

Aurora

Temporally-Continuous Probabilistic Prediction using Polynomial Trajectory Parameterization

Zhaoen Su, Chao Wang, Henggang Cui, Nemanja Djuric, Carlos Vallespi-Gonzalez, David Bradley

We need to forecast the trajectories of moving actors around the robot.

How to represent the trajectories? (If framed as a regression task, what actually to regress?)

"Default" representation for trajectory forecasting: waypoints

Spatial distributions for the SE3/SE2 transformation at each time-point

$$p_{v,t} = \mathscr{L}(v|\mu_{v,t}, b_{v,t}), t \in \{0, t_1, t_2, \dots, T\}$$

v: translation (x, y, z) and the rotation component of SE3/SE2 transformation

 μ , b: mean and diversity parameter of distributions (such as Gaussian or Laplacian)

Proposed representation for trajectory forecasting: parameterization

Waypoint representation

$$p_{v,t} = \mathscr{L}(v|\mu_{v,t}, b_{v,t}), t \in \{0, t_1, t_2, \dots, T\}$$

Parametrize the mean and covariance over temporal dimension

Parameterized over time

$$P_{\nu}(t) = \mathscr{L}(\nu | \boldsymbol{\mu}_{\nu}(t), \boldsymbol{b}_{\nu}(t))$$

Parameterization based on polynomials

$$P_{v}(t) = \mathscr{L}(v|\mu_{v}(t), b_{v}(t))$$

$$\mu_{\nu}(t) = \sum_{n=0}^{N_{\mu_{\nu}}} a_{\mu_{\nu},n} \left(\frac{t}{T}\right)^n$$

T: maximum prediction time horizon

Exponential to ensure positiveness

$$b_{\nu}(t) = \exp\sum_{n=0}^{N_{b_{\nu}}} a_{b_{\nu},n} \left(\frac{t}{T}\right)^{n}$$

- -

Polynomial vs. waypoint representation

	Polynomial	Waypoints		
At pre-fixed time-points	Approximation errors to fit given trajectories	Can describes the distribution means perfectly		
Regularization/constraint	Yes, with low-order polynomials	No		
Physical realism	Feasible without regularization	Often infeasible		
Temporal continuity	Yes; analytical solution	No, unless interpolated		
Velocity, acceleration, etc	Analytical solution	Finite differencing		

The representation error

How well can low-order polynomials represent label trajectories of *moving* actors around autonomous vehicles?

4s label: using polynomials to fit trajectories of **4s** long **8s label**: using polynomials to fit trajectories of **8s** long.

Representation errors of polynomials to fit label trajectories. Maximum corner error is the max displacement computed over all four corners and all time-points of the trajectory.

How to use

End-to-end training neural networks
Identical model design, except for different output representations (i.e., different regression values)

Waypoints: regress the movements for every time-point

Polynomial: regress the coefficients

During training waypoints are sampled at the same points $t = 0, t_1, t_2, ..., t_{80}$, and the same KL-divergence regression loss is applied

Comparable prediction accuracy (waypoint vs. polynomial)

Ablation studies on SOTA trajectory prediction models that take 10 sweeps past LiDAR data to detect actors and forecast their future trajectories

	Vehicles				Bicyclists				Pedestrians	
Method	4s DE	8s DE	4s $\Delta \theta$	8 s Δθ	4s DE	8s DE	4s $\Delta \theta$	8 s Δθ	4s DE	8s DE
WP	0.580	1.362	1.78	2.21	0.70	1.41	6.5	6.8	0.828	1.903
P3	0.590	1.291	1.82	2.28	0.59	1.21	6.5	6.7	0.827	1.899
	Comparable			Better for less Co common type			Com	parable		

8-second prediction:

- WP: models using waypoint representation
- P3: using the polynomial representation (degree 3).

Comparable performance relative to other settings (4s) and other models too (i.e., those with different architectures and regression losses; detailed results shown in the paper).

Comparable calibration of probabilistic prediction

Probably calibration reliability diagram of models using waypoints (WP(b)) and polynomials of degrees 0-2 (P0-2(b)) for the distribution diversity parameters.

Continuous prediction vs. interpolation

Displacement error improvement using polynomials over waypoints (in meters)

- Regression supervision only at 0s, 2s, and 4s. The validation performance are in blue bars.
- No regression supervision at 1s and 3s. The validation performance are in red bars.
- The predictions of waypoint model at 1s and 3s are computed by linear interpolation

Physical feasibility of inferred trajectories

WP (red): waypoints representation is physically unrealistic, compared to label trajectories (black).

Polynomials (P2-3, **yellow** and **blue**, resp.) achieve physical realism without additional constraints or regularization.

KM (green): vehicle kinematic model at waypoints + regularization

Similar holds for deceleration, lateral speed, and lateral acceleration (results not shown).

Contributions

We proposed a polynomial representation for trajectory forecasting

- Temporally continuous and compact
- Beneficial regularization for low-count actors and/or sparser temporal supervision
- Increased physical realism without physical models or additional regularization
- Comparable prediction accuracy
- Calibrated probabilistic prediction