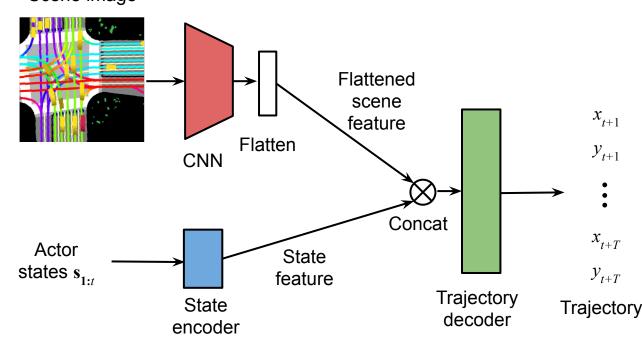
Improving Movement Predictions of Traffic Actors in Bird's-Eye View Models using GANs and Differentiable Trajectory Rasterization

Eason Wang*, Henggang Cui*, Sai Yalamanchi, Mohana Moorthy, Fang-Chieh Chou, Nemanja Djuric

Trajectory prediction

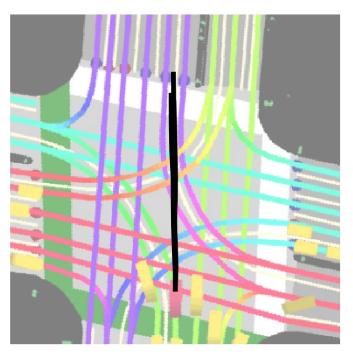
- Given an actor's current and history states and the scene context, the goal is to predict its future trajectory(s)
- Extract scene features with CNNs from the scene image
- Extract actor state features with a state encoder network
- Generate trajectory predictions with a trajectory decoder network



Scene image

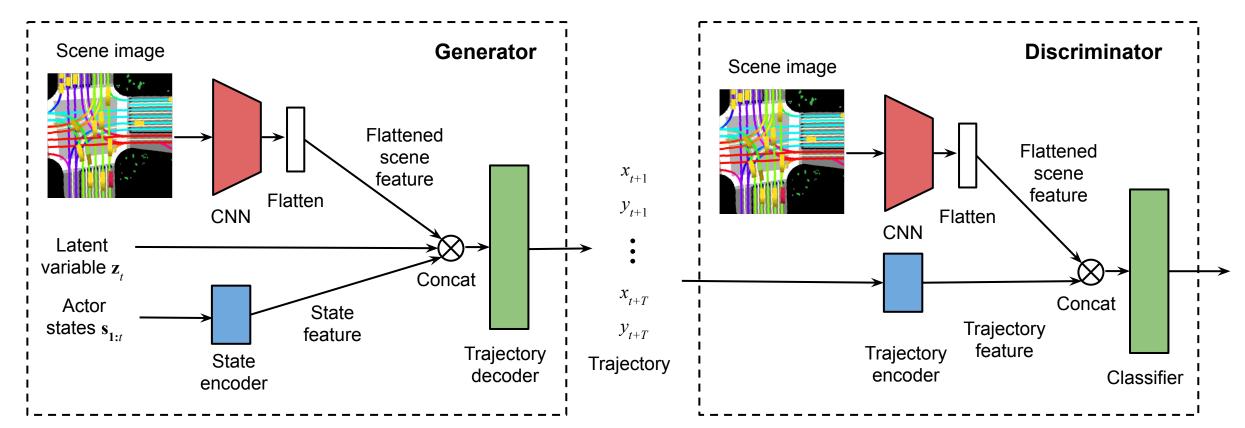
Scene-compliant trajectory prediction

- Predicting the future is not an easy task, but at least we know:
 - An actor is unlikely to drive out of the road
 - An actor is unlikely to straight into the opposing lanes from a left-turn only lane
- As humans, we know this prediction is not correct even without looking at the ground-truth because it's not *scene-compliant*



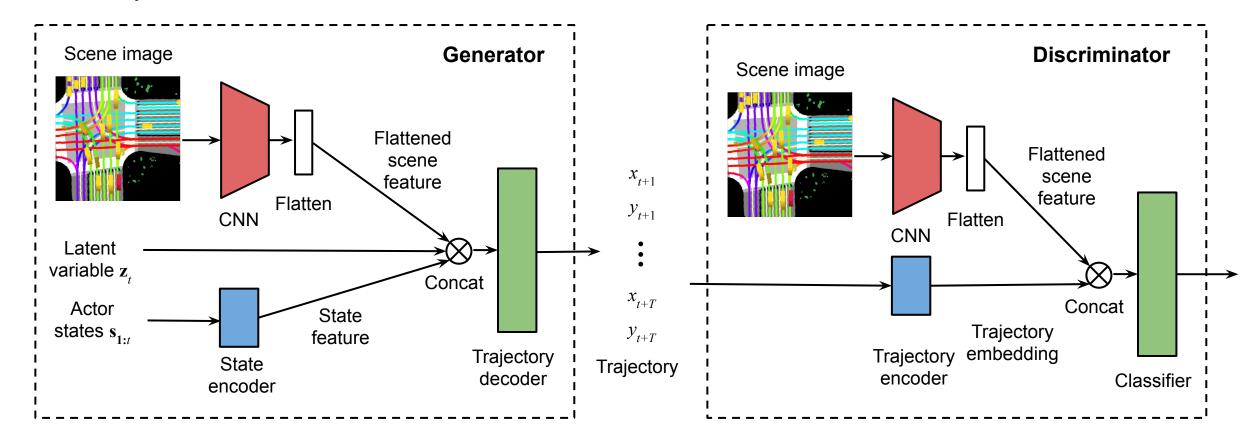
Trajectory prediction with conditional GANs

- Generate trajectory predictions with a conditional GAN model
 - E.g., Social-GAN, Sophie, Social-BiGAT
- A discriminator network is added to discriminate whether a given trajectory is real or fake
- The two networks are trained jointly with some GAN loss



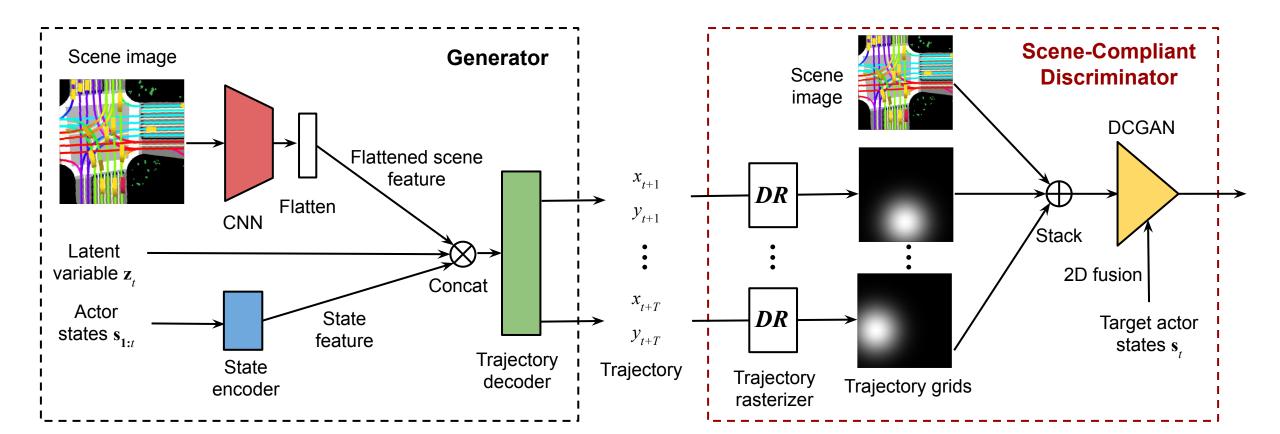
Flaws with the traditional GAN-based approaches

- The scene features are flattened and concatenated with the encoded trajectory embeddings in the discriminator
- It's hard for the discriminator to distinguish scene-compliant and non-scene-compliant trajectories



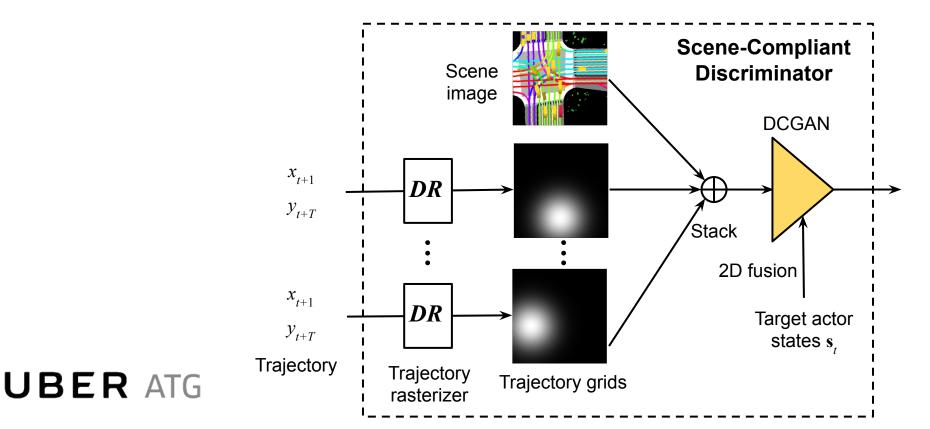
Trajectory prediction with Scene-Compliant GAN

- Scene-Compliant GAN (SC-GAN)
 - The same generator architecture as in the previous works
 - But with a novel Scene-Compliant Discriminator



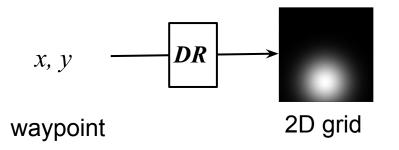
Scene-Compliant Discriminator

- It rasterizes a trajectory waypoint into a 2D image with a novel Differentiable Trajectory Rasterizer
- The trajectory raster images are stacked with the input scene image in the channel dimension
- This reduces the problem to a classic image generation problem
- DCGAN is used as the discriminator architecture which is known to work well for image inputs



Differentiable Trajectory Rasterizer

• The Differentiable Trajectory Rasterizer differentiably transforms a waypoint into a 2D grid



- For each cell (*i*, *j*) in the grid, we compute its displacement vector from the waypoint (*x*, *y*) as Δ^{ij}
- The value of cell (*i*, *j*) is set as the density of a 2D Gaussian distribution $N(0, \Sigma)$ evaluated at Δ^{ij}

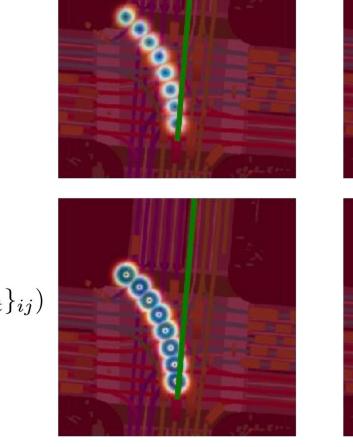
$$\{\mathcal{G}_t\}_{ij} = \mathcal{N}(\Delta_t^{ij}|0, \mathbf{\Sigma})$$

- $\Sigma = \text{diag}(\sigma^2, \sigma^2)$ is a diagonal matrix, and σ controls the probability density of the raster
- The gradients are well-defined, and the direction is aligned with the displacement vector Δ^{ij}

$$\nabla_{[x_t,y_t]}(\{\mathcal{G}_t\}_{ij}) = \left[\frac{\partial\{\mathcal{G}_t\}_{ij}}{\partial x}, \frac{\partial\{\mathcal{G}_t\}_{ij}}{\partial y}\right] = -\frac{\{\mathcal{G}_t\}_{ij}}{\sigma^2}\Delta_t^{ij}$$

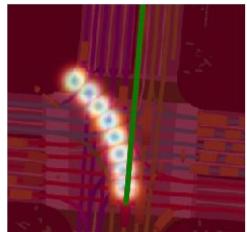
Differentiable rasterizer

Raster $\{\mathcal{G}_t\}$

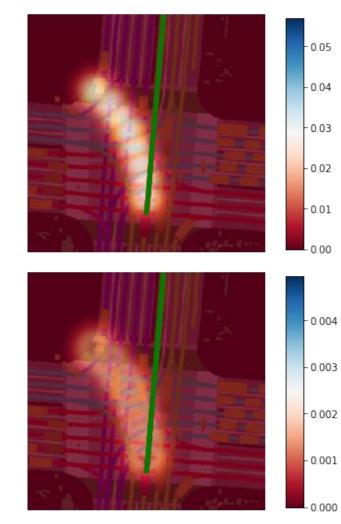


 $\sigma = 7$

$$\sigma = 10$$



σ = 15



Gradients $\nabla_{[x_t,y_t]}({\{\mathcal{G}_t\}_{ij}})$

UBER ATG

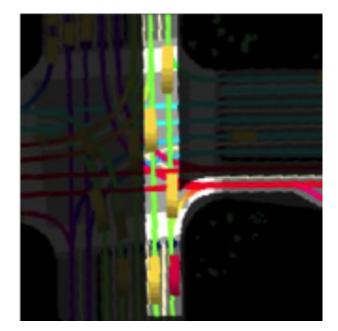
Images are 300x300

Model details

- By default, all models are trained with only the GAN loss without the L2 loss
 - Allowing more effective comparisons between the GAN architectures
- We use the Wasserstein GAN loss with gradient penalty as the GAN loss
- Rasters are 300x300 with resolution 0.2 m/pxl
- *σ* is set to 10

Evaluating scene-compliance

- Identify a *drivable region* for each actor using the path proposal and scoring modules from GBP
- Off-road metrics
 - Off-road distance
 - The distance from the predicted waypoint to the drivable region (if outside)
 - \circ Off-road false-positive %
 - The percentage of predicted waypoints that are outside the drivable region while the corresponding ground-truth is not



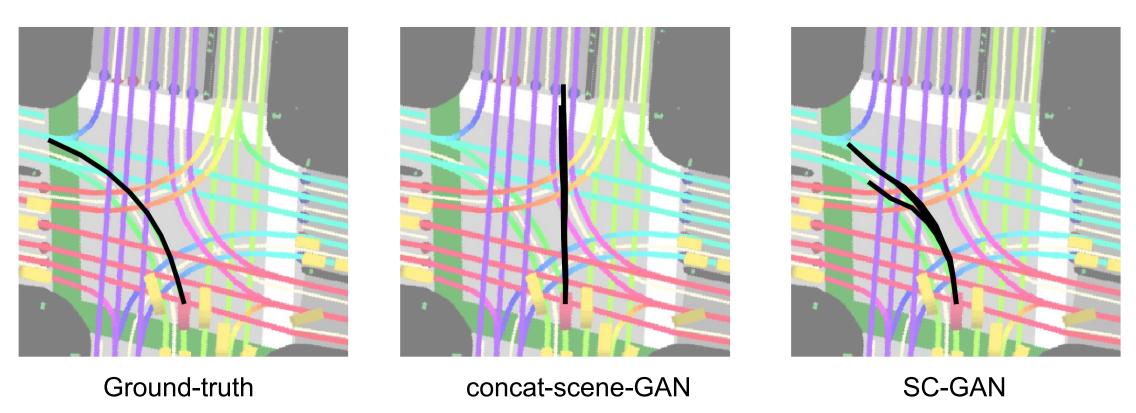
drivable region

- Baselines
 - no-scene-GAN (similar to Social-GAN and Sophie)
 - No scene image used in discriminator
 - concat-scene-GAN (similar to Social-BiGAT)
 - Scene image features are flattened and concatenated with trajectory embeddings
- Each model generates multiple trajectory samples
- We measure both the mean and min for L2 and only the mean for off-road metrics
- Scene-Compliant GAN improves off-road distance and off-road false-positives by a large margin

	mean over 3						min over 3		min over 20	
	ℓ_2 [m]		ORD [m]		ORFP [%]		ℓ_2 [m]		ℓ_2 [m]	
Method	Avg	@4s	Avg	@4s	Avg	@4s	Avg	@4s	Avg	@4s
no-scene-GAN	4.13	6.57	0.840	1.203	24.50	30.28	3.74	5.87	3.30	5.13
concat-scene-GAN	2.35	5.62	0.152	0.435	4.40	12.22	1.37	3.13	0.63	1.30
SC-GAN	2.44	5.86	0.085	0.204	2.11	5.66	1.29	2.95	0.58	1.20

UBER ATG

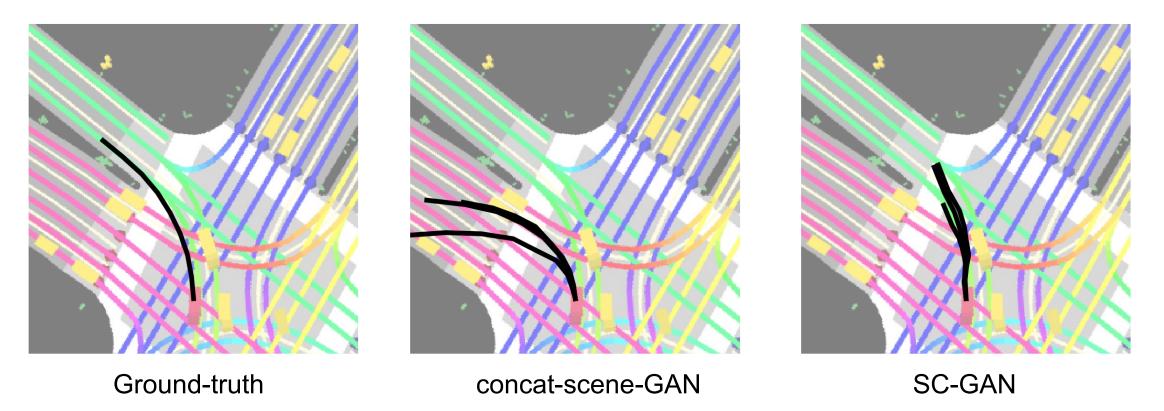
• SC-GAN predicts more scene-compliant trajectories



An actor on a left-turn-only lane can only turn left

UBER ATG

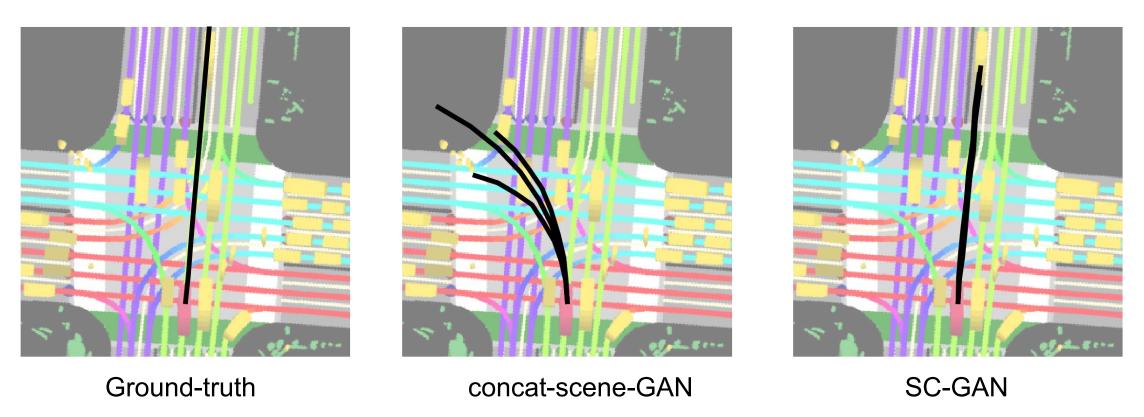
• SC-GAN predicts more scene-compliant trajectories



An actor on a straight-only lane can only go straight

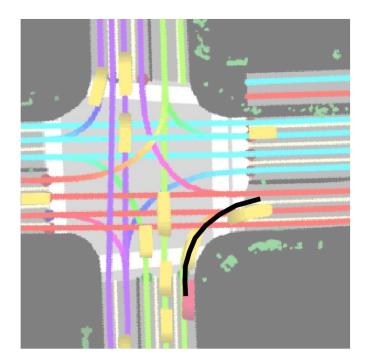
UBER ATG

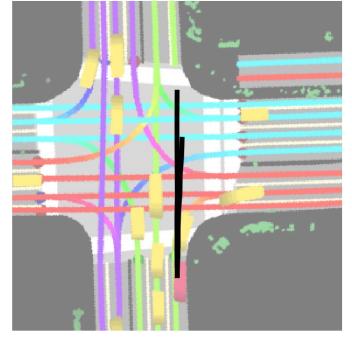
• SC-GAN predicts more scene-compliant trajectories

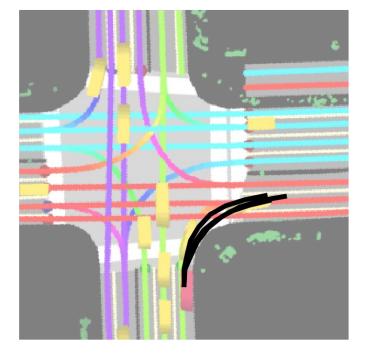


An actor on a right-turn only lane can only turn right

• SC-GAN predicts more scene-compliant trajectories







Ground-truth

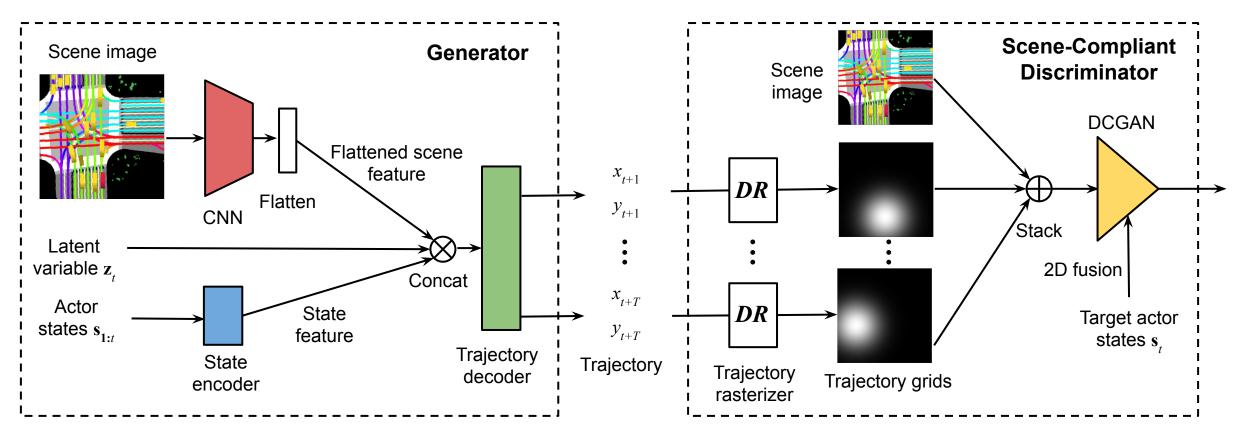
concat-scene-GAN

SC-GAN

The trajectories from SC-GAN follow the lanes better

Conclusions

- We design SC-GAN that uses Differentiable Trajectory Rasterization (DR) to convert a trajectory into image representation
- SC-GAN is able to predict more scene-compliant trajectories
- DR is a generic component that can be used in other loss functions as well



Topics - Courses Events - Podcast Contact Us -

How Data Is Being Used to Train Autonomous Vehicles to Navigate Roadways

Uber утверждает, что его AI позволяет беспилотным автомобилям с высокой точностью прогнозировать движение транспорта

🗰 16/04/2020 🗷 Финансовые новости 🔒 Blockchain News 🖓 0

AI

Uber claims its AI enables driverless cars to predict traffic movement with high accuracy

KYLE WIGGERS @KYLE_L_WIGGERS APRIL 15, 2020 8:50 AM

Auto News / Latest Auto News / Auto Technology

Uber develops AI; enables driverless cars to accurately predict other vehicles motion

The company has developed a Generative Adversarial Networks (GANs) to make car trajectory predictions as opposed to less complex architectures.

ИИ позволяет беспилотным автомобилям прогнозировать движение других машин

Uber: Verkehrsprognose mit hoher Genauigkeit

April 17, 2020 in Informationen zu autonomem Fahren

by Alexandra Gerea — April 25, 2020 in Science, Tech, Technology

Uber声称其AI使无人驾驶汽车能够高精度预测交通流量

来源: 2020-04-29 14:12:42

在本周于预印本服务器Arxiv.org上发表的一篇论文中,优步(Uber)的先进技术集团(ATG)的研究人员提出了一种AI技术,以改善自动驾驶汽车的交通运动预测。它直接适用于Uber自身正在开发的无人驾驶技术,该技术必须 能够检测,跟踪和预测周围汽车的轨迹,以便安全地在公共道路上行驶。

众所周知,如果没有能力预测道路上其他驾驶员可能做出的决定,车辆将无法完全自动驾驶。在一个悲剧性的 案例中,两年前,Uber自动驾驶原型机在亚利桑那州坦佩市撞死一名行人,部分原因是该车辆未能发现并避开受 害者。ATG的研究是新颖的,因为它采用了生成对抗网络(GAN)来进行汽车轨迹的预测,而不是使用不太复杂的体 系结构。该研究有望通过将预测的精度提高一个数量级来提高技术水平。。

DEVELOPERS CORNER

HOW UBER OUTPERFORMED EXISTING GANS-BASED BASELINES IN SELF-DRIVING CARS

VEDA A TECHNIKA HOLIDAY VIRUS TOTAL IT SLUŽBY KONTAKT V English How Uber Outperformed Existing GANS-Based Baselines In Self-Driving Cars

Begin backup slides

• Compare against public baselines, trained with L2 loss

	mean@3		min	@3	min@20		
Method	Avg	@4s	Avg	@4s	Avg	@4s	
S-GAN [24]	3.01	7.66	2.36	5.94	1.93	4.77	
S-LSTM [44]	2.93	5.17		4 	-	-	
SC-GAN- ℓ_2	1.75	4.17	1.03	2.26	0.54	1.01	

Ablation study

		mean over 3					min over 3		min over 20	
	ℓ_2	[m]	ORD [m]		ORFP [%]		ℓ_2 [m]		ℓ_2 [m]	
Method	Avg	@4s	Avg	@4s	Avg	@4s	Avg	@4s	Avg	@4s
SC-GAN-1channel	8.68	26.52	0.040	0.033	0.98	1.23	8.30	26.28	8.01	25.94
SC-GAN-MNet	3.82	11.18	0.723	3.068	7.21	22.43	2.62	8.15	1.82	6.08
SC-GAN-no-scene	3.79	7.28	0.58	1.16	18.38	33.62	3.52	6.76	2.27	4.61
SC-GAN	2.44	5.86	0.085	0.204	2.11	5.66	1.29	2.95	0.58	1.20