
Trading Representability for Scalability:
Adaptive Multi-Hyperplane Machine

for Nonlinear Classification

Zhuang Wang
Knowledge and Decision

Systems
Siemens Corporate Research

Princeton, NJ, USA
zhuang.wang@siemens.com

Nemanja Djuric
Department of Computer and

Information Sciences
Temple University

Philadelphia, PA, USA
nemanja.djuric@temple.edu

Koby Crammer
Department of Electrical

Engineering
The Technion
Haifa, Israel

koby@ee.technion.ac.il

Slobodan Vucetic
Department of Computer and

Information Sciences
Temple University

Philadelphia, PA, USA
vucetic@temple.edu

ABSTRACT
Support Vector Machines (SVMs) are among the most pop-
ular and successful classification algorithms. Kernel SVMs
often reach state-of-the-art accuracies, but suffer from the
curse of kernelization due to linear model growth with data
size on noisy data. Linear SVMs have the ability to effi-
ciently learn from truly large data, but they are applicable
to a limited number of domains due to low representational
power. To fill the representability and scalability gap be-
tween linear and nonlinear SVMs, we propose the Adaptive
Multi-hyperplane Machine (AMM) algorithm that accom-
plishes fast training and prediction and has capability to
solve nonlinear classification problems. AMM model con-
sists of a set of hyperplanes (weights), each assigned to one
of the multiple classes, and predicts based on the associated
class of the weight that provides the largest prediction. The
number of weights is automatically determined through an
iterative algorithm based on the stochastic gradient descent
algorithm which is guaranteed to converge to a local op-
timum. Since the generalization bound decreases with the
number of weights, a weight pruning mechanism is proposed
and analyzed. The experiments on several large data sets
show that AMM is nearly as fast during training and predic-
tion as the state-of-the-art linear SVM solver and that it can
be orders of magnitude faster than kernel SVM. In accuracy,
AMM is somewhere between linear and kernel SVMs. For
example, on an OCR task with 8 million highly dimensional
training examples, AMM trained in 300 seconds on a single-
core processor had 0.54% error rate, which was significantly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

lower than 2.03% error rate of a linear SVM trained in the
same time and comparable to 0.43% error rate of a kernel
SVM trained in 2 days on 512 processors. The results indi-
cate that AMM could be an attractive option when solving
large-scale classification problems. The software is available
at www.dabi.temple.edu/~vucetic/AMM.html.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

General Terms
Algorithms, Performance, Experimentation

Keywords
Large-scale learning, Nonlinear classification, Stochastic gra-
dient descent, Support vector machines

1. INTRODUCTION
In the environment where new large-scale problems are

emerging in various disciplines and pervasive computing ap-
plications are becoming more common, there is an urgent
need for machine learning algorithms that can achieve high
accuracy in computationally efficient way. Support Vector
Machines (SVMs) [7] provide a powerful paradigm for solv-
ing complex classification problems. However, this ability
comes at the price of significant computational costs. There
has been active research over the last decade to improve ef-
ficiency of SVM training [23, 27, 3, 22, 6, 10, 16, 18, 9, 2,
28, 21, 25, 5, 19, 26, 24] and today’s state-of-the-art solvers
are able to tackle data sets having hundreds of thousands or
even millions of highly dimensional examples. Despite the
recent advances, there is a fundamental limitation of SVMs
with nonlinear kernels that prevents applying them on truly
large data sets or data streams. This is a well documented
and understood property that on the noisy or highly non-
linear data sets, the size of SVM model, measured in the

number of support vectors, grows linearly with number of
training examples [20]. This limitation could explain the re-
cent increased interest in linear SVMs whose model size re-
mains fixed regardless of the data size. However, this comes
at a price of significantly reduced representational power of
linear SVMs.

As a result, there is a large scalability and representability
gap between linear and kernel SVMs. On the kernel SVM
side, recent empirical results show that training on data with
millions of examples can take days even when using paral-
lel processing techniques and result in a classifier consisting
of hundreds of thousands of support vectors. On the linear
SVM side, training on such large data takes only seconds on
a regular PC and results in a single weight vector as the final
classifier. The scalability and short prediction time of linear
SVMs make them popular in applications such as text cate-
gorization, where examples are sufficiently high dimensional
to make the classification problem nearly linearly separable.
However, in many other applications, high representational
power of kernel SVMs makes them significantly more ac-
curate than linear SVMs. Filling the representability and
scalability gap between linear and nonlinear classification is
the challenge we intend to address in this paper.

We propose the Adaptive Multi-hyperplane Machine (AMM),
a fast learning algorithm applicable to large-scale nonlinear
classification problems, which provides a computationally
efficient alternative to kernel SVMs. The AMM model con-
sists of a set of weights, each assigned to one of the classes,
and it predicts based on the class of weight that provides
the largest prediction. The idea of using multiple weights
for classification can be traced back to the multi-class SVM
[8], which assigns a single weight to each class and predicts
the class whose weight gives the largest prediction. By defin-
ing the cost function as the regularized margin-based train-
ing error, the resulting learning problem becomes convex
and can be solved by standard tools of convex optimiza-
tion. An extension of this idea that allows multiple weights
per class has been originally proposed in [1]. Since each
weight defines a hyperplane, we refer to this approach as
the Multi-hyperplane Machine (MM). There are two impor-
tant properties of the MM approach. The first is that the
resulting optimization problem is nonconvex, such that only
convergence to a local optimum can be guaranteed. The
second is that it has higher representational power than the
single-hyperplane approach. It has been demonstrated ex-
perimentally that the benefits of increased representational
power outweigh problems with nonconvexity and that MM
could accurately solve nonlinear classification problems.

There are two issues that prevent use of MM on large-scale
classification problems. The first is that it uses a Sequential
Minimal Optimization (SMO) [14] based training algorithm,
which is a batch solver that is not suitable for large-scale
data. Another is that it requires a user to pre-specify the
number of weights per class. Since the optimal number of
weights depends on a particular classification problem, this
creates a need to select this hyperparameter using an ex-
pensive cross-validation procedure. The proposed Adaptive
MM approach addresses both of these issues, which makes
it practically applicable to very large-scale nonlinear classi-
fication problems, as will be illustrated in the experiments.

AMM achieves its computational efficiency through the
Stochastic Gradient Descent (SGD), a popular optimization
technique that has recently attracted much interest as an

Table 1: Summary of notation
x Instance
y Label
t, n Indexes for x

W Weight matrix
wi,j j-th weight vector of i-th class (column vector)
i, j, k, z Indexes for w

A(t) A at the t-th iteration
P (W) Objective function parameterized by W

P (W|z) Function of W given the fixed z

P (t)(W) Instantaneous version of P (W) upon (xt, yt)
W

∗ The optimal solution of minP (W|z)

alternative to the traditional batch-mode convex optimiza-
tion for training of SVMs on large-scale data (e.g. [18]).
SGD works by sampling labeled examples one at a time and
updating the model through (sub-)gradient descent over the
instantaneous objective function. Its sequential access to
data makes it very suitable for large-scale or online learn-
ing. We will show analytically that our implementation of
SGD allows AMM to converge to a local optimum, a prop-
erty shared by the MM.

AMM addresses the problem of selection of number of
weights by an adaptive procedure that allows SGD algorithm
to automatically select an appropriate number of weights.
Specifically, the SGD algorithm starts with a single zero
weight assigned to each class and adds new weights as neces-
sary. On simple problems such as linear or near-linear clas-
sification, the number of weights remains low, while it can
become relatively high on more complex problems. Since
the generalization error of AMM grows with the number
of weights, as shown by an extension of the generalization
theorem from [1], AMM also contains a pruning mechanism
that removes small weights, such that it provably results in
only a minor degradation in optimization accuracy. In addi-
tion to improving generalization error, pruning is also useful
because it reduces the cost of training and prediction.

With efficient training and prediction, comparable to lin-
ear SVM, and the ability to solve nonlinear classification
problems, similar to kernel SVM, AMM fills the scalability
and representability gap between linear and nonlinear clas-
sification. As such, AMM can be an appealing option when
solving large-scale nonlinear classification problems.

2. PRELIMINARIES
In this paper we focus on multi-class problems. To fa-

cilitate reading, the main notation used in the paper is
summarized in Table 1. Let us assume we are given a set
of training examples S = {(xn, yn), n = 1, ..., N}, where
instance xn ∈ R

D is a D-dimensional feature vector and
yn ∈ Y = {1, ..., M} is the multi-class label. The goal is to
learn a function f : R

D → Y that accurately predicts the la-
bel of new instances. Next, we will give an overview of multi-
class SVMs proposed in [8] and their extension, the Multi-
hyperplane Machine (MM) proposed in [1]. This overview
will provide the necessary background needed for description
of the proposed AMM algorithm, given in Section 3.

2.1 Multi-Class SVM
In multi-class SVM [8], the model f(x) is of the form

f(x) = argmaxi∈Yg(i,x), (1)

where

g(i,x) = wT
i x (2)

is parameterized by the weight vector wi ∈ R
D of the i-

th class. Thus, the predicted label of x is the class of the
weight vector that achieves the maximum value g(i,x). By
concatenating all the class-specific weight vectors, we can
construct

W = [w1 w2 ... wM]

as the D ×M weight matrix representing f(x). Under this
setup, the multi-class SVM problem was defined in [8] as

min
W

P (W) ≡
λ

2
||W||2 +

1

N

∑N

n=1
l(W; (xn, yn)), (3)

where λ > 0 is a regularization parameter that trades off
the model complexity defined as the Frobenius norm on W,

||W||2 =
∑

i∈Y
||wi||

2,

and the margin-based training loss

l(W; (xn, yn)) = max

(

0, 1 + max
i∈Y\yn

g(i,xn)− g(yn,xn)

)

.

(4)
It can be seen from (4) that the training loss is zero if the
prediction from the correct class is larger by at least one than
the maximal prediction from the incorrect classes; otherwise,
linear penalty is charged.

2.2 Multi-Hyperplane Machine
In order to increase the expressiveness of the classifier,

Aiolli and Sperduti [1] extended the multi-class SVM by
allowing multiple weights per class. Let us denote wi,j as
the j-th weight of the i-th class and let us assume that the
i-th class has a total of bi weights. By redefining g(i,x) from
(2) as

g(i,x) = max
j

wT
i,jx, (5)

the classifier f(x) from (1) returns the associated class of the
weight with the maximal prediction. With this modification
to multi-class SVM, the training loss (4) equals zero if the
maximal prediction from the weights of the correct class is
by at least one larger than any prediction from weights of
the incorrect classes.

We can now concatenate all weights and define

W =

[

w1,1...w1,b1 w2,1...w2,b2 ... wM,1...wM,bM

]

(6)
where b1, ..., bM are the numbers of weights assigned to each
of the classes and each block in (6) is a set of class-specific
weights. Given this setup, W is learned by solving the op-
timization problem (3) where g(i,x) is defined as in (5) and
the model complexity is calculated as the Frobenius norm
on W from (6). We call this algorithm the Multi-hyperplane
Machine (MM).1

We should note that although the MM algorithm allows
using different number of weights (i.e. bi) for different classes,
due to practical difficulties in determining these numbers,
in [1] all classes are assigned the same number of weights
b. This can be suboptimal since, depending on their distri-
bution, different classes might require different numbers of
weights.
1In [1] this algorithm was called the Multi-Prototype SVM.

P(W|z
(1)

)

P(W|z
(2)

)

P(W|z
(3)

)

each instantaneous update

transfer to the next sub-problem

Figure 1: Convergence of MM training

2.3 MM Training
Let us consider finding the optimal MM weight matrix

(6) by minimizing (3). As explained in [1], the cost function
P (W) is nonconvex and finding the global optimum can-
not be guaranteed. To find a local optimum, an iterative
procedure was proposed that solves a series of convex up-
per bounds of P (W). The convex-approximated problem is
defined as

min
W

P (W|z) ≡
λ

2
||W||2 +

1

N

∑N

n=1
lcvx(W; (xn, yn); zn),

(7)
where the non-convex loss function l in (3) is replaced by its
convex upper bound

lcvx(W; (xn, yn); zn)
= max

(

0, 1 + maxi∈Y\yn
g(i,xn)−wT

yn,zn
xn

) , (8)

that replaces the concave term −g(yn,xn) in (4) with the
convex term −wT

yn,zn
xn. Element zn of vector z = [z1...zN]

determines which weight from the correct class of n-th ex-
ample is used to calculate (8). Values z are fixed during
optimization of (7).

The resulting MM algorithm can be described in the fol-
lowing way. At step r = 1, initialize z(1), typically by ran-
dom weight assignment. Then, solve the convex optimiza-
tion problem (7) to find model weights as

W∗ = arg min
W

P (W|z(r)).

Then, at step (r + 1), recalculate assignments z such that
the objective function is minimized,

z(r+1) = arg min
z

P (W∗|z). (9)

This can be achieved by calculating z
(r+1)
n as

z(r+1)
n = arg max

k
(w∗

yn,k)T xn, (10)

which is the correct class weight that gives the highest pre-
diction on n-th example. The procedure of optimizing W
and reassigning z is then repeated until convergence to a lo-
cal optimum. The convergence is guaranteed because each
step of the algorithm leads to a decrease of the objective

function P (W|z). Convergence of MM is illustrated in Fig-
ure 1, where it can be seen that

min
W

P (W|z(r)) ≥ min
W

P (W|z(r+1)).

3. ADAPTIVE MULTI-HYPERPLANE MA-
CHINE (AMM)

In this section we describe the AMM algorithm. We start
by describing AMM training using Stochastic Gradient De-
scent (SGD). Then, we explain that SGD allows us to easily
address the problem of selecting the number of class-specific
weights. After pointing out that the generalization error in-
creases with the number of weights, we propose a pruning
strategy that allows reducing the generalization error while
having a provably small negative impact on the optimiza-
tion. Finally, we propose a simplified version of AMM that
is suitable for online learning.

3.1 Solving the Sub-Problem (7)
We propose an SGD algorithm to solve the convex opti-

mization problem (7). The SGD is initialized with the zero

weight matrix W(1) = 0 and it reads examples one by one
and modifies the weight matrix accordingly. Let us for now
assume that there are bi weights for each class. Upon re-
ceiving example (xt, yt) ∈ S at t-th round, W(t) is updated
using the sub-gradient of the instantaneous objective on t-th
example defined as

P (t)(W|z) ≡
λ

2
||W||2 + lcvx(W; (xt, yt); zt).

As seen, the instantaneous objective differs from (7) in that
it only calculates the convex loss on t-th example. The
model weights are updated in the negative direction of the
sub-gradient as

W(t+1) = W(t) − η(t)∇(t), (11)

where η(t) = 1/(λt) is the learning rate and the sub-gradient

matrix ∇(t) is defined as

∇(t) =

[

∇
(t)
1,1...∇

(t)
1,b1

∇
(t)
2,1...∇

(t)
2,b2

... ∇
(t)
M,1...∇

(t)
M,bM

]

(12)

where ∇
(t)
i,j = ∇

w
(t)
i,j

P (t)(W(t)|z) is a column vector. If con-

vex loss lcvx(W; (xt, yt); zt) equals zero, then ∇
(t)
i,j = λw

(t)
i,j ;

otherwise,

∇
(t)
i,j =











λw
(t)
i,j + xt, ifi = it, j = jt

λw
(t)
i,j − xt, ifi = yt, j = zt

λw
(t)
i,j , otherwise,

(13)

where

it = arg max
k∈Y\yt

g(k,x) and jt = arg max
k

(w
(t)
it,k)T xt.

The update rule (11) can be summarized as follows. At every
round, all model weights are reduced towards zero. In addi-
tion, if the convex loss on the t-th example is positive, then

the class weight from the true class indexed by zt, w
(t)
yt,zt , is

moved towards xt, while the class weight with the maximum

prediction from the remaining classes w
(t)
it,jt

is moved away
from xt. The SGD updates are summarized in Algorithm 1
(Steps 4-7).

Algorithm 1 Training Algorithm for AMM

Input: Training set S, the regularization parameter λ
Output: W(t)

Initialize: W(1) = 0, t = 1, r = 1;

1: initialize z(1); /* Build 1-st sub-problem P (W|z(1)) */
2: repeat
3: /* Solve each sub-problem P (W|z(r)): lines 4 ∼ 7*/
4: repeat
5: (xt, yt) ← t-th example from S;

6: compute W(++t) using (11);
7: until (enough epochs)

8: compute z(++r) using (9); /* Reassign z */

9: until (z(r+1) == z(r) or enough epochs)

The convergence to the global optimum of the convex sub-
problem (7) by SGD can be shown by the following theorem.
Without the loss of generality, let us assume ||x|| ≤ 1.

Theorem 1. Run the SGD update rule (11) to solve the
optimization problem (7). Let W

∗ be the optimal solution of
(7). Then we have

1

T

T
∑

t=1

P (t)(W(t)|z) −
1

T

T
∑

t=1

P (t)(W∗|z) ≤
8(ln(T) + 1)

λT
.

The proof of Theorem 1 is in the Appendix. The theorem
tells that when T is large the averaged instantaneous loss of
the algorithm converges towards that of the optimal solu-
tion. The following corollary can be obtained by following
the proof of Theorems 2 and 3 from [18].

Corollary 1. Assume that the conditions stated in The-
orem 1 hold and for all t (xt, yt) is i.i.d. sampled from S.
Let δ ∈ (0, 1). Then, with probability of at least 1 − δ, we
have

P (W(T)|z) ≤ P (W∗|z) +
8(ln(T) + 1)

δλT
.

The corollary tells that when T is large the weight matrix
W(t) converges to the optimal solution in the limit and that
the convergence rate is inversely proportional to the confi-
dence parameter δ.

3.2 Number of Weights
As mentioned in Section 2.2, a drawback of MM is the

need to pre-specify the number of model weights. In our
AMM algorithm that uses SGD, we address this issue by
simply setting the number of weights per class to infinity.
Let us discuss the consequences of this idea.

First, we should observe that SGD initializes all model
weights to zero. At t-th round, zero weight wi,j becomes
non-zero only if the convex loss lcvx(W; (xt, yt); zt) is posi-
tive and either (i) i = it and j = jt (the largest prediction
from nonzero weights of incorrect classes is less than zero)
or (ii) i = yt and j = zt (the assigned weight from true class
is zero). Therefore, at most two zero weights can become
nonzero at each round. In practice, as the AMM classifier
improves during training, it will become less likely that any
zero weight satisfies either condition (i) or (ii). On more
complex and noisy data sets, we can expect to have more
nonzero weights than on the simpler classification problems.

Second, let us discuss the implementation issue of storing
an infinite number of model weights. We address it by stor-
ing all nonzero weights and a single reserved zero weight per
class. Any time a zero weight becomes nonzero, we create a
space for the newly created nonzero weight. In this way, a
compact storage is achieved that is equivalent to storing an
infinite number of weights.

3.3 Generalization Error
We now discuss the generalization error of the learned

AMM model. Let us denote by bi the number of AMM
weights for i-th class, which is the sum of all its nonzero
weights plus one for the reserved zero weight. In [1], the
authors derived a generalization error of MM model under
the assumption that training data can be separated by the
model. Their proof follows the framework of Decision Di-
rected Acyclic Graph (DDAG) [15] and the techniques used
in [8]. The proof was based on the assumption that each
class has equal number of weights. Here, we provide an ex-
tension of the proof in case when the number of weights per
class varies.

By considering the classification process of AMM model

as a DDAG with 1
2

M
∑

i=1

bi

M
∑

j 6=i

bj nodes, and following the proof

of Lemma 3 in [1], we can obtain a margin-based bound. By
upper bounding the margin-relevant terms by the norm of
model weights, we have the following error bound.

Theorem 2. Suppose we are able to correctly classify an
i.i.d sampled training set S using the AMM model

W = [w1,1...w1,b1w2,1...w2,b2 ...wM,1...wM,bM
],

then we can upper bound the generalization error with prob-
ability greater than 1− δ as

130

N

(

||W||2B log(4eN) log(4N) + log(
2(2N)K

δ
)

)

,

where B =
M
∑

i=1

bi +1+b2
max−bmax−bmin, K = 1

2

M
∑

i=1

bi

M
∑

j 6=i

bj,

bmin = mini=1,...,M{bi} and bmax = maxi=1,...,M{bi}.

Theorem 2 shows that the generalization error is propor-
tional to ||W||2B and that it can be reduced either by reduc-
ing the model weight norm or the number of weights. This
clearly suggests that AMM should attempt to use as few
nonzero weights as possible. This conclusion is a motivation
for weight pruning strategy proposed next.

3.4 Weight Pruning
Every round of SGD training results in shrinking AMM

model weights towards zero. As a result, the class weights
that are rarely updated can become very small and start re-
sembling zero weights. Such weights are typically generated
during initial stages of training when AMM model is less ac-
curate or during model updates caused by noisy examples.
Since, by Theorem 2, nonzero weights negatively impact the
generalization error, and since replacing small weights with
zero weights is not likely to significantly influence AMM ac-
curacy, we propose a pruning step that occasionally removes
weights with sufficiently small norms. In addition to re-
ducing the generalization error, weight removal is beneficial
from computational viewpoint because it can speed-up both
training and prediction and reduce model size.

The pruning step can be formulated as

W(t+1) ←W(t+1) −∆W(t), (14)

where ∆W(t) is a sparse matrix of the same size as W(t+1)

whose nonzero columns correspond to removed weights. For

example, if w
(t)
i,j is removed, ∆w

(t)
i,j = w

(t)
i,j , and all other

columns of ∆W(t) are zero. In AMM, pruning is performed
periodically after every k rounds and only on the weights
that are below a threshold. The following theorem analyzes
the impact of pruning on the convergence of SGD.

Theorem 3. Consider the SGD update rule (11). Let
W

∗ be the optimal solution of the problem (7) . Define a
pruning constant c ≥ 0 and execute the pruning step (14)

after each k iterations with ∆W(t) ≤ c/((t− 1)λ). Then we
have

1

T

T
∑

t=1

P (t)(W(t)|z)−
1

T

T
∑

t=1

P (t)(W∗|z)

≤
(8 + c)(ln(T) + 1)

λT
+

2(4 + c)c

kλ
.

The proof is in the Appendix. Theorem 3 quantifies the
upper bound on the difference between the averaged instan-
taneous loss of the AMM with pruning and the optimal so-
lution. It can be seen that the gap is proportional to the
pruning threshold c and inversely proportional to the prun-
ing interval k. When c = 0, Theorem 3 is equivalent to
Theorem 1. Large c and small k correspond to a more ag-
gressive pruning that enforces a simpler classifier but with a
wider gap with the optimal solution; while small c and large
k shrink the gap but lead to larger AMM model. Next, we
state the following important property of pruning.

Proposition 1. Let us consider the case where pruning
(14) is executed after each k iterations with threshold c. Let
us consider a weight which is being updated at least c times
through the first two cases in (13) during the previous k iter-
ations. It can be shown that such weight will not be pruned.

We omit the proof due to lack of space. The Proposition
1 provides a very useful interpretation of the effect of the
pruning threshold c in Theorem 3. To be consistent with
Theorem 3, pruning in AMM is implemented as follows: ev-
ery k rounds, AMM weights are pruned starting from the
one with the smallest norm, and continued as long as the
cumulative Frobenius norm of the pruned weights is below
threshold c/((t− 1)λ).

3.5 Online AMM
AMM described in Algorithm 1 is suitable for offline ap-

plication where the whole data set is residing on a computer
and multiple passes through the data are allowed. This is
due to the procedure that iteratively solves an approximate
convex problem (7) and recalculates assignments z on the
whole data set. Here, we propose a modification of AMM
that allows its use in an online setting, where the data set
is observed sequentially in a single pass. Online AMM cal-
culates assignment of the incoming t-th example as

zt = arg max
k

((w
(t)
yt,k)T xt)

and updates W(t) to W(t+1) using SGD (11) with this as-
signment. The resulting online training procedure is sum-
marized in Algorithm 2.

Algorithm 2 Online Algorithm

Input: Training set S, the regularization parameter λ
Output: W(t)

Initialize: W(1) = 0, t = 1

1: repeat
2: (xt, yt) ← t-th example from S;
3: calculate zt by (10);

4: update W(++t) by (11);
5: until (data set exhausted)

The main difference between the offline (Algorthm 1) and
online (Algorithm 2) versions of AMM is that the online
version does not wait for convergence of (7) but changes the
assignment z after every update of SGD. As a result, instead
of having to periodically calculate assignment z on the whole
data set, it only has to be done on the single incoming ex-
ample. This allows a single-pass AMM training, and it also
leads to savings in computational speed and memory. The
price to be paid is that convergence of online AMM to a lo-
cal optimum cannot be guaranteed, because the online AMM
greedily minimizes the non-convex instantaneous objective
(3). As will be seen from the experimental results, the online
AMM behavior is very similar to the offline AMM. Coupled
with computational efficiency, ease of implementation, and
applicability for stream learning, this makes online AMM a
highly attractive learning algorithm.

3.6 Implementation Details
A näıve implementation of the update rule (11) would

require O(D)time for weight shrinking (1 − η(t)λ)w
(t)
i,j and

O(D) time to perform weight update. This computational
burden is unnecessary when instances are highly dimensional
and sparse (e.g. in text/image data). To circumvent this
problem we apply an approach used to speed-up linear SVM
training [18] that represents wi,j as wi,j = si,jvi,j , where

si,j is a scalar and vi,j ∈ R
D. In this case, the update rule

can be decomposed into s
(t)
i,j ← (1 − η(t)λ)s

(t)
i,j and v

(t)
i,j ←

v
(t)
i,j ± η(t)/s

(t)
i,jxt in time only proportional to the number of

non-zero features in xt.

4. EXPERIMENTS
In this section, we evaluate the proposed batch and online

AMM algorithms and compare them with the large-scale
Kernel and Linear SVM algorithms on several large real-life
data sets. The competing algorithms are listed as follows:

• LibSVM[4] A popular SMO-based SVM solver which
is scalable to hundreds of thousands examples.

• LaSVM[3] A large-scale online SVM algorithm that
accesses one example at a time.

• P-packSVM[28] An SVM solver that parallelizes the
SGD style training on multiple processors.

• Pegasos[18] The state-of-the-art Linear SVM solver
which is based on SGD.

• Poly 2 SVM by Liblinear[5] A fast solver for Poly-
nomial degree 2 kernel SVM. The algorithm explicitly
expresses the feature space as a set of attributes and

then trains Liblinear on the transformed data. How-
ever, it is only scalable to very sparse or low dimen-
sional data.

A summary of datasets2 is shown in Table 2.
For Algorithm 1, instead of a random assignment, we ini-

tialized z(1) by a single scan of data using Online AMM,
which sequentially sets each element of z(1) as in (10). Our
preliminary results showed it worked better than the simple
random initialization approach. We used the epoch-based
stopping criteria3 for SGD for each sub-problem. Since all
studied data sets were large we used only 1 epoch before
reassigning the weights. We stopped training after 5 passes
through the data. We ran online AMM using a single pass
of the data. In addition, we also explored performance of
online AMM when 5 passes through data. This allowed us
to compare online and batch AMM. The pruning step with
k = 10, 000 and c = 10 was used with Algorithms 1 & 2 in
all the experiments.

The training error and training time of LibSVM, LaSVM,
P-packSVM and Poly 2 SVM were taken from recently pub-
lished results in [5, 12, 28]. For Pegasos and the proposed
batch and online AMM algorithms, we selected the regular-
ization parameter λ through cross-validation. The consid-
ered range was λ = 10−2, ..., 10−7. We repeated all the ex-
periments five times, each with randomly shuffled training
data. Mean and standard deviation of each set of exper-
iments are reported. All the training examples were nor-
malized such that all attributes were within range [−1, +1].
Both batch and online AMM algorithms were implemented
in C++. Unless otherwise stated, all the experiments were
run using a 3.0GHz Intel Xeon processor with 16G memory
on Linux.

The generalization error and the training time of all the
algorithms on large datasets are summarized in Table 3. Due
to the large computational costs of Kernel SVM training on
the largest datasets from our collection, no previous results
are reported (to the best of our knowledge), so we use NA to
mark these cases in the table. The original MM algorithm
[1] is also not scalable to any of the studied large datasets,
so it is not included in the comparison.

Batch vs. Online First, let us compare two versions of
AMM. We can see that batch AMM achieved lower general-
ization error than its online sibling at the expense of signifi-
cantly longer training time that occasionally was more than
one order of magnitude longer. The difference in accuracy
depends on the difficulty of the datasets. Considering that
online AMM used only a single pass of the data, its slightly
degraded generalization error is understandable.

AMM vs. Linear SVM Comparing the generalization
error of AMM with Linear SVM, we can see that both AMM
algorithms significantly outperformed Linear SVM on 5 out
of 7 datasets. Considering training time, online AMM had
comparable training time to Linear SVM and batch AMM
was somewhat slower. Considering prediction time, Table
4 lists the number of weights in the AMM classifiers that
dictate prediction time and memory needed to store the

2url dataset [13] is available at http://www.sysnet.ucsd.
edu/projects/url/; all the others are available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3As suggested in [2]. [18] uses a predefined threshold on
the objective value as the stopping criteria. However, this
threshold can vary from case to case.

Table 2: Summary of large datasets
Datasets #train #test #dim #class non-zero % file size domain
a9a 32,561 16,281 123 2 11.3% 2M social survey
ijcnn 49,990 91,701 22 2 66.7% 7.5M time series
webspam 280,000 70,000 254 2 41.9% 327M web text
rcv1 bin 677,399 20,242 47,236 2 0.2% 35M news text
url 1,976,130 420,000 3,231,961 2 0.004% 1.7G Internet data
mnist8m bin 8,000,000 10,000 784 2 19.3% 18G OCR images
mnist8m mc 8,000,000 10,000 784 10 19.3% 18G OCR images

Table 3: Error rate and training time comparison with large-scale algorithms (RBF SVM is solved by LibSVM
unless specified otherwise. Poly2 and LibSVM results are from [5]).

Datasets

Error rate (%) Training time (seconds)1

AMM AMM Linear Poly2 RBF AMM AMM Linear Poly2 RBF
batch online (Pegasos) SVM SVM batch online (Pegasos) SVM SVM

a9a 15.03±0.11 16.44±0.23 15.04±0.07 14.94 14.97 2 0.2 1 2 99
ijcnn 2.40±0.11 3.02±0.14 7.76±0.19 2.16 1.31 2 0.1 1 11 27

webspam 4.50±0.24 6.14±1.08 7.28±0.09 1.56 0.80 80 4 12 3,228 15,571

mnist bin 0.53±0.05 0.54±0.03 2.03±0.04 NA 0.432 3084 300 277 NA 2 days2

mnist mc 3.20±0.16 3.36±0.20 8.41±0.11 NA 0.673 13864 1200 1180 NA 8 days3

rcv1 bin 2.20±0.01 2.21±0.02 2.29±0.01 NA NA 1100 80 25 NA NA
url 1.34±0.21 2.87±1.49 1.50±0.39 NA NA 400 24 100 NA NA
1 excludes data loading time.
2 achieved by parallel training P-packSVMs on 512 processors; results from [28].
3 achieved by LaSVM; results from [12].

classification model. These numbers divided by the num-
ber of classes directly reflect the increased prediction time of
AMM as compared to Linear SVM. We can see that AMM
classifiers are around one order of magnitude slower than
Linear SVM, which has O(MD) prediction time. This is
very impressive result considering that AMM achieves sig-
nificantly lower error rate than Linear SVM. This indicates
that AMM is superior to linear SVM because it provides a
better tradeoff between accuracy and speed in all but the
most resource-constrained applications.

AMM vs. Kernel SVM Comparison against Poly2
SVM on three relatively small datasets (a9a, ijcnn, web-
spam) shows that AMM had similar error rates as Poly2
SVM, while achieving several orders of magnitude faster
training. Also, the O(MD) prediction time of AMM is
much more favorable than the O(MD2) prediction time of
Poly2 SVM. By comparing AMM with RBF SVM on 5 low-
dimensional datasets (where RBF SVM’s results were re-
ported in the previous literature), we can see that AMM
has somewhat lower (0.1%−2.9%) but still comparable error
rate. Particularly, on the two largest datasets (mnist8m bin
and mnnist8m mul), the error rate achieved by AMM af-
ter running on a single processor for a couple of hours is
very competitive to P-packSVM’s classifier trained in 2 days
on 512 processors and LaSVM’s classifier trained in 8 days
on a single processor. These results show that the AMM
algorithms are appealing alternative to kernel SVMs when
learning from very large data.

Train Online AMM in Batch Mode Table 3 lists On-
line AMM results when it was run with a single pass through
the data. We also performed experiments when it was al-

lowed to make multiple passes through the data. The de-
tailed results on the two largest datasets for the multi-pass
Onine AMM are shown in Figure 2. The top left and bot-
tom left panels in Figure 2 show the evolution of the error
rate and the total training time as a function of the number
of epochs (one epoch denotes a full pass through the data).
We can see that the error rate rapidly decreases during the
first epoch and that it continues to improve slightly after
the first epoch. The training time increases linearly, as ex-
pected. The results suggests that, if the training time is not
of major concern and if data could be stored in memory, mul-
tiple accesses to the training data should be recommended.
The top right and bottom right panels of Figure 2 show the
number of AMM weights as training progresses. In addition
to the current number of weights, the panels also show the
total number of weights created and pruned at any stage of
training process. It can be seen that the pruning has the de-
sired effect of controlling the total number of model weights
without negatively influencing the error rate.

5. CONCLUSIONS
Recent advances in large-scale learning resulted in many

successful algorithms for linear classification. However, cre-
ating sufficiently efficient kernel SVM is still an open prob-
lem that prevents its application on the largest data sets.
This study aimed at filling the scalability and representabil-
ity gap between linear and kernel SVMs. We presented
two multi-hyperplane algorithms for multi-class classifica-
tion that have several favorable features: fast training and
prediction, simple implementation, ability to represent non-
linear concepts, and theoretical justification of their proper-

Table 4: The number of weights in the classifiers
Datasets a9a ijcnn webspam mnist8m bin mnist8m mc rcv1 url
batch AMM 11±1 11±1 13±2 20±1 65±2 22±2 4±0
online AMM 16±2 15±1 10±1 13±1 61±3 44±5 5±1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

epochs

tr
ai

ni
ng

 ti
m

e
(s

ec
)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1
0

5

10

15

20

25

30

er
ro

r
ra

te
 (

%
)

(a)

10
−4

10
−2

10
0

0

5

10

15

20

25

epochs

no

n−
ze

ro
 w

ei
gh

ts

current
created
pruned

(b)

10
−6

10
−4

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

epochs

tr
ai

ni
ng

 ti
m

e
(s

ec
)

10
−6

10
−4

10
−2

10
0

10
2
0

2

4

6

8

10

12

er
ro

r
ra

te
 (

%
)

(c)

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

epochs

no

n−
ze

ro
 w

ei
gh

ts

current
created
pruned

(d)

Figure 2: Detailed results on url data (upper two panels) and mnist8m bin data (lower two panels)

ties. Experimental comparison with the state-of-the-art lin-
ear and kernel SVMs on large data sets showed that AMM
classifiers provide an interesting tradeoff between these two
major classes of algorithms. In addition to being an attrac-
tive option when solving large-scale classification problems,
AMM could also be useful as a data exploration tool. When
faced with a new large-scale classification problem, AMM
could be trained together with linear SVM and if its error
rate is significantly lower, it could indicate that the problem
is nonlinear and that more computationally costly but more
powerful classification algorithms should be considered.

6. ACKNOWLEDGMENTS
Authors thank Yu Liang (Temple Univ.) for implementing

the first version of the algorithms and Kai Zhang (Siemens
Corporate Research) for proofreading the manuscript. N.
Djuric and S. Vucetic were supported by the U.S. National
Science Foundation Grant IIS-0546155. K. Crammer is a
Horev Fellow, supported by the Taub Foundations.

7. REFERENCES
[1] F. Aiolli and A. Sperduti. Multi-class classification

with multi-prototype support vector machines.
Journal of Machine Learning Research, 2005.

[2] A. Bordes, L. Bottou, and P. Gallinari. Sgd-qn:

careful quasi-newton stochastic gradient descent.
Journal of Machine Learning Research, 2009.

[3] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast
kernel classifiers for online and active learning.
Journal of Machine Learning Research, 2005.

[4] C.-C. Chang and C.-J. Lin. Libsvm: a library for
support vector machines,
http://www.csie.ntu.edu.tw/ cjlin/libsvm. 2001.

[5] Y.-W. Chang, K.-W. C. C.-J. Hsie and, M. Ringgaard,
and C.-J. Lin. Training and testing low-degree
polynomial data mappings via linear svm. Journal of
Machine Learning Research, 2010.

[6] R. Collobert, F. Sinz, J. Weston, and L. Bottou.
Trading convexity for scalability. In International
Conference on Machine Learning, 2006.

[7] Cortes and Vapnik. Support-vector networks. Machine
Learning, 1995.

[8] K. Crammer and Y. Singer. On the algorithmic
implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research,
2001.

[9] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi,
and S. Sundararajan. A dual coordinate descent
method for large-scale linear svm. In International
Conference on Machine Learning, 2008.

[10] T. Joachims. Training linear svms in linear time. In

ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2006.

[11] J. Kivinen, A. J. Smola, and R. C. Williamson. Online
learning with kernels. IEEE Transactions on Signal
Processing, 2002.

[12] G. Loosli, S. Canu, and L. Bottou. Training invariant
support vector machines using selective sampling.
Large Scale Kernel Machines, Cam-bridge, MA, MIT
Press, 2007.

[13] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Identifying suspicious urls: An application of
large-scale online learning. In International Conference
on Machine Learning, 2009.

[14] J. Platt. Fast training of support vector machines
using sequential minimal optimization. Advances in
kernel methods - support vector learning, MIT Press,
1998.

[15] J. Platt, N. Cristianini, and J. S. Taylor. Large margin
dags for multiclass classification. In Advance in Nueral
Information Processing Systems, 2000.

[16] A. Rahimi and B. Recht. Random features for
large-scale kernel machines. In Advance in Nueral
Information Processing Systems, 2007.

[17] S. Shalev-Shwartz and Y. Singer. Logarithmic regret
algorithms for strongly convex repeated games
(technical report). The Hebrew University, 2007.

[18] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos:
primal estimated sub-gradient solver for svm. In
International Conference on Machine Learning, 2007.

[19] S. Sonnenburg and V. Franc. Coffin : a computational
framework for linear svms. In International
Conference on Machine Learning, 2010.

[20] I. Steinwart. Sparseness of support vector machines.
Journal of Machine Learning Research, 2003.

[21] C. Teo, S. V. N. Vishwanathan, A. J. Smola, and
Q. V. Le. Bundle methods for regularized risk
minimization. Journal of Machine Learning Research,
2010.

[22] I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core
vector machines: fast svm training on very large data
sets. Journal of Machine Learning Research, 2005.

[23] S. V. N. Vishwanathan, A. J. Smola, and M. N.Murty.
Simplesvm. In International Conference on Machine
Learning, 2003.

[24] Z. Wang, K. Crammer, and S.Vucetic. Multi-class
pegasos on a budget. In International Conference on
Machine Learning, 2010.

[25] Z. Wang and S.Vucetic. Online training on a budget of
support vector machines using twin prototypes.
Statisitcal Analysis and Data Mining Journal, 2010.

[26] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin.
Large linear classification when data cannot fit in
memory. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2010.

[27] T. Zhang. Solving large scale linear prediction
problems using stochastic gradient descent. In
International Conference on Machine Learning, 2004.

[28] Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen.
P-packsvm: parallel primal gradient descent kernel
svm. In IEEE International Conference on Data
Mining, 2009.

APPENDIX
Unified Proof of Theorems 1 & 3: First, we rewrite
the update rule of SGD with the optional pruning step as
W(t+1) ← W(t) − η(t)∂(t), where ∂(t) = ∇(t) + E(t) and
E(t) = 0 if no pruning is used. The relative progress towards
the optimal solution W∗ at t-th round D(t) can be lower
bounded as

D(t) = ||W(t) −W∗||2 − ||W(t) − η(t)∇(t) − η(t)E(t) −W∗||2

= −(η(t))2||∂(t)||2 + 2η(t)(E(t))T (W(t) −W∗)

+2η(t)(∇(t))T (W(t) −W∗)

≥1 −(η(t))2G2 − 2η(t)||E(t)|| 4+c
λ

+2η(t)
(

P (t)(W(t))− P (t)(W∗) + λ
2
||W(t) −W∗||2

)

.

(15)
In ≥1, we assume there is a constant G ≥ 0 such that
||∂(t)|| ≤ G and we will quantify G later on. For the second

term, we first bound W(t) as

||W(t)|| ≤ ||(1− η(t−1)λ)W(t−1)||+ 2η(t−1) + ||∆W(t−1)||

≤ t−2
t−1
||W(t−1)||+ 2

(t−1)λ
+ c

(t−1)λ

≤ 1
t−1
||W(0)||+ 2(t−1)

(t−1)λ
+ (t−1)c

(t−1)λ
= 2+c

λ
,

and then use triangle inequality to bound ||W(t) −W∗|| ≤
(2 + c)/λ + 2/λ by using the fact ||W∗|| ≤ 2/λ according
to the result in [11]. Then, we bound the third term using

function P (t)(W(t))’s λ-strong convexity [17].

Dividing both sides of inequality (15) by 2η(t) and rear-
ranging, we obtain

P (t)(W(t))− P (t)(W∗) ≤ D(t)

2η(t) −
λ
2
||W(t) −W∗||2

+ η(t)G2

2
+ (4+c)||E(t)||

λ
.

(16)

Summing over all t, we get

T
∑

t=1

P (t)(W(t))−
T
∑

t=1

P (t)(W∗) ≤
T
∑

t=1

D(t)

2η(t)

−
T
∑

t=1

λ
2
||W(t) −W∗||2 + G2

2

T
∑

t=1

η(t) + (4+c)
λ

T
∑

t=1

||E(t)||.

We bound the first and second terms in inequality (16) as

1
2

N
∑

t=1

(

D(t)

η(t) − λ||W(t) −W∗||2
)

= 1
2

(

(1

η(1) − λ)||W(1)

−W∗||2 +
N
∑

t=2

(

1

η(t) −
1

η(t−1) − λ
)

||W(t) −W∗||2

− 1

η(N) ||W
(T+1) −W∗||2

)

=1 −
1

2η(N) ||W
(T+1) −W∗||2 ≤ 0.

(17)
In =1, the first and second terms vanish after plugging ηt ≡
1/(λt). Next, we bound the third term in inequality (16)
according to the divergence rate of harmonic series,

G2

2

T
∑

t=1

η(t) =
G2

2λ

T
∑

t=1

1

t
≤

G2

2λ
(ln(T) + 1). (18)

Then, we quantify G as

||∂(t)|| ≤ ||∇(t)||+||E(t)|| ≤ (λ||W(t)||+2)+2+c ≤ 6+c ≡ G.

If no pruning is used, ||E(t)|| = 0. For the iterations when

the pruning is executed, we bound ||E(t)|| as ||E(t)|| ≤ 2c

using the bound on ∆W(t). Combining inequality (17) with
(18) and dividing two sides of inequality by T , we get the
stated bounds as in Theorems 1 and 3.

