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Trajectory prediction

● Given an actor’s current and history states and the scene context, the goal is to predict 

its future trajectory(s)

● Extract scene features with CNNs from the scene image

● Extract actor state features with a state encoder network

● Generate trajectory predictions with a trajectory decoder network
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Scene-compliant trajectory prediction

● Predicting the future is not an easy task, but at least we know:

○ An actor is unlikely to drive out of the road

○ An actor is unlikely to straight into the opposing lanes from a left-turn only lane

● As humans, we know this prediction is not correct even without looking at the ground-truth

because it’s not scene-compliant

 



Trajectory prediction with conditional GANs

● Generate trajectory predictions with a conditional GAN model

○ E.g., Social-GAN, Sophie, Social-BiGAT

● A discriminator network is added to discriminate whether a given trajectory is real or fake

● The two networks are trained jointly with some GAN loss
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Flaws with the traditional GAN-based approaches

● The scene features are flattened and concatenated with the encoded trajectory 

embeddings in the discriminator

● It’s hard for the discriminator to distinguish scene-compliant and non-scene-compliant 

trajectories
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Trajectory prediction with Scene-Compliant GAN

● Scene-Compliant GAN (SC-GAN)

○ The same generator architecture as in the previous works

○ But with a novel Scene-Compliant Discriminator
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Scene-Compliant Discriminator

● It rasterizes a trajectory waypoint into a 2D image with a novel Differentiable Trajectory Rasterizer

● The trajectory raster images are stacked with the input scene image in the channel dimension

● This reduces the problem to a classic image generation problem

● DCGAN is used as the discriminator architecture which is known to work well for image inputs
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Differentiable Trajectory Rasterizer

● The Differentiable Trajectory Rasterizer differentiably transforms a waypoint into a 2D grid

 

● For each cell (i, j) in the grid, we compute its displacement vector from the waypoint (x, y) as 𝜟ij 

● The value of cell (i, j) is set as the density of a 2D Gaussian distribution N(0, 𝚺) evaluated at 𝜟ij 

● 𝚺 = diag(𝜎2, 𝜎2) is a diagonal matrix, and 𝜎 controls the probability density of the raster

● The gradients are well-defined, and the direction is aligned with the displacement vector 𝜟ij 

x, y DR

waypoint 2D grid
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Model details

● By default, all models are trained with only the GAN loss without the L2 loss

■ Allowing more effective comparisons between the GAN architectures

● We use the Wasserstein GAN loss with gradient penalty as the GAN loss

● Rasters are 300x300 with resolution 0.2 m/pxl

● 𝜎 is set to 10



Evaluating scene-compliance

● Identify a drivable region for each actor using the path proposal and scoring modules from GBP

● Off-road metrics

○ Off-road distance

■ The distance from the predicted waypoint to the drivable region (if outside)

○ Off-road false-positive %

■ The percentage of predicted waypoints that

are outside the drivable region while

the corresponding ground-truth is not

drivable region



Quantitative results

● Baselines

○ no-scene-GAN (similar to Social-GAN and Sophie)

■ No scene image used in discriminator

○ concat-scene-GAN (similar to Social-BiGAT)

■ Scene image features are flattened and concatenated with trajectory embeddings

● Each model generates multiple trajectory samples

● We measure both the mean and min for L2 and only the mean for off-road metrics

● Scene-Compliant GAN improves off-road distance and off-road false-positives by a large margin



Qualitative results

Ground-truth

● SC-GAN predicts more scene-compliant trajectories

concat-scene-GAN SC-GAN

An actor on a left-turn-only lane can only turn left



Qualitative results

● SC-GAN predicts more scene-compliant trajectories

An actor on a straight-only lane can only go straight

Ground-truth concat-scene-GAN SC-GAN



Qualitative results

● SC-GAN predicts more scene-compliant trajectories

An actor on a right-turn only lane can only turn right

Ground-truth concat-scene-GAN SC-GAN



Qualitative results

● SC-GAN predicts more scene-compliant trajectories

The trajectories from SC-GAN follow the lanes better

Ground-truth concat-scene-GAN SC-GAN



Conclusions

● We design SC-GAN that uses Differentiable Trajectory Rasterization (DR) to convert a trajectory 

into image representation

● SC-GAN is able to predict more scene-compliant trajectories

● DR is a generic component that can be used in other loss functions as well
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Quantitative results

● Compare against public baselines, trained with L2 loss



Ablation study

●


