iTE Aurora

Convolutions for Spatial
Interaction Modeling

Zhaoen Su, Chao Wang, David Bradley, Carlos Vallespi-Gonzalez,
Carl Wellington, Nemanja Djuric
June, 2022.



Outline

e Spatial interaction

e Approaches to spatial interaction modeling
o Graph neural networks (GNN)
o Convolutional layers

e Empirical studies

e Summary



Spatial interaction

Interactions between objects — common and critical in
many application areas (e.g., robotics, self-driving
cars, social networks)

Spatial interaction — the relative spatial relation
between objects matters the most

E.g, forecasting the behavior of traffic actors which
depends on both the history as well as the interactions
with other actors and the environment



Popular approach: Graph Neural Network (GNN)

Building a graph: \F: ‘
« Node: per-actor features :

« Edge: relative relations (e.g., positions and velocities) — ----__  ______
« Interaction: aggregate neighboring edge and node

features via message passing \ :i ‘

Cons:

« Have to handcraft and add Euclidean relations to the graphs
« Slower than Convolutional Neural Network (CNN)




An alternative: Convolutional Neural Network (CNN)

e Intuitively, conv-layers model spatial interactions
e 2D and 3D conv-layers operate on data in
grid forms: spatial relations are intrinsically
represented in the Euclidean space
e Propagation of non-local information
between objects by sufficiently large
receptive fields
e But why is it modeled ineffectively, when large
CNN backbones are already widely used?

Voxelized lidar point-cloud
at an intersection



Effective modeling using CNNs

e We focus on per-actor trajectory forecasting, where convolutional layers are used
to model spatial interactions with other actors
e We identify three components to improve performance of convolutions for the
task of interaction modeling:
e Large and relevant context as the input to conv-layers
e Aggregation of per-actor feature maps using downsampling convolutions
e Overcoming the rotational variance of conv-layers

Per-actor modeling: in the 2nd stage each
actor is individually processed using a crop of
the feature maps around its location




Empirical studies: Baseline model

Voxelized LIiDAR Point Clouds

4x downsample

Feature >
. . = -
Extractor =15

-

Rasterized Map



Empirical studies: Using convolutions (ICM)
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Improving performance of CNNs for interaction modeling:

e Large and relevant context as an input to the conv-layers

e Aggregate per-actor feature maps using downsampling convolutions
e Overcoming the rotation variance of conv-layers



Empirical studies: Metrics and data set

Metrics used:

e Motion forecasting displacement errors (at 4s)
e Actor-actor overlap rate: percentage of predicted trajectories overlapping with

predicted trajectories of other detected actors
e Actor-static overlap rate: percentage of predicted trajectories overlapping with

ground-truth static traffic objects
Autonomous driving data set

e 19,000 scenes of 25s each; collected across several cities with 10Hz labels
e 5 000 scenes in test set



Empirical studies: Using Convolutions
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Empirical studies: additional GNN
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Empirical study: GNNs vs. CNNs
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Qualitative results
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Red: overlapped obstacles; Blue: forecasts of the actors of interest;
Grey: forecasts of other actors; Green: labels



Summary

e \We revisited convolutions for its ability in modeling spatial interaction
effectively, and identified three characteristics that affect its performance

e Empirical studies show that convolutions can demonstrate comparable or
even stronger ability than GNNs in modeling spatial interaction



