s) 200
can use the communication interface(s) 206 to communicate
with one or more computing devices that are remote from
the autonomous platform (e.g., the remote system(s) 160)
over one or more network(s) (e.g., the network(s) 170). For
instance, in some examples, one or more inputs, data, or
functionalities of the autonomy system(s) 200 can be supple-
mented or substituted by a remote system communicating
over the communication interface(s) 206. For instance, in
some implementations, the map data 210 can be downloaded
over a network to a remote system using the communication
interface(s) 206. In some examples, one or more of the
localization system 230, the perception system 240, the
planning system 250, or the control system 260 can be
updated, influenced, nudged, communicated with, etc. by a
remote system for assistance, maintenance, situational
response override, management, etc.

The sensor(s) 202 can be located onboard the autonomous
platform. In some implementations, the sensor(s) 202 can
include one or more types of sensor(s). For instance, one or
more sensors can include image capturing device(s) (e.g.,
visible spectrum cameras, infrared cameras, etc.). In addi-
tion, or alternatively, the sensor(s) 202 can include one or
more depth capturing device(s). For example, the sensor(s)
202 can include one or more Light Detection and Ranging
(LIDAR) sensor(s) or Radio Detection and Ranging (RA-
DAR) sensor(s). The sensor(s) 202 can be configured to
generate point data descriptive of at least a portion of a
three-hundred-and-sixty-degree view of the surrounding
environment. The point data can be point cloud data (e.g.,
three-dimensional LIDAR point cloud data, RADAR point
cloud data). In some implementations, one or more of the
sensor(s) 202 for capturing depth information can be fixed to
a rotational device in order to rotate the sensor(s) 202 about
an axis. The sensor(s) 202 can be rotated about the axis
while capturing data in interval sector packets descriptive of
different portions of a three-hundred-and-sixty-degree view
of a surrounding environment of the autonomous platform.
In some implementations, one or more of the sensor(s) 202
for capturing depth information can be solid state.

The sensor(s) 202 can be configured to capture the sensor
data 204 indicative of or otherwise associated with at least
a portion of the environment of the autonomous platform.
The sensor data 204 can include image data (e.g., 2D camera
data, video data, etc.), RADAR data, LIDAR data (e.g., 3D
point cloud data, etc.), audio data, or other types of data. In
some implementations, the autonomy system(s) 200 can
obtain input from additional types of sensors, such as inertial
measurement units, altimeters, inclinometers, odometry
devices, location or positioning devices (e.g., GPS, com-
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pass), or other types of sensors. In some implementations,
the autonomy system(s) 200 can obtain sensor data 204
associated with particular component(s) or system(s) of an
autonomous platform. This sensor data 204 can be indicative
of, for example, wheel speed, component temperatures,
steering angle, cargo or passenger status, etc. In some
implementations, the autonomy system(s) 200 can obtain
sensor data 204 associated with ambient conditions, such as
environmental or weather conditions. In some implementa-
tions, the sensor data 204 can include multi-modal sensor
data. The multi-modal sensor data can be obtained by at least
two different types of sensor(s) (e.g., of the sensors 202) and
can be indicative of static object(s) or actor(s) within an
environment of the autonomous platform. The multi-modal
sensor data can include at least two types of sensor data
fused together (e.g., camera and LIDAR data). In some
implementations, the autonomous platform can utilize the
sensor data 204 for sensors that are remote from (e.g.,
oftboard) the autonomous platform. This can include for
example, sensor data 204 captured by a different autono-
mous platform. Some example aspects of the present dis-
closure make reference to sweeps of sensor data. A sweep of
sensor data can refer to, for example, a set of related sensor
data 204. A single sweep of sensor data 204 can be or include
a single image, a single pass of a sensor 202 throughout a
portion of the environment, a single measurement, etc.
and/or can include some or all sensor data captured at a
given point of time, at a given measurement query, or any
other suitable form of sweeping sensor data.

The autonomy system(s) 200 can obtain the map data 210
associated with an environment in which the autonomous
platform was, is, or will be located. The map data 210 can
provide information about an environment or a geographic
area. For example, the map data 210 can provide informa-
tion regarding the identity and location of different travel
ways (e.g., roadways, etc.), travel way segments (e.g., road
segments, etc.), buildings, or other items or objects (e.g.,
lampposts, crosswalks, curbs, etc.); the location and direc-
tions of boundaries or boundary markings (e.g., the location
and direction of traffic lanes, parking lanes, turning lanes,
bicycle lanes, other lanes, etc.); traffic control data (e.g., the
location and instructions of signage, traffic lights, other
traffic control devices, etc.); obstruction information (e.g.,
temporary or permanent blockages, etc.); event data (e.g.,
road closures/traffic rule alterations due to parades, concerts,
sporting events, etc.); nominal vehicle path data (e.g.,
indicative of an ideal vehicle path such as along the center
of a certain lane, etc.); or any other map data that provides
information that assists an autonomous platform in under-
standing its surrounding environment and its relationship
thereto. In some implementations, the map data 210 can
include high-definition map information. Additionally, or
alternatively, the map data 210 can include sparse map data
(e.g., lane graphs, etc.).

The autonomy system(s) 200 can include the localization
system 230, which can provide an autonomous platform
with an understanding of its position in an environment. In
some examples, the localization system 230 can support one
or more other subsystems of the autonomy system(s) 200,
such as by providing a unified local reference frame for
performing, e.g., perception operations, planning operations,
or control operations.

In some implementations, the localization system 230 can
determine a current position of an autonomous platform. A
current position can include a global position (e.g., respect-
ing a georeferenced anchor, etc.) or relative position (e.g.,
respecting objects in the environment, etc.). The localization
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system 230 can generally include or interface with any
device or circuitry for analyzing a position or change in
position of an autonomous platform (e.g., autonomous
ground-based vehicle, etc.). For example, the localization
system 230 can determine position by using one or more of:
inertial sensors (e.g., inertial measurement unit(s), etc.), a
satellite positioning system, radio receivers, networking
devices (e.g., based on IP address, etc.), triangulation or
proximity to network access points or other network com-
ponents (e.g., cellular towers, Wi-Fi access points, etc.), or
other suitable techniques. The position of the autonomous
platform can be used by various subsystems of the autonomy
system(s) 200 or provided to a remote computing system
(e.g., using the communication interface(s) 206).

In some implementations, the localization system 230 can
register relative positions of elements of a surrounding
environment of an autonomous platform with recorded
positions in the map data 210. For instance, the localization
system 230 can process the sensor data 204 (e.g., LIDAR
data, RADAR data, camera data, etc.) for aligning or oth-
erwise registering to a map of the surrounding environment
(e.g., from the map data 210) to understand the autonomous
platform’s position within that environment. Accordingly, in
some implementations, the autonomous platform can iden-
tify its position within the surrounding environment (e.g.,
across six axes, etc.) based on a search over the map data
210. In some implementations, given an initial location, the
localization system 230 can update the autonomous plat-
form’s location with incremental re-alignment based on
recorded or estimated deviations from the initial location. In
some implementations, a position can be registered directly
within the map data 210.

In some implementations, the map data 210 can include a
large volume of data subdivided into geographic tiles, such
that a desired region of a map stored in the map data 210 can
be reconstructed from one or more tiles. For instance, a
plurality of tiles selected from the map data 210 can be
stitched together by the autonomy system(s) 200 based on a
position obtained by the localization system 230 (e.g., a
number of tiles selected in the vicinity of the position).

In some implementations, the localization system 230 can
determine positions (e.g., relative or absolute) of one or
more attachments or accessories for an autonomous plat-
form. For instance, an autonomous platform can be associ-
ated with a cargo platform, and the localization system 230
can provide positions of one or more points on the cargo
platform. For example, a cargo platform can include a trailer
or other device towed or otherwise attached to or manipu-
lated by an autonomous platform, and the localization sys-
tem 230 can provide for data describing the position (e.g.,
absolute, relative, etc.) of the autonomous platform as well
as the cargo platform. Such information can be obtained by
the other autonomy systems to help operate the autonomous
platform.

The autonomy system(s) 200 can include the perception
system 240, which can allow an autonomous platform to
detect, understand, and track its environment. Environmen-
tal features or objects perceived within an environment can
be those within the field of view of the sensor(s) 202 or
predicted to be occluded from the sensor(s) 202. This can
include object(s) not in motion or not predicted to move
(static objects) or object(s) in motion or predicted to be in
motion (dynamic objects/actors).

For instance, the perception system 240 can determine
one or more states (e.g., current or past state(s), etc.) of one
or more objects that are within a surrounding environment of
an autonomous platform. For example, state(s) can describe
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(e.g., for a given time, time period, etc.) an estimate of an
object’s current or past location (also referred to as posi-
tion); current or past speed/velocity; current or past accel-
eration; current or past heading; current or past orientation;
size/footprint (e.g., as represented by a bounding shape,
object highlighting, etc.); classification (e.g., pedestrian
class vs. vehicle class vs. bicycle class, etc.); the uncertainty
scores associated therewith; or other state information. In
some implementations, the perception system 240 can deter-
mine the state(s) using one or more algorithms or machine-
learned models configured to identify/classify objects based
on inputs from the sensor(s) 202. In some implementations,
state(s) for one or more identified or unidentified objects can
be maintained and updated over time as the autonomous
platform continues to perceive or interact with the objects
(e.g., maneuver with or around, yield to, etc.). In this
manner, the perception system 240 can provide an under-
standing about a current state of an environment (e.g.,
including the objects therein, etc.) informed by a record of
prior states of the environment (e.g., including movement
histories for the objects therein). Such information can be
helpful as the autonomous platform plans its motion through
the environment.

According to example aspects of the present disclosure, in
addition to and/or alternatively to predicting the one or more
states associated with the one or more objects, the perception
system 240 can predict one or more predicted future veloci-
ties associated with the one or more objects in the surround-
ing environment. The predicted future velocities can repre-
sent predicted future velocity associated with the one or
more objects at one or more discrete future time steps. In
some implementations, the discrete future time steps can be
in fixed or varied increments (e.g., 0.1 s, 0.5 s, 1.0 s) from
a current time up to a prediction end time occurring at a
given amount of time in the future (e.g., 200 ms, 500 ms, 1
ms, 2 ms, 3 ms, 5 ms after the current time). The predicted
future velocity(s) can have an associated uncertainty score
indicative of a confidence of the predicted future velocity.
The uncertainty score can be associated with the prediction
over some or all time steps and/or with a particular time step.
One example perception system according to example
aspects of the present disclosure is discussed in greater detail
with reference to FIG. 4.

The current and/or past speed/velocity and/or the one or
more predicted future velocities that are predicted by the
perception system 240 can include longitudinal (e.g., along-
track) velocities, lateral (e.g., cross-track) velocities, and/or
other types of angular velocities that are determined relative
to one or more specific orientations. Longitudinal, or along-
track, velocity can refer to a velocity along (e.g., in a
direction of/defined by) a track, such as a velocity along a
current heading of an autonomous platform, a predetermined
track such as a center of a lane, or other suitable track.
Similarly, lateral, or cross-track velocity, can refer to a
velocity across (e.g., perpendicular to a direction of/defined
by) the track. Either or both of longitudinal velocity and/or
lateral velocity can be regressed through perception system
240 to produce predicted future velocities as described
herein. The parameters predicted by perception system 240
are also not limited to velocities. For example, prediction
system 240 can be configured to determine predicted future
acceleration, jerk, or other higher order output parameters.
Predicted future acceleration, jerk, and/or other higher order
output parameters can also be predicted in terms of a
longitudinal, lateral, or other angular parameter.

The autonomy system(s) 200 can include a planning
system 250, which can be configured to determine how the
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autonomous platform is to interact with and move within its
environment. The planning system 250 can determine one or
more motion plans for an autonomous platform. A motion
plan can include one or more trajectories (e.g., motion
trajectories) that indicate a path for an autonomous platform
to follow. A trajectory can be of a certain length or time
range. The length or time range can be defined by the
computational planning horizon of the planning system 250.
A motion trajectory can be defined by one or more way-
points (with associated coordinates). The waypoint(s) can be
future location(s) for the autonomous platform. The motion
plans can be continuously generated, updated, and consid-
ered by the planning system 250.

To help with its motion planning decisions, the planning
system 250 can be configured to perform a forecasting
function. In some implementations, forecasting can include
determining one or more strategies for the autonomous
platform to move through its environment. A strategy can
include one or more discrete decisions, such as interpretable
decisions (e.g., yield to an actor, merge behind an actor,
etc.). In some implementations, discrete decision(s) can be
amenable to interpretable constraints, such that invalid strat-
egies can be eliminated from consideration under interpre-
table guidelines.

The planning system 250 can forecast future state(s) of
the environment based on one or more strategies for the
autonomous platform. This can include forecasting future
state(s) of the autonomous platform or other actors in the
environment. In some implementations, the planning system
250 can forecast future state(s) based on current or past
state(s) (e.g., as developed or maintained by the perception
system 240) in addition to and/or in the alternative to the
predicted future velocity(s) from the perception system 240.
In some implementations, future state(s) can be or include
forecasted trajectories (e.g., positions over time) of the
autonomous platform or objects in the environment, such as
other actors. In some implementations, one or more of the
future state(s) can include one or more probabilities asso-
ciated therewith (e.g., marginal probabilities, conditional
probabilities). For example, the one or more probabilities
can include one or more probabilities conditioned on strat-
egy or trajectory options available to the autonomous plat-
form. Additionally, or alternatively, the probabilities can
include probabilities conditioned on trajectory options avail-
able to one or more other actors.

In some implementations, the planning system 250 can
provide for an interactive approach for generating and
controlling movement of the autonomous platform through
its environment. The planning system 250 can determine a
motion plan for an autonomous platform with an under-
standing of how forecasted future states of the environment
can be affected by execution of one or more candidate
motion plans. By way of example, with reference again to
FIG. 1, the autonomous platform 110 can determine candi-
date motion plans corresponding to a set of platform trajec-
tories 112A-C that respectively correspond to the first actor
trajectories 122A-C for the first actor 120, trajectories 132
for the second actor 130, and trajectories 142 for the third
actor 140 (e.g., with respective trajectory correspondence
indicated with matching line styles). For instance, the
autonomous platform 110 (e.g., using its autonomy
system(s) 200) can forecast that a platform trajectory 112A
to more quickly move the autonomous platform 110 into the
area in front of the first actor 120 is likely associated with the
first actor 120 decreasing forward speed and yielding more
quickly to the autonomous platform 110 in accordance with
first actor trajectory 122A. Additionally, or alternatively, the
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autonomous platform 110 can forecast that a platform tra-
jectory 112B to gently move the autonomous platform 110
into the area in front of the first actor 120 is likely associated
with the first actor 120 slightly decreasing speed and yield-
ing slowly to the autonomous platform 110 in accordance
with first actor trajectory 122B. Additionally, or alterna-
tively, the autonomous platform 110 can forecast that a
platform trajectory 112C to remain in a parallel alignment
with the first actor 120 is likely associated with the first actor
120 not yielding any distance to the autonomous platform
110 in accordance with first actor trajectory 122C. Based on
comparison of the forecasted scenarios to a set of desired
outcomes (e.g., by scoring scenarios based on a cost or
reward), the planning system 250 can select a motion plan
(and its associated trajectory) in view of the autonomous
platform’s interaction with the environment 100. In this
manner, for example, the autonomous platform 110 can
interleave its forecasting and motion planning functionality.

Returning to FIG. 2, in some implementations, the plan-
ning system 250 can determine a desired trajectory for
executing a desired strategy. For instance, the planning
system 250 can obtain one or more trajectories for executing
one or more strategies. The planning system 250 can evalu-
ate trajectories or strategies (e.g., with scores, costs,
rewards, constraints, etc.) and rank them. For instance, the
planning system 250 can use forecasting output(s) that
indicate interactions (e.g., proximity, intersections, etc.)
between trajectories for the autonomous platform and one or
more objects to inform the evaluation of candidate trajec-
tories or strategies for the autonomous platform. In some
implementations, the planning system 250 can utilize static
cost(s) to evaluate trajectories or strategies for the autono-
mous platform (e.g., “avoid lane boundaries,” “minimize
jerk,” etc.). In addition, or alternatively, the planning system
250 can utilize dynamic cost(s) to evaluate the trajectories or
strategies for the autonomous platform based on forecasted
outcomes for the current operational scenario (e.g., fore-
casted trajectories or strategies leading to interactions
between actors, forecasted trajectories or strategies leading
to interactions between actors and the autonomous platform,
etc.). The planning system 250 can rank trajectories or
strategies based on one or more static costs, one or more
dynamic costs, or a combination therecof. The planning
system 250 can select a motion plan (and a corresponding
trajectory) based on a ranking of a plurality of candidates. In
some implementations, the planning system 250 can select
a highest ranked candidate, or a highest ranked feasible
candidate.

To implement selected motion plan(s), the autonomy
system(s) 200 can include a control system 260 (e.g., a
vehicle control system). Generally, the control system 260
can provide an interface between the autonomy system(s)
200 and the platform control devices 212 for implementing
the strategies and motion plan(s) generated by the planning
system 250. For instance, the control system 260 can imple-
ment the selected motion plan/trajectory to control the
autonomous platform’s motion through its environment by
following the selected trajectory (e.g., the waypoints
included therein). The control system 260 can, for example,
translate a motion plan into instructions for the appropriate
platform control devices 212 (e.g., acceleration control,
brake control, steering control, etc.). By way of example, the
control system 260 can translate a selected motion plan into
instructions to adjust a steering component (e.g., a steering
angle) by a certain number of degrees, apply a certain
magnitude of braking force, increase/decrease speed, etc. In
some implementations, the control system 260 can commu-
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nicate with the platform control devices 212 through com-
munication channels including, for example, one or more
data buses (e.g., controller area network (CAN), etc.),
onboard diagnostics connectors (e.g., OBD-II, etc.), or a
combination of wired or wireless communication links. The
platform control devices 212 can send or obtain data,
messages, signals, etc. to or from the autonomy system(s)
200 (or vice versa) through the communication channel(s).

The autonomy system(s) 200 (and their software) can be
platform agnostic, and the control system 260 can provide
control instructions to platform control devices 212 for a
variety of different platforms for autonomous movement
(e.g., a plurality of different autonomous platforms fitted
with autonomous control systems). This can include a vari-
ety of different types of autonomous vehicles (e.g., sedans,
vans, SUVs, trucks, electric vehicles, combustion power
vehicles, etc.) from a variety of different manufacturers/
developers that operate in various different environments
and, in some implementations, perform one or more vehicle
services.

For example, with reference to FIG. 3A, an operational
environment can include a dense environment 300. An
autonomous platform can include an autonomous vehicle
310 controlled by the autonomy system(s) 200. In some
implementations, the autonomous vehicle 310 can be con-
figured for maneuverability in a dense environment, such as
with a configured wheelbase or other specifications. In some
implementations, the autonomous vehicle 310 can be con-
figured for transporting cargo or passengers. In some imple-
mentations, the autonomous vehicle 310 can be configured
to transport numerous passengers (e.g., a passenger van, a
shuttle, a bus, etc.). In some implementations, the autono-
mous vehicle 310 can be configured to transport cargo, such
as large quantities of cargo (e.g., a truck, a box van, a step
van, etc.) or smaller cargo (e.g., food, personal packages,
etc.).

With reference to FIG. 3B, a selected overhead view 305
of the dense environment 300 is shown overlaid with an
example trip/service between a first location 304 and a
second location 306. The example trip/service can be
assigned, for example, to an autonomous vehicle 320 by a
remote computing system. The autonomous vehicle 320 can
be, for example, the same type of vehicle as autonomous
vehicle 310. The example trip/service can include transport-
ing passengers or cargo between the first location 304 and
the second location 306. In some implementations, the
example trip/service can include travel to or through one or
more intermediate locations, such as to onload or offload
passengers or cargo. In some implementations, the example
trip/service can be prescheduled (e.g., for regular traversal,
such as on a transportation schedule). In some implemen-
tations, the example trip/service can be on-demand (e.g., as
requested by or for performing a taxi, rideshare, ride hailing,
courier, delivery service, etc.).

With reference to FIG. 3C, in another example, an opera-
tional environment can include an open travel way environ-
ment 330. An autonomous platform can include an autono-
mous vehicle 350 controlled by the autonomy system(s)
200. This can include an autonomous tractor for an autono-
mous truck. In some implementations, the autonomous
vehicle 350 can be configured for high payload transport
(e.g., transporting freight or other cargo or passengers in
quantity), such as for long distance, high payload transport.
For instance, the autonomous vehicle 350 can include one or
more cargo platform attachments such as a trailer 352.
Although depicted as a towed attachment in FIG. 3C, in
some implementations one or more cargo platforms can be
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integrated into (e.g., attached to the chassis of, etc.) the
autonomous vehicle 350 (e.g., as in a box van, step van,
etc.).

With reference to FIG. 3D, a selected overhead view of
open travel way environment 330 is shown, including travel
ways 332, an interchange 334, transfer hubs 336 and 338,
access travel ways 340, and locations 342 and 344. In some
implementations, an autonomous vehicle (e.g., the autono-
mous vehicle 310 or the autonomous vehicle 350) can be
assigned an example trip/service to traverse the one or more
travel ways 332 (optionally connected by the interchange
334) to transport cargo between the transfer hub 336 and the
transfer hub 338. For instance, in some implementations, the
example trip/service includes a cargo delivery/transport ser-
vice, such as a freight delivery/transport service. The
example trip/service can be assigned by a remote computing
system. In some implementations, the transfer hub 336 can
be an origin point for cargo (e.g., a depot, a warehouse, a
facility, etc.) and the transfer hub 338 can be a destination
point for cargo (e.g., a retailer, etc.). However, in some
implementations, the transfer hub 336 can be an intermedi-
ate point along a cargo item’s ultimate journey between its
respective origin and its respective destination. For instance,
a cargo item’s origin can be situated along the access travel
ways 340 at the location 342. The cargo item can accord-
ingly be transported to the transfer hub 336 (e.g., by a
human-driven vehicle, by the autonomous vehicle 310, etc.)
for staging. At the transfer hub 336, various cargo items can
be grouped or staged for longer distance transport over the
travel ways 332.

In some implementations of an example trip/service, a
group of staged cargo items can be loaded onto an autono-
mous vehicle (e.g., the autonomous vehicle 350) for trans-
port to one or more other transfer hubs, such as the transfer
hub 338. For instance, although not depicted, it is to be
understood that the open travel way environment 330 can
include more transfer hubs than the transfer hubs 336 and
338, and can include more travel ways 332 interconnected
by more interchanges 334. A simplified map is presented
here for purposes of clarity only. In some implementations,
one or more cargo items transported to the transfer hub 338
can be distributed to one or more local destinations (e.g., by
a human-driven vehicle, by the autonomous vehicle 310,
etc.), such as along the access travel ways 340 to the location
344. In some implementations, the example trip/service can
be prescheduled (e.g., for regular traversal, such as on a
transportation schedule). In some implementations, the
example trip/service can be on-demand (e.g., as requested by
or for performing a chartered passenger transport or freight
delivery service).

To help improve the performance of an autonomous
platform, such as an autonomous vehicle controlled at least
in part using autonomy system(s) 200 (e.g., the autonomous
vehicles 310 or 350), systems and methods according to
example aspects of the present disclosure can utilize per-
ception systems including functionality for predicting future
actor velocities. More particularly, multiple sweeps of sen-
sor data (e.g., LIDAR data) can be captured and processed
by the perception system to produce object data including
data descriptive of one or more predicted future velocities of
the objects in the environment of the vehicle. For instance,
the predicted future velocity(s) can be predicted at one or
more discrete future time steps. In some implementations,
the discrete future time steps can be in fixed or varied
increments (e.g., 0.1 s, 0.5 s, 1.0 s) from a current time up
to a prediction end time occurring at a given amount of time
in the future (e.g., 200 ms, 500 ms, 1 ms, 2 ms, 3 ms, 5 ms
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after the current time). The predicted future velocity(s) can
have an associated uncertainty score indicative of a confi-
dence of the predicted future velocity. The uncertainty score
can be associated with the prediction over some or all time
steps and/or with a particular time step. The predicted future
velocities and the uncertainty scores can be passed to an
object tracker model that predicts one or more smoothed
velocity outputs associated with the objects in the environ-
ment of the vehicle. The smoothed velocity outputs can then
be passed to a motion planning stage that determines a
motion plan for the autonomous vehicle based at least in part
on the smoothed velocity output(s). The motion plan can be
executed by control systems onboard the vehicle to control
various systems of the vehicle.

FIG. 4 is a block diagram of an example perception
system 400 according to some implementations of the
present disclosure. The perception system 400 can be a
portion of an autonomy system, such as perception system
240 of autonomy system 200 of FIG. 2.

The perception system 400 can include a perception
model 410. The perception model 410 can process sensor
data (e.g., sensor data 204 from sensor(s) 202 located
onboard an autonomous platform and/or autonomous
vehicle) to make predictions 412 about objects in the envi-
ronment. The predictions 412 can include data descriptive of
predicted position, extent (e.g., length, width, height), head-
ing, motion (e.g., instantaneous velocity, acceleration), and/
or category (e.g., vehicle, pedestrian, bicyclist, motorcyclist,
stationary object, etc.) of the objects in the environment.
Additionally and/or alternatively, the predictions 412 can
include uncertainties associated with the predicted position,
extent, heading, motion, etc. The predictions 412 can be
associated with a given time step (e.g., a current time step
and/or past time step). According to implementations of the
present disclosure, the predictions 412 may also include
predicted future velocities of the objects in the environment.

In some implementations, the perception model 410 can
process one or more sweeps of sensor data to provide (e.g.,
regress) one or more predicted future velocities. For
instance, in some implementations, the sensor data includes
a plurality of sweeps of the environment of the autonomous
vehicle. In some implementations, the sensor data includes
sweep metadata (e.g., timestamps, relative sweep identifier,
etc.) indicative of a relative sweep of the plurality of sweeps
in which the sensor data is captured.

The perception model 410 can predict the one or more
future velocities directly from the sensor data, including
sensor data describing the object and sensor data describing
the remainder of the scene (e.g., other objects in the envi-
ronment and/or the environment itself). The perception
model 410 can consider sensor data providing context about
the surrounding environment that downstream components
(e.g., object tracker model 420) can have limited access to.
For instance, consider a motivating example of a vehicle
approaching stopped traffic. Sensor data captured over mul-
tiple sweeps provides context on attributes such as decel-
eration for other vehicles as they approach the stopped
traffic. Tracking methods based only on instantaneous data
would instead require that each actor (e.g., vehicle) be
observed decelerating, which can take a greater amount of
time to observe and/or plan for.

More particularly, in some implementations, a computing
system associated with an autonomous platform (e.g., an
autonomous vehicle) can receive sensor data from one or
more sensors on the autonomous platform. For instance, the
perception model 410 can obtain sensor data descriptive of
an environment of an autonomous vehicle (e.g., a portion of
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the environment). The sensor data can be descriptive of one
or more actors in the environment of the autonomous vehicle
and/or at least a portion of the environment of the autono-
mous vehicle that does not include the actor(s). The sensor
data can include at least one sweep of the environment of the
autonomous vehicle. In some implementations, the sensor
data can include image data obtained from one or more
cameras. In some implementations, the sensor data can
include LIDAR data obtained from a LIDAR system. Fur-
thermore, in some implementations, the sensor data can
include RADAR data obtained from a RADAR system. In
some implementations, the sensor data can include a bird’s
eye view representation of data (e.g., LIDAR data) obtained
relative to the autonomous vehicle. In some implementa-
tions, the computing system can project the LIDAR point
cloud data obtained from the LIDAR system to a bird’s eye
view representation of the LIDAR point cloud data. In some
implementations, the machine-learned perception model can
be or can include a multi-view perception model. For
instance, the perception model can process data in multiple
views (e.g., simultaneously and/or concurrently), such as
from both a birds-eye view and/or a range view.

In some implementations, the perception model 410 can
fuse sensor data from two or more distinct sensor modalities
into a common representation, where the predicted future
velocities are based at least in part on the common repre-
sentation of the sensor data. In some implementations, the
perception model 410 and/or prior components can perform
multi-sensor fusion to fuse multiple types and/or sweeps of
sensor data into a fused (e.g., oriented) representation of the
sensor data. For instance, in some example implementations,
the perception model 410 can process camera data projected
onto a LIDAR point cloud. The perception model 410 can be
a deep learning detection module that uses sensor fusion to
learn and infer from multiple sensor modalities, creating a
deep understanding of the world around the autonomous
platform. Multi-sensor fusion can preserve the complemen-
tary strengths of different sensor modalities and progres-
sively fuse them (e.g., in addition to and/or alternatively to
map information) into a common view to produce high-
quality detections of actors such as pedestrians, vehicles,
and cyclists in three dimensions and at long ranges.

Sensor data fusion can be complex in that different
sensors have different resolutions and views of the world.
The perception model 410 can progressively extract and
store information from the different sensor views of the
environment of the autonomous platform to fuse the sensor
data into a common three-dimensional representation. For
instance, in some implementations, LIDAR data can be
projected into a three-dimensional Euclidean view and/or a
wrap-around range view. Projecting LIDAR data into mul-
tiple views can increase the understanding provided by the
sensor data. The Euclidean view can provide precise three-
dimensional position and velocity information. The range-
view can support the azimuthal resolution and long-range
capabilities of the sensor. RADAR can be projected into a
Euclidean view while extracting Doppler velocity informa-
tion. Image data can be combined from some or all of the
cameras on an autonomous platform (e.g., an autonomous
vehicle).

In some implementations, a computing system associated
with an autonomous vehicle can include a fusion system
(e.g., a map fusion system) that is configured to modify
sensor data from a sensor system (e.g., LIDAR point cloud
data representing a three-dimensional view of the environ-
ment) based on geographic prior data from a map system,
resulting in map-modified sensor data (e.g., map-modified

10

15

20

25

30

35

40

45

50

55

60

65

18

LIDAR data). For example, a fusion system can include a
machine-learned neural network configured to implement
continuous convolutions for multi-sensor fusion. In some
implementations, the machine-learned neural network can
include one or more fusion layers that are configured to fuse
image features from image data (e.g., image data captured
by a camera system within an autonomous vehicle) with
LIDAR features from LIDAR point cloud data (e.g., LIDAR
point cloud data captured by a LIDAR system within an
autonomous vehicle). In some implementations, points in
the sensor data can be tagged with a time stamp, relative
sweep instance, or other unique identifier to temporally
relate the sensor data points.

In some implementations, existing map data can be used
to enrich the output of the perception system(s). For
instance, map data can be rasterized into a similar Euclidean
view that matches the other Euclidean view grids. More
particularly, in some implementations, a computing system
associated with an autonomous platform can access or
otherwise obtain map data indicative of the surrounding
geographic environment of an autonomous platform. For
example, map data can provide information regarding: the
identity and location of different roadways, road segments,
buildings, or other items or objects (e.g., lampposts, cross-
walks and/or curb); the location and directions of traffic
lanes (e.g., the location and direction of a parking lane, a
turning lane, a bicycle lane, or other lanes within a particular
roadway or other travel way and/or one or more boundary
markings associated therewith); traffic control data (e.g., the
location and instructions of signage, traffic lights, or other
traffic control devices); and/or any other map data that
provides information that assists the vehicle computing
system in processing, analyzing, and perceiving its sur-
rounding environment and its relationship thereto. In some
implementations, the map data can be provided in a bird’s
eye view representation. In some implementations, such a
bird’s eye view representation of the map data can be
generated by rasterization or other suitable processing for-
mat.

The result from the raw data inputs can provide comple-
mentary sensor data in views such as a Fuclidean view, a
range view, and/or a camera image. The views depict
valuable and/or unique information that will ultimately
contribute to a holistic representation of the surroundings of
the autonomous platform. The data is then processed by the
perception model 410 to extract the valuable information
from each view. The perception model 410 provides an
enriched view of the world around the autonomous platform
by processing the data with one or more machine-learned
models. In some implementations, Euclidean tensor views
from sensor data such as LIDAR, RADAR, and/or map data
are stacked into a tensor that is processed by the perception
model 410 to produce intermediate Fuclidean tensor view
features. Additionally and/or alternatively, range view inputs
are processed by the perception model 410 (e.g., by a range
view model) to produce intermediate range view features.
Image data inputs can be fused with the range view features
(e.g., by an image fusion engine) to produce a range view
enriched by the sensor data, such as by both image and
LIDAR inputs.

Detections can be produced in the Euclidean view to
provide rich and detailed three-dimensional information.
One example implementation employs a Euclidean ray
scatter engine that transfers points from the range view data
into the FEuclidean space. Each pixel in the range view
precisely corresponds to a point in three dimensions. Fea-
tures corresponding to the pixel in the range view are traced
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back to their location in three dimensions and then placed in
the appropriate cell in the Euclidean view. This process is
repeated for each pixel in the range view for a given time
step, generating a corresponding Euclidean tensor view from
range data. The information captured in range view is thus
migrated into the Fuclidean view tensors that can now be
fused with other Fuclidean future maps originating from the
other sensor modalities.

At this point, feature maps from different sensor modali-
ties are in the Euclidean tensor view. The feature maps can
be stacked together and processed by the perception model
410 to produce high quality three-dimensional detections.
The detections include properties of the object such as
velocity, width, height, length, category, and uncertainty
scores on position for each detection. This provides a
representation of the environment surrounding the autono-
mous platform that is rich in data derived from various
sensor inputs that is useful for detecting actors on the road
and reasoning about the actors. According to example
aspects of the present disclosure, the perception model 410
can process sensor data associated with all or a substantial
portion of the environment of the autonomous vehicle such
that the perception model 410 is able to understand the
context associated with a large portion of the environment of
the autonomous vehicle (e.g., as compared to cropped sensor
data).

In some implementations, the perception model 410 can
be or can include a multi-head perception model configured
with a plurality of output heads. The output head(s) can
output predictions of various actor motion characteristics,
such as, for example, instantaneous and/or future velocity,
acceleration, heading, bounding box information, classifi-
cations, angular velocities, and/or any other suitable degrees
of freedom available in the sensor data.

One example multi-head perception model 500 is illus-
trated in FIG. 5. The multi-head perception model 500 can
include a backbone network 510 and a plurality of model
heads 520. The backbone network 510 can include a plu-
rality of layers, such as layers 512, 514, 516. Each of the
plurality of layers 512, 514, 516 can include a plurality of
nodes. The backbone network 510 can be any suitable
network, such as a neural network (e.g., a convolutional
neural network), or other suitable network. Although a 3x3
backbone network 510 is illustrated in FIG. 5 for the
purposes of simplicity, it should be understood that any
suitable size and/or configuration of backbone network 510
can be used in accordance with the present disclosure. For
instance, networks having tens or even hundreds of layers
and/or nodes can be employed as backbone network 510 for
multi-head perception model 500. Additionally and/or alter-
natively, a first layer of backbone network 510 can have
more, fewer, or a same number of nodes as a second layer
of backbone network 510. Additional and/or alternative
types of connections (e.g., skip connections) can be imple-
mented between nodes and/or layers in backbone network
510. The backbone network 510 can process sensor data to
perform data manipulation functions such as, for example,
sensor data projection and/or sensor data fusion as described
above.

The multi-head perception model 500 can additionally
include a plurality of model heads 520, such as first model
head 522, second model head 524, and third model head
526. Each of the model heads 520 can output predictions of
various actor motion characteristics, such as, for example,
instantaneous and/or future velocity, acceleration, heading,
bounding box information, classifications, angular veloci-
ties, and/or any other suitable degrees of freedom available
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in the output from the backbone network 510 (e.g., output
from a final or embedding layer, such as layer 516, of the
backbone network 510). Each of the model heads 520 can
output a distinct actor motion characteristic. For instance, in
some implementations, a first model head 522 can be
configured to output current velocity and/or acceleration
while a second model head 524 can be configured to output
future velocity and/or acceleration. A third model head 526
can further output uncertainties associated with the future
velocity and/or acceleration. Still further model heads, not
illustrated, can output other characteristics and their corre-
sponding uncertainties such as classifications, headings, etc.

Referring again to FIG. 4, in some cases, the perception
model 410 can learn certain motion components based at
least in part on a number of sweeps of sensor data available
to the perception model 410. For instance, the perception
model 410 can be capable of predicting position, heading,
etc. based on a single sweep of sensor data. The perception
model 410 can be capable of predicting velocity, heading,
acceleration, jerk, trajectory, etc. with improved accuracy
over multiple sweeps of sensor data.

The perception model 410 and/or object tracker model
420 as described herein can be a machine-learned perception
model and/or a machine-learned object tracker model that
can respectively correspond to or can include one or more
types of various models, for example, neural networks (e.g.,
deep neural networks), support vector machines, decision
trees, ensemble models, k-nearest neighbors models, Bayes-
ian networks, or other types of models including linear
models and/or non-linear models. Example neural networks
include feed-forward neural networks, (fully) convolutional
neural networks, recurrent neural networks (e.g., long short-
term memory recurrent neural networks), or other forms of
neural networks.

The perception model 410 can process the sensor data to
generate detection(s) of actor(s) in the environment of the
autonomous vehicle. For instance, the detection(s) can
include information about the actor(s), such as current pose,
current velocity, classifications, bounding box information,
etc. at a current time step and/or past time steps (e.g., as a
past trajectory). In addition to detecting actors, the percep-
tion model 410 can process the sensor data to generate one
or more predicted future velocities associated with one or
more objects in the environment of the autonomous vehicle
and/or one or more uncertainty scores respectively associ-
ated with the one or more predicted future velocities based
at least in part on the sensor data and the perception model
410 configured to predict the one or more predicted future
velocities. For instance, the perception model 410 can output
a prediction 412 including predicted future velocities and/or
uncertainty scores associated with predicted future veloci-
ties.

In some implementations, the one or more predicted
future velocities of prediction 412 are respectively associ-
ated with one or more discrete future time steps. For
instance, in some implementations, the one or more pre-
dicted future velocities are determined in increments up to a
prediction end time occurring at a given amount of time after
a current time associated with the sensor data. In particular,
in some implementations, the perception model 410 can
regress predicted future velocities for one or more time
slices (e.g., up to a certain future time) with a regression
target. In some implementations, characteristics of the one
or more states of actors associated with instantaneous char-
acteristics (e.g., instantaneous velocity) can be regressed
with a local frame target (e.g., for the actor itself). The
predicted future velocities of prediction 412, however, can
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be regressed with a transformation regression target. In
particular, the perception model 410 can regress the pre-
dicted future velocities of prediction 412 to learn how the
position of a given actor changes over the time slices to
better estimate velocity through smoothing and/or other
post-model transformations.

Additionally and/or alternatively, in some implementa-
tions, determining the predicted future velocities of predic-
tion 412 includes determining a plurality of sensor crops
based on the sensor data, wherein the plurality of sensor
crops include portions of the sensor data respectively asso-
ciated with the one or more objects; and processing the
plurality of sensor crops by the perception model to generate
the one or more predicted future velocities and the one or
more uncertainty scores respectively associated with the
plurality of sensor crops. For instance, in some implemen-
tations, determining the plurality of sensor crops includes
obtaining an object track descriptive of a predicted track of
an object, the object track including an initial position state
and a velocity; and determining the sensor crop based at
least in part on a portion of the sensor data associated with
a region in proximity to the object track. As one example,
each sensor crop can be respectively associated with a lane
or track frame. The sensor crop can thus include sensor data
points (e.g., LIDAR points) from the track frame in which
they were captured (e.g., as an overhead view of the track at
distinct timestamps).

In some implementations, determining a motion trajectory
for an autonomous platform includes processing the one or
more predicted future velocities and the one or more uncer-
tainty scores with a machine-learned object tracker model
420 configured to generate one or more second velocity
outputs including data descriptive of a velocity of the
objects. The motion trajectory for the autonomous vehicle
can be based at least in part on the one or more second
velocity outputs. For instance, in some implementations, the
prediction 412 can be refined by the object tracker model
420. In addition to velocity observations and position obser-
vations provided to the tracker and/or based on instanta-
neous state characteristics such as velocity, bounding box
data, etc. the predicted future velocities and their uncertainty
scores can intuitively act as an “acceleration observation”
indicative of how the actors will change velocities as a given
time.

For instance, in some implementations, the machine-
learned object tracker model 420 is configured to smooth the
one or more predicted future velocities to generate the one
or more second velocity outputs, wherein the one or more
second velocity outputs are smoothed velocity outputs. The
object tracker model 420 can thus smooth the prediction 412
to determine smoothed actor velocities 422 (e.g., second
velocity outputs). The smoothed actor velocities 422 can be
smoothed such that positions, velocities, etc. are refined as
more generally amenable to behavior of real-life actors than
those of prediction 412. For instance, the predicted future
velocities, etc. at different time steps of smoothed actor
velocities 422 can be aligned with motion models for the
classes of actors. In some implementations, the machine-
learned object tracker model 420 is or includes a multi-view
tracker model. For instance, the object tracker model 420
can operate on multiple views of sensor data, such as a
three-dimensional Euclidean view, a range view, etc.

A computing system can determine a motion trajectory for
the autonomous platform (e.g., autonomous vehicle) based
at least in part on the one or more predicted future velocities
and the one or more uncertainty scores using a machine-
learned motion planning model. For instance, the object
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tracker model 420 can be accessed by a query-able tracker
interface function 430. The tracker interface function 430
can be queried by downstream components of a planning
system (e.g., planning system 250 of FIG. 2) to pass
smoothed actor velocities 422 and/or other data related to
predicted future trajectories of the actors from the object
tracker model 420 to the downstream components.

The downstream components, such as the motion plan-
ning model, can utilize the smoothed actor velocities 422
and/or uncertainties to predict a motion plan for navigating
the autonomous platform. For instance, the smoothed actor
velocities 422 and their respective uncertainties can describe
how the autonomous platform expects the actors in the
environment to behave over a time interval, and the motion
planning model can craft a future trajectory for the autono-
mous platform to navigate with respect to those actors over
the time interval. The uncertainties may be used by the
motion planning model to affect the future trajectory in
various ways. As one example, the motion planning model
prioritizes accounting for future velocities having a lower
uncertainty (or higher confidence) over those having a
higher uncertainty, such as by associating a higher cost with
violating motion constraints of actors with low uncertainty
in their future velocities. As another example, the motion
planning model may disregard future velocities with an
unsuitably high uncertainty (e.g., an uncertainty above a
threshold). As yet another example, the motion planning
model may output a plurality of future trajectories and may
ultimately select one of those future trajectories based on the
uncertainties of the future velocities (e.g., by selecting a
motion plan that best accounts for actors with low uncer-
tainties).

The perception model 410 and/or other models in the
perception system 400 can be trained to predict the future
velocities based on training data. The perception model 410
can be trained in a supervised training regime. For instance,
the perception model 410 can be trained with training data
that includes recorded sensor data labeled with at least future
velocities. As an example, the training data can include
recorded sensor data at a timestep (1), a subsequent timestep
(t+1), a third timestep (t+2), and so on. Additionally, the
training data can be labeled with future velocity labels at
time (t4+x), (t+1+x), (t+2+x), and so on, where X is a
prediction horizon for which the perception model 410 is
trained to predict the future velocities. If, for example, times
t, X, and others are measured in seconds and the perception
model 410 is being trained to predict future velocities two
seconds into the future, the training data can include sensor
data at t(0) labeled with a future velocity at t(2), sensor data
at t(1) labeled with future velocity at t(3), and so on.

In some implementations, the object tracker model 420
can be jointly trained with the perception model 410. For
instance, the perception model 410 and the object tracker
model 420 can be trained in an end-to-end training regime
with training data including training sensor data (e.g., mul-
timodal sensor data and/or fused sensor data) labeled with
actual state characteristics (e.g., instantaneous and/or future
velocities, positions, etc.) of one or more actors depicted in
the training sensor data. According to example aspects of the
present disclosure, in some implementations, training the
perception model 410 and the object tracker model 420
jointly can provide for improved estimates of both current
and future velocities as well as object detection capabilities
of perception model 410. For instance, training the percep-
tion model 410 jointly with the object tracker model 420 can
provide for improved reasoning about bounding box loca-
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tions and distinguishing between non-moving actors (e.g.,
temporarily stationary actors) and other non-moving objects.

FIG. 6 is a block diagram of an example computing
ecosystem 10 according to example implementations of the
present disclosure. The example computing ecosystem 10
can include a first computing system 20 and a second
computing system 40 that are communicatively coupled
over one or more networks 60. In some implementations, the
first computing system 20 or the second computing 40 can
implement one or more of the systems, operations, or
functionalities described herein (e.g., the remote system(s)
160, the onboard computing system(s) 180, the autonomy
system(s) 200, etc.).

In some implementations, the first computing system 20
can be included in an autonomous platform and be utilized
to perform the functions of an autonomous platform as
described herein. For example, the first computing system
20 can be located onboard an autonomous vehicle and
implement autonomy system(s) for autonomously operating
the autonomous vehicle. In some implementations, the first
computing system 20 can represent the entire onboard
computing system or a portion thereof (e.g., the localization
system 230, the perception system 240, the planning system
250, the control system 260, or a combination thereof, etc.).
In other implementations, the first computing system 20 may
not be located onboard an autonomous platform. The first
computing system 20 can include one or more distinct
physical computing devices 21.

The first computing system 20 (e.g., the computing
device(s) 21 thereof) can include one or more processors 22
and a memory 23. The one or more processors 22 can be any
suitable processing device (e.g., a processor core, a micro-
processor, an ASIC, a FPGA, a controller, a microcontroller,
etc.) and can be one processor or a plurality of processors
that are operatively connected. The memory 23 can include
one or more non-transitory computer-readable storage
media, such as RAM, ROM, EEPROM, EPROM, one or
more memory devices, flash memory devices, etc., and
combinations thereof.

The memory 23 can store information that can be
accessed by the one or more processors 22. For instance, the
memory 23 (e.g., one or more non-transitory computer-
readable storage media, memory devices, etc.) can store data
24 that can be obtained (e.g., received, accessed, written,
manipulated, created, generated, stored, pulled, down-
loaded, etc.). The data 24 can include, for instance, sensor
data, map data, data associated with autonomy functions
(e.g., data associated with the perception, planning, or
control functions), simulation data, or any data or informa-
tion described herein. In some implementations, the first
computing system 20 can obtain data from one or more
memory device(s) that are remote from the first computing
system 20.

The memory 23 can store computer-readable instructions
25 that can be executed by the one or more processors 22.
The instructions 25 can be software written in any suitable
programming language or can be implemented in hardware.
Additionally, or alternatively, the instructions 25 can be
executed in logically or virtually separate threads on the
processor(s) 22.

For example, the memory 23 can store instructions 25 that
are executable by one or more processors (e.g., by the one
or more processors 22, by one or more other processors, etc.)
to perform (e.g., with the computing device(s) 21, the first
computing system 20, or other system(s) having processors
executing the instructions) any of the operations, functions,
or methods/processes (or portions thereof) described herein.
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In some implementations, the first computing system 20
can store or include one or more models 26. In some
implementations, the models 26 can be or can otherwise
include one or more machine-learned models, such as but
not limited to machine-learned perception model 410 and/or
machine-learned object tracker model 420. As examples, the
models 26 can be or can otherwise include various machine-
learned models such as, for example, regression networks,
generative adversarial networks, neural networks (e.g., deep
neural networks), support vector machines, decision trees,
ensemble models, k-nearest neighbors models, Bayesian
networks, or other types of models including linear models
or non-linear models. Example neural networks include
feed-forward neural networks, recurrent neural networks
(e.g., long short-term memory recurrent neural networks),
convolutional neural networks, or other forms of neural
networks. For example, the first computing system 20 can
include one or more models for implementing subsystems of
the autonomy system(s) 200, including any of: the localiza-
tion system 230, the perception system 240, the planning
system 250, or the control system 260.

In some implementations, the first computing system 20
can obtain the one or more models 26 using communication
interface(s) 27 to communicate with the second computing
system 40 over the network(s) 60. For instance, the first
computing system 20 can store the model(s) 26 (e.g., one or
more machine-learned models) in the memory 23. The first
computing system 20 can then use or otherwise implement
the models 26 (e.g., by the processors 22). By way of
example, the first computing system 20 can implement the
model(s) 26 to localize an autonomous platform in an
environment, perceive an autonomous platform’s environ-
ment or objects therein, plan one or more future states of an
autonomous platform for moving through an environment,
control an autonomous platform for interacting with an
environment, etc.

The second computing system 40 can include one or more
computing devices 41. The second computing system 40 can
include one or more processors 42 and a memory 43. The
one or more processors 42 can be any suitable processing
device (e.g., a processor core, a microprocessor, an ASIC, a
FPGA, a controller, a microcontroller, etc.) and can be one
processor or a plurality of processors that are operatively
connected. The memory 43 can include one or more non-
transitory computer-readable storage media, such as RAM,
ROM, EEPROM, EPROM, one or more memory devices,
flash memory devices, etc., and combinations thereof.

The memory 43 can store information that can be
accessed by the one or more processors 42. For instance, the
memory 43 (e.g., one or more non-transitory computer-
readable storage media, memory devices, etc.) can store data
44 that can be obtained. The data 44 can include, for
instance, sensor data, model parameters, map data, simula-
tion data, simulated environmental scenes, simulated sensor
data, data associated with vehicle trips/services, or any data
or information described herein. In some implementations,
the second computing system 40 can obtain data from one or
more memory device(s) that are remote from the second
computing system 40.

The memory 43 can also store computer-readable instruc-
tions 45 that can be executed by the one or more processors
42. The instructions 45 can be software written in any
suitable programming language or can be implemented in
hardware. Additionally, or alternatively, the instructions 45
can be executed in logically or virtually separate threads on
the processor(s) 42.
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For example, the memory 43 can store instructions 45 that
are executable (e.g., by the one or more processors 42, by the
one or more processors 22, by one or more other processors,
etc.) to perform (e.g., with the computing device(s) 41, the
second computing system 40, or other system(s) having
processors for executing the instructions, such as computing
device(s) 21 or the first computing system 20) any of the
operations, functions, or methods/processes described
herein. This can include, for example, the functionality of
the autonomy system(s) 200 (e.g., localization, perception,
planning, control, etc.) or other functionality associated with
an autonomous platform (e.g., remote assistance, mapping,
fleet management, trip/service assignment and matching,
etc.).

In some implementations, the second computing system
40 can include one or more server computing devices. In the
event that the second computing system 40 includes multiple
server computing devices, such server computing devices
can operate according to various computing architectures,
including, for example, sequential computing architectures,
parallel computing architectures, or some combination
thereof.

In addition, or alternatively to, the model(s) 26 at the first
computing system 20, the second computing system 40 can
include one or more models 46, such as but not limited to
machine-learned perception model 410 and/or machine-
learned object tracker model 420. As examples, the model(s)
46 can be or can otherwise include various machine-learned
models such as, for example, regression networks, genera-
tive adversarial networks, neural networks (e.g., deep neural
networks), support vector machines, decision trees,
ensemble models, k-nearest neighbors models, Bayesian
networks, or other types of models including linear models
or non-linear models. Example neural networks include
feed-forward neural networks, recurrent neural networks
(e.g., long short-term memory recurrent neural networks),
convolutional neural networks, or other forms of neural
networks. For example, the second computing system 40 can
include one or more models of the autonomy system(s) 200.

In some implementations, the second computing system
40 or the first computing system 20 can train one or more
machine-learned models of the model(s) 26 or the model(s)
46 through the use of one or more model trainers 47 and
training data 48. The model trainer(s) 47 can train any one
of the model(s) 26 or the model(s) 46 using one or more
training or learning algorithms. One example training tech-
nique is backwards propagation of errors. In some imple-
mentations, the model trainer(s) 47 can perform supervised
training techniques using labeled training data. In other
implementations, the model trainer(s) 47 can perform unsu-
pervised training techniques using unlabeled training data.
In some implementations, the training data 48 can include
simulated training data (e.g., training data obtained from
simulated scenarios, inputs, configurations, environments,
etc.). In some implementations, the second computing sys-
tem 40 can implement simulations for obtaining the training
data 48 or for implementing the model trainer(s) 47 for
training or testing the model(s) 26 or the model(s) 46. By
way of example, the model trainer(s) 47 can train one or
more components of a machine-learned model for the
autonomy system(s) 200 through unsupervised training
techniques using an objective function (e.g., costs, rewards,
heuristics, constraints, etc.). In some implementations, the
model trainer(s) 47 can perform a number of generalization
techniques to improve the generalization capability of the
model(s) being trained. Generalization techniques include
weight decays, dropouts, or other techniques.
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The first computing system 20 and the second computing
system 40 can each include communication interfaces 27
and 49, respectively. The communication interfaces 27, 49
can be used to communicate with each other or one or more
other systems or devices, including systems or devices that
are remotely located from the first computing system 20 or
the second computing system 40. The communication inter-
faces 27, 49 can include any circuits, components, software,
etc. for communicating with one or more networks (e.g., the
network(s) 60). In some implementations, the communica-
tion interfaces 27, 49 can include, for example, one or more
of a communications controller, receiver, transceiver, trans-
mitter, port, conductors, software or hardware for commu-
nicating data.

The network(s) 60 can be any type of network or com-
bination of networks that allows for communication between
devices. In some embodiments, the network(s) can include
one or more of a local area network, wide area network, the
Internet, secure network, cellular network, mesh network,
peer-to-peer communication link or some combination
thereof and can include any number of wired or wireless
links. Communication over the network(s) 60 can be accom-
plished, for instance, through a network interface using any
type of protocol, protection scheme, encoding, format, pack-
aging, etc.

FIG. 6 illustrates one example computing ecosystem 10
that can be used to implement the present disclosure. Other
systems can be used as well. For example, in some imple-
mentations, the first computing system 20 can include the
model trainer(s) 47 and the training data 48. In such imple-
mentations, the model(s) 26, 46 can be both trained and used
locally at the first computing system 20. As another
example, in some implementations, the computing system
20 may not be connected to other computing systems. In
addition, components illustrated or discussed as being
included in one of the computing systems 20 or 40 can
instead be included in another one of the computing systems
20 or 40.

FIG. 7 is a flowchart of a method 700 for generating
motion trajectories, according to some implementations of
the present disclosure. One or more portions of the method
700 can be implemented by one or more devices (e.g., one
or more computing devices) or systems including, for
example, the computing system 180 shown in FIG. 1, the
autonomy system(s) 200 shown in FIG. 2, the computing
ecosystem 10 of FIG. 6, and/or any other suitable systems or
devices. Moreover, one or more portions of the method 700
can be implemented as an algorithm on the hardware com-
ponents of the devices described herein. FIG. 7 depicts
elements performed in a particular order for purposes of
illustration and discussion. Those of ordinary skill in the art,
using the disclosures provided herein, will understand that
the elements of any of the methods discussed herein can be
adapted, rearranged, expanded, omitted, combined, and/or
modified in various ways without deviating from the scope
of the present disclosure.

The method 700 includes, at 710, obtaining sensor data
descriptive of an environment of an autonomous vehicle
(e.g., a portion of the environment). The sensor data can be
descriptive of one or more actors in the environment of the
autonomous vehicle and/or at least a portion of the envi-
ronment of the autonomous vehicle that does not include the
actor(s). The sensor data can include at least one sweep of
the environment of the autonomous vehicle. In order to
autonomously navigate, the autonomous vehicle (or autono-
mous platform) can include a plurality of sensors (e.g., a
LIDAR system, a RADAR system, cameras, etc.) configured
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to obtain sensor data associated with the autonomous plat-
form’s surrounding environment as well as the position and
movement of the autonomous platform. In some implemen-
tations, the sensor data can include image data obtained from
one or more cameras. In some implementations, the sensor
data can include LIDAR data obtained from a LIDAR
system. For example, a LIDAR system can be configured to
capture LIDAR data (e.g., 3D LIDAR point cloud data
associated with an environment surrounding an autonomous
platform). In some implementations, the sensor data can
include image data obtained from one or more cameras. In
some implementations, the sensor data can include a bird’s
eye view representation of data (e.g., LIDAR data) obtained
relative to the autonomous vehicle. In some implementa-
tions, the computing system can project the LIDAR point
cloud data obtained from the LIDAR system to a bird’s eye
view representation of the LIDAR point cloud data.

The method 700 includes, at 720, processing the sensor
data with a machine-learned perception model to generate a
detection of the actor and one or more predicted future
velocities. Additionally and/or alternatively, the method can
include processing the sensor data with the machine-learned
perception model to generate one or more uncertainty scores
respectively associated with the one or more predicted future
velocities. For instance, the perception model can output a
prediction including predicted future velocities and/or
uncertainty scores associated with predicted future veloci-
ties.

In some implementations, the perception model can be or
can include a multi-head perception model configured with
a plurality of output heads. The output head(s) can output
predictions of various actor motion characteristics, such as,
for example, instantaneous and/or future velocity, accelera-
tion, heading, bounding box information, classifications,
angular velocities, and/or any other suitable degrees of
freedom available in the sensor data.

In some cases, the perception model can be able to learn
certain motion components based at least in part on a
number of sweeps of sensor data available to the perception
model. For instance, the perception model can be capable of
predicting position, heading, etc. based on a single sweep of
sensor data. The perception model can be capable of pre-
dicting velocity, heading, acceleration, jerk, trajectory, etc.
with improved accuracy over multiple sweeps of sensor
data.

The perception model as described herein can be or can
include one or more types of various models, for example,
neural networks (e.g., deep neural networks), support vector
machines, decision trees, ensemble models, k-nearest neigh-
bors models, Bayesian networks, or other types of models
including linear models and/or non-linear models. Example
neural networks include feed-forward neural networks,
(fully) convolutional neural networks, recurrent neural net-
works (e.g., long short-term memory recurrent neural net-
works), or other forms of neural networks.

In some implementations, the one or more predicted
future velocities are respectively associated with one or
more discrete future time steps. For instance, in some
implementations, the one or more predicted future velocities
are determined in increments up to a prediction end time
occurring at a given amount of time after a current time
associated with the sensor data. In particular, in some
implementations, the perception model can regress predicted
future velocities for one or more time slices (e.g., up to a
certain future time) with a regression target. In some imple-
mentations, characteristics of the one or more states of actors
associated with instantaneous characteristics (e.g., instanta-
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neous velocity) can be regressed with a local frame target
(e.g., for the actor itself). The predicted future velocities,
however, can be regressed with a transformation regression
target. In particular, the perception model can regress the
predicted future velocities to learn how the position of a
given actor changes over the time slices to better estimate
velocity through smoothing and/or other post-model trans-
formations.

Additionally and/or alternatively, in some implementa-
tions, determining the predicted future velocities includes
determining a plurality of sensor crops based on the sensor
data, wherein the plurality of sensor crops include portions
of the sensor data respectively associated with the one or
more objects; and processing the plurality of sensor crops by
the perception model to generate the one or more predicted
future velocities and the one or more uncertainty scores
respectively associated with the plurality of sensor crops.
For instance, in some implementations, determining the
plurality of sensor crops includes obtaining an object track
descriptive of a predicted track of an object, the object track
including an initial position state and a velocity; and deter-
mining the sensor crop based at least in part on a portion of
the sensor data associated with a region in proximity to the
object track. As one example, each sensor crop can be
respectively associated with a lane or track frame. The
sensor crop can thus include sensor data points (e.g., LIDAR
points) from the track frame in which they were captured
(e.g., as an overhead view of the track at distinct time-
stamps).

In some implementations, determining a motion trajectory
for an autonomous platform includes processing the one or
more predicted future velocities and the one or more uncer-
tainty scores with a machine-learned object tracker model
configured to generate one or more second velocity outputs
including data descriptive of a velocity of the objects. The
motion trajectory for the autonomous vehicle can be based
at least in part on the one or more second velocity outputs.
For instance, in some implementations, the prediction can be
refined by the object tracker model. In addition to velocity
observations and position observations provided to the
tracker and/or based on instantaneous state characteristics
such as velocity, bounding box data, etc. the predicted future
velocities and their uncertainty scores can intuitively act as
an “acceleration observation” indicative of how the actors
will change velocities as a given time.

In some implementations, the machine-learned object
tracker model is configured to smooth the one or more
predicted future velocities to generate the one or more
second velocity outputs, wherein the one or more second
velocity outputs are smoothed velocity outputs. The object
tracker model can thus smooth the prediction to determine
smoothed actor velocities (e.g., second velocity outputs).
The smoothed actor velocities can be smoothed such that
positions, velocities, etc. are refined as more generally
amenable to behavior of real-life actors than those of the
directly from the perception model. For instance, the pre-
dicted future velocities, etc. at different time steps of
smoothed actor velocities can be aligned with motion mod-
els for the classes of actors. In some implementations, the
machine-learned object tracker model is or includes a multi-
view tracker model. For instance, the object tracker model
can operate on multiple views of sensor data, such as a
three-dimensional Euclidean view, a range view, etc.

The method 700 includes, at 730, planning a motion
trajectory for the autonomous vehicle based at least in part
on the one or more predicted future velocities and the one or
more uncertainty scores using a machine-learned motion
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planning model. For instance, the object tracker model can
be accessed by a query-able tracker interface function. The
tracker interface function can be queried by downstream
components of a planning system (e.g., planning system 250
of FIG. 2) to pass smoothed actor velocities and/or other
data related to predicted future trajectories of the actors from
the object tracker model to the downstream components.

In some implementations, the object tracker model can be
jointly trained with the perception model. For instance, the
perception model and the object tracker model can be
trained in an end-to-end training regime with training data
including sensor data (e.g., multimodal sensor data and/or
fused sensor data) labeled with actual state characteristics
(e.g., instantaneous and/or future velocities, positions, etc.)
of the actors depicted in the sensor data. According to
example aspects of the present disclosure, in some imple-
mentations, training the perception model and the object
tracker model jointly can provide for improved estimates of
both current and future velocities as well as object detection
capabilities of perception model. For instance, training the
perception model jointly with the object tracker model can
provide for improved reasoning about bounding box loca-
tions and distinguishing between non-moving actors (e.g.,
temporarily stationary actors) and other non-moving objects.

The method 700 includes, at 740, controlling the autono-
mous vehicle through one or more onboard control systems
based at least in part on the motion trajectory for the
autonomous vehicle. For instance, the control system(s) can
implement the selected motion plan/trajectory to control the
autonomous platform’s motion through its environment by
following the selected trajectory (e.g., the waypoints
included therein). The control system(s) can, for example,
translate a motion plan into instructions for the appropriate
platform control devices (e.g., acceleration control, brake
control, steering control, etc.). By way of example, the
control system(s) can translate a selected motion plan into
instructions to adjust a steering component (e.g., a steering
angle) by a certain number of degrees, apply a certain
magnitude of braking force, increase/decrease speed, etc. In
some implementations, the control system(s) can commu-
nicate with the platform control devices through communi-
cation channels including, for example, one or more data
buses (e.g., controller area network (CAN), etc.), onboard
diagnostics connectors (e.g., OBD-II, etc.), or a combination
of wired or wireless communication links. The platform
control devices can send or obtain data, messages, signals,
etc. to or from the autonomy system(s) (or vice versa)
through the communication channel(s).

Computing tasks discussed herein as being performed at
computing device(s) remote from the autonomous platform
(e.g., autonomous vehicle) can instead be performed at the
autonomous platform (e.g., via a vehicle computing system
of the autonomous vehicle), or vice versa. Such configura-
tions can be implemented without deviating from the scope
of the present disclosure. The use of computer-based sys-
tems allows for a great variety of possible configurations,
combinations, and divisions of tasks and functionality
between and among components. Computer-implemented
operations can be performed on a single component or
across multiple components. Computer-implemented tasks
or operations can be performed sequentially or in parallel.
Data and instructions can be stored in a single memory
device or across multiple memory devices.

Aspects of the disclosure have been described in terms of
illustrative embodiments thereof. Numerous other embodi-
ments, modifications, or variations within the scope and
spirit of the appended claims can occur to persons of

20

30

35

40

45

50

55

60

30

ordinary skill in the art from a review of this disclosure. Any
and all features in the following claims can be combined or
rearranged in any way possible. Accordingly, the scope of
the present disclosure is by way of example rather than by
way of limitation, and the subject disclosure does not
preclude inclusion of such modifications, variations or addi-
tions to the present subject matter as would be readily
apparent to one of ordinary skill in the art. Moreover, terms
are described herein using lists of example elements joined
by conjunctions such as “and,” “or,” “but,” etc. It should be
understood that such conjunctions are provided for explana-
tory purposes only. Lists joined by a particular conjunction
such as “or,” for example, can refer to “at least one of” or
“any combination of” example elements listed therein, with
“or” being understood as “and/or” unless otherwise indi-
cated. Also, terms such as “based on” should be understood
as “based at least in part on.”

Those of ordinary skill in the art, using the disclosures
provided herein, will understand that the elements of any of
the claims, operations, or processes discussed herein can be
adapted, rearranged, expanded, omitted, combined, or modi-
fied in various ways without deviating from the scope of the
present disclosure. Some of the claims are described with a
letter reference to a claim element for exemplary illustrated
purposes and is not meant to be limiting. The letter refer-
ences do not imply a particular order of operations. For
instance, letter identifiers such as (a), (b), (c), . . ., (1), (i),
(iii), . . . , etc. can be used to illustrate operations. Such
identifiers are provided for the ease of the reader and do not
denote a particular order of steps or operations. An operation
illustrated by a list identifier of (a), (1), etc. can be performed
before, after, or in parallel with another operation illustrated
by a list identifier of (b), (i), etc.

What is claimed is:

1. A computer-implemented method, comprising:

obtaining sensor data descriptive of an actor in an envi-

ronment of an autonomous vehicle and (i) at least a
portion of the environment of the autonomous vehicle
that does not include the actor, the sensor data com-
prising at least one sweep of the environment of the
autonomous vehicle;

processing the sensor data with a machine-learned per-

ception model to generate a detection of the actor and
one or more predicted future velocities;

aligning, by a machine-learned object tracker model, the

one or more predicted future velocities to a motion
model respective to a class of the actor to generate one
or more second velocity outputs;

determining a motion trajectory for the autonomous

vehicle based at least in part on the one or more second
velocity outputs; and

controlling the autonomous vehicle based at least in part

on the motion trajectory.

2. The computer-implemented method of claim 1, further
comprising;

fusing the sensor data from two or more distinct sensor

modalities into a common representation of the sensor
data,

wherein processing the sensor data is based at least in part

on the common representation of the sensor data, and
the sensor data is captured from two or more distinct
sensor modalities.

3. The computer-implemented method of claim 1,
wherein processing the sensor data further comprises gen-
erating, by the machine-learned perception model, one or
more uncertainty scores respectively associated with the one
or more predicted future velocities.
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4. The computer-implemented method of claim 3, further
comprising, prior to determining the motion trajectory for
the autonomous vehicle, processing the one or more pre-
dicted future velocities and the one or more uncertainty
scores with the machine-learned object tracker model con-
figured to generate the one or more second velocity outputs,
the second velocity outputs comprising data descriptive of
velocities of the actor at one or more discrete future
timesteps.

5. The computer-implemented method of claim 4,
wherein the machine-learned object tracker model is con-
figured to smooth the one or more predicted future velocities
to generate the one or more second velocity outputs, and
wherein the one or more second velocity outputs comprise
smoothed velocity outputs.

6. The computer-implemented method of claim 4,
wherein the machine-learned object tracker model com-
prises a multi-view tracker model and the machine-learned
perception model comprises a multi-view perception model.

7. The computer-implemented method of claim 1,
wherein the machine-learned perception model is simulta-
neously trained to generate the detection of the actor and the
one or more predicted future velocities.

8. The computer-implemented method of claim 1,
wherein the one or more predicted future velocities are
respectively associated with one or more discrete future time
steps.

9. The computer-implemented method of claim 1,
wherein the one or more predicted future velocities are
determined in increments up to a prediction end time occur-
ring at a given amount of time after a current time associated
with the sensor data.

10. The computer-implemented method of claim 1,
wherein processing the sensor data comprises:

determining bounding box data associated with the actor

based on the machine-learned perception model,
wherein the machine-learned perception model is con-
figured to regress instantaneous velocities of the actor;
and

regressing the one or more predicted future velocities by

the machine-learned perception model.

11. The computer-implemented method of claim 1,
wherein the sensor data comprises a plurality of sweeps of
the environment of the autonomous vehicle.

12. The computer-implemented method of claim 11,
wherein the sensor data comprises sweep metadata indica-
tive of a relative sweep of the plurality of sweeps in which
the sensor data is captured.

13. The computer-implemented method of claim 1,
wherein the machine-learned perception model is trained on
training data comprising training sensor data labeled with
actual state characteristics of one or more actors depicted in
the training sensor data.

14. An autonomous vehicle control system, comprising:

one or more processors; and

one or more non-transitory computer-readable media stor-

ing executable instructions that cause the one or more

processors to perform operations comprising:

obtaining sensor data descriptive of an actor in an
environment of an autonomous vehicle and at least a
portion of the environment of the autonomous
vehicle that does not include the actor, the sensor
data comprising at least one sweep of the environ-
ment of the autonomous vehicle;
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processing the sensor data with a machine-learned
perception model to generate a detection of the actor
and one or more predicted future velocities;

aligning, by a machine-learned object tracker model,
the one or more predicted future velocities to a
motion model respective to a class of the actor to
generate one or more second velocity outputs;

determining a motion trajectory for the autonomous
vehicle based at least in part on the one or more
second velocity outputs; and

controlling the autonomous vehicle based at least in
part on the motion trajectory.

15. The autonomous vehicle control system of claim 14,
wherein the operations further comprise:

fusing the sensor data from two or more distinct sensor

modalities into a common representation of the sensor
data,

wherein processing the sensor data is based at least in part

on the common representation of the sensor data, and
the sensor data is captured from two or more distinct
sensor modalities.

16. The autonomous vehicle control system of claim 14,
wherein processing the sensor data further comprises gen-
erating, by the machine-learned perception model, one or
more uncertainty scores respectively associated with the one
or more predicted future velocities.

17. The autonomous vehicle control system of claim 16,
further comprising, prior to determining the motion trajec-
tory for the autonomous vehicle, processing the one or more
predicted future velocities and the one or more uncertainty
scores with the machine-learned object tracker model con-
figured to generate the one or more second velocity outputs,
the second velocity outputs comprising data descriptive of
velocities of the actor at one or more discrete future
timesteps.

18. An autonomous vehicle, comprising:

one or more processors; and

one or more non-transitory computer-readable media stor-

ing executable instructions that cause the one or more

processors to perform operations comprising:

obtaining sensor data descriptive of an actor in an
environment of the autonomous vehicle and at least
a portion of the environment of the autonomous
vehicle that does not include the actor, the sensor
data comprising at least one sweep of the environ-
ment of the autonomous vehicle;

processing the sensor data with a machine-learned
perception model to generate a detection of the actor
and one or more predicted future velocities;

aligning, by a machine-learned object tracker model,
the one or more predicted future velocities to a
motion model respective to a class of the actor to
generate one or more second velocity outputs;

determining a motion trajectory for the autonomous
vehicle based at least in part on the one or more
second velocity outputs; and

controlling the autonomous vehicle based at least in
part on the motion trajectory.

19. The autonomous vehicle of claim 18, wherein pro-
cessing the sensor data further comprises generating, by the
machine-learned perception model, one or more uncertainty
scores respectively associated with the one or more pre-
dicted future velocities.

20. The autonomous vehicle of claim 19, further com-
prising, prior to determining a motion trajectory for the
autonomous vehicle, processing the one or more predicted
future velocities and the one or more uncertainty scores with
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the machine-learned object tracker model configured to
generate the one or more second velocity outputs, the second
velocity outputs comprising data descriptive of velocities of
the actor at one or more discrete future timesteps.

#* #* #* #* #*
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