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Abstract— Motion prediction of surrounding vehicles is one of
the most important tasks handled by a self-driving vehicle, and
represents a critical step in the autonomous system necessary
to ensure safety for all the involved traffic actors. Recently
a number of researchers from both academic and industrial
communities have focused on this important problem, proposing
ideas ranging from engineered, rule-based methods to learned
approaches, shown to perform well at different prediction
horizons. In particular, while for longer-term trajectories the
engineered methods outperform the competing approaches, the
learned methods have proven to be the best choice at short-
term horizons. In this work we describe how to overcome the
discrepancy between these two research directions, and pro-
pose a method that combines the disparate approaches under
a single unifying framework. The resulting algorithm fuses
learned, uncertainty-aware trajectories with lane-based paths in
a principled manner, resulting in improved prediction accuracy
at both shorter- and longer-term horizons. Experiments on real-
world, large-scale data strongly suggest benefits of the proposed
unified method, which outperformed the existing state-of-the-
art. Moreover, following offline evaluation the proposed method
was successfully tested onboard a self-driving vehicle.

I. INTRODUCTION

While self-driving vehicles (SDVs) have only recently
entered the spotlight, the technology has been under active
development for a long time [1], spanning decades of innova-
tions and breakthroughs. There are several avenues proposed
to solve the autonomy puzzle, with proposed ideas ranging
from end-to-end systems [2], [3] to complex engineered
frameworks with multiple interconnected components. Such
engineered systems commonly consist of several modules
operating in a sequence [4], [5], ranging from perception
that takes sensors as inputs and performs detection and
tracking of the surrounding actors, over prediction tasked
with modeling the uncertain future, to motion planning that
computes the SDV’s path in this stochastic environment [6].
In this work we consider the prediction problem, focusing on
taking the tracked objects and predicting how will they move
in the near future. While all the modules operate together
to ensure safe and efficient behavior of the autonomous
vehicle, predicting future motion of traffic actors in SDV’s
surroundings is one of the critical steps, necessary for safe
route planning. This was clearly exemplified by the collision
between MIT’s “Talos” and Cornell’s “Skyne” vehicles dur-
ing the 2007 DARPA Urban Challenge [7], where the lack of
reasoning about intentions of other actors in the scene led to
one of the first ever recorded collisions between two SDVs.

Motion prediction is not an easy task even for humans,

owing to the stochasticity and complexity of the environment.
Due to the vehicle inertia simple physics-based methods are
accurate for very short predictions, yet beyond roughly one
second they break as traffic actors constantly monitor their
surroundings and need to promptly modify their behavior
in response. Improving over ballistic methods, learned ap-
proaches have been shown to achieve good results in the
short-term [8], defined as up to 3 seconds for the purposes
of this paper. At longer horizons more complex models are
required, where map-based approaches have shown promise
[9]. However, these approaches are not good at handling un-
usual cases, such as actors performing illegal maneuvers. We
address this problem, and propose a system that seamlessly
fuses learned- and long-term predictions, taking into account
factors such as the surrounding actors and map constraints,
as well as uncertainty of the actor motion. In this way the
resulting approach takes the best of the both worlds, allow-
ing good accuracy at short- and long-term while handling
outliers well. The method was compared to the state-of-the-
art on a large-scale, real-world data where it provided strong
performance across a wide range of prediction horizons.

Main contributions of our work are summarized below:
• we propose a method to unify state-of-the-art short- and

long-term trajectories using a principled framework;
• extensive evaluation on large-scale, real-world data

set showed that the proposed approach performs well
across wide range of prediction horizons;

• following offline experiments, the method was success-
fully tested onboard a self-driving vehicle.

II. RELATED WORK

Recently many researchers from both industry and
academia turned their attention to the problem of motion
prediction in traffic. This has led to a number of relevant
works being proposed in the literature [10], ranging from
engineered approaches that rely on manually specified rules
to learned approaches based on the state-of-the-art deep
architectures. In this section we give an overview of the
existing publications most relevant for our current work.

A number of deployed methods in practice are based
on engineered approaches, without the use of learned algo-
rithms. In most systems the surrounding vehicles and other
actors are tracked using Kalman filter (KF) [11], with tracked
state including position, velocity, acceleration, heading, and
other relevant quantities, to be used as an input to the
downstream prediction methods. In [9] a deployed system



by Mercedes-Benz is described, where the authors use the
current actor state and the map information to associate an
actor to nearby lanes, and future trajectories are inferred
by propagating the current state along the associated lanes.
In Honda’s system [12], the authors propagate KF state
in time to predict short-term trajectories. Conversely, for
longer-term predictions they use a similar lane-based idea as
[9] by implicitly associating actors to lanes and computing
time-to-collision to decide whether the SDV should stop or
proceed in intersections. Unlike these approaches that do not
apply learned methods, we propose to combine learned and
engineered models to simultaneously improve both short-
and long-term accuracy of predicted trajectories.

An interesting research direction for long-term motion
prediction is inferring occupancy grids, as opposed to trajec-
tories. In [13] the authors perform lane association similarly
to [9], followed by discretization of a lane path into spatial
cells and predicting likelihood that an actor will occupy a
certain cell in the near future. Along similar lines, the authors
of [14] applied grid-based prediction to pedestrian actors.
While allowing for longer-term prediction, it is however
not obvious how to extract actual trajectories which is a
topic of our work. Another popular approach to long-term
prediction is to compare a current motion to a set of historical
actor behaviors and use the matched trajectories to infer the
future. In [15] and [16] the authors use a longest common
subsequence similarity measure to track the best historical
hypothesis, while in [17] a dynamic-time warping is used
to compute similarity. However, such approaches are not
feasible in an online setting as they carry too large a cost
when considering required memory and latency constraints.

As an alternative to explicitly inferring trajectories or
occupancies, a common approach is predicting intents of
surrounding actors, such as inferring lane-keeping or lane-
changing behavior. The high-level intents can then be used to
compute safe and efficient route of the autonomous vehicle.
In [18], the authors propose energy-based approach to predict
such intents. The authors of [19] train a multi-class classifier
to predict lane changes, while [20] employ a Markovian
process with extended KF. In [21] the authors take a step
further and in addition to intents also predict short-term
trajectories that obey the intended intent using Gaussian
mixture model. In [22] they extended the work to use deep
recurrent networks, showing improved performance. Similar
deep learning-based approach was taken in a recent work
[23]. Unlike these efforts, in the current work we assume that
the intention (or goal) of a vehicle actor is already known,
and we focus on prediction of realistic and accurate long-
term trajectory that realizes such intent.

The success of deep learning has led to its wider adoption
within the self-driving community as well. The authors of [8]
proposed to rasterize the surrounding map and actors into a
bird’s-eye view (BEV) raster, and use the resulting image as
an input to deep convolutional neural network (CNN). The
idea was later extended to multimodal predictions [24], yet
unlike this work that uses a mixture model, we handle the
multimodality through developing trajectories for multiple
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Fig. 1: The proposed US method; green trajectory represents
a short-term learned trajectory and associated uncertainties,
blue is the goal path, and red is the solution path

associated lanes. In [25] the authors used similar BEV
approach to predict motion and control the SDV itself,
while in [26] the authors proposed to perform both detection
and prediction simultaneously. In a followup work [27], the
authors proposed to predict intents as well (e.g., inferring if
the actor will stay in the lane or come to a stop). However, an
important downside of the existing work is that most of the
published work is focused on short-term predictions, without
considering longer horizons. This is due to the fact that the
complexity of longer-term predictions grows exponentially
as we increase the prediction horizon, requiring more data
and more complex models to reach good performance [8]. In
our work we propose to address this problem by combining
short-term trajectories coming from learned models with
long-term actor goals derived from associated lanes, referred
to as Uncertainty-aware Stitching (US), resulting in improved
performance at a wide range of prediction horizons.

III. PROPOSED FRAMEWORK

We assume an output trajectory T = {µt,Σt}Ht=1 from
a learned vehicle trajectory predictor is given, where each
trajectory waypoint wt is represented by a 2-D Gaussian
defined by mean µt and covariance matrix Σt, and given
every ∆t seconds for a total of H time steps. Further, let G
denote an intended goal path for a vehicle actor, represented
as a polyline and obtained through associating the actor to
nearby mapped lanes [9]. Then, the task is to determine a
spatial path S of length N (N ≥ H) that captures both
the short-term behavior from T and the long-term motion
exhibited by an actor following G, illustrated in Figure 1.

We determine S in two steps. In section III-A we define
an optimization problem for the first step, where we drop
the dependence on t for notational brevity. The optimization
is done independently per trajectory waypoint to maximize
the log-likelihood of a solution waypoint with respect to T ,
regularized by a deviation cost to G (Sections III-A and III-
B). This yields an initial part of the solution path that we
refer to as a path prefix. Then, in the second step we extend
the path beyond H waypoints by smoothly interpolating the
last prefix waypoint to the rest of G (Section III-C).



A. Optimization for the path prefix

Conditioned on a goal G and waypoint parameters µ and
Σ of a trajectory T , we would like to find the most likely
position y of the resulting path prefix waypoint. To that end,
we propose to solve the following optimization problem,

arg max
y

logP(y | µ,Σ)− λ

2
‖y −ΠG(y)‖2, (1)

where ΠG(y) denotes the projection of y onto the goal path
G, and λ ≥ 0 is a parameter that controls the cost of goal
deviation. As can be seen, we encourage y to remain in a
high-support region of the predictive density, but penalize it if
it deviates too much from the goal. As we assumed Gaussian
distribution over trajectory waypoints, we can rewrite (1) as

arg min
y

‖y − µ‖2Σ−1 + λmin
g∈G
‖y − g‖2, (2)

where ‖v‖Q =
√

v>Qv. An alternating minimization
procedure can be used to approximately solve the problem.
In particular, let L(y,g) = ‖y−µ‖2

Σ−1 +λ‖y−g‖2. Then,
for a given number of steps M , we find optimal y as follows,
• Initialize y0 = µ;
• For m = 1, . . . ,M :
◦ gm = arg ming∈G ‖g − ym−1‖2;
◦ ym = arg miny L(y,gm).

The above alternating minimizing procedure causes the
objective function value L(y,g) to decrease or remain the
same in each iteration. Updates of both g and y can be
computed efficiently. The g-update can be solved by a search
along the goal path, which takes linear time in the number of
segments in a polyline representation of the goal path. The
y-update is a quadratic program with a closed-form solution.

B. Dynamics of the solution path S
The dynamics of the solution path obtained through (2)

can be controlled by the regularization coefficient λ, which
we choose to vary as a function of time (i.e., using λt, where
t = 1, . . . ,H). When considering which schedule to use for
λt, we take into account the following desired properties of
the solution path prefix {yt}Ht=1:
• The first part of prefix {yt}Tt=1 interpolates between T

and G, up to the last time horizon T (T ≤ H) where
trajectory waypoint wT is considered to be close to G;

• The remainder {yt}Ht=T+1 converges to G as H →∞.
As seen in the first property, we require a goodness or
compatibility criterion that determines a time step T when
the solution path will start breaking away from the short-term
trajectory. This is a topic of the following section.

1) Waypoint compatibility score: Let S(wt,G) ∈ [0, 1]
denote a compatibility score of the waypoint wt w.r.t. G,
determined using the actor position distribution N (µt,Σt),
a 2-D polygon representation of actor shape at time step
t (denoted by Pt), and the goal G. The waypoint wt is
considered close to G iff S(wt,G) ≥ α, where α ∈ (0, 1) is
a fixed compatibility threshold.

To compute the compatibility score, we make the fol-
lowing assumptions: (i) actors are rigid-body objects; and

(ii) average radius of turning paths is greater than average
vehicle wheelbase. Assumption (i) enables us to determine
the position uncertainty of any point p on the actor’s body
using the distribution Xθ = N (p,Σt), where θ are the
distribution parameters. Let DXθ (x) = ‖x−p‖Σ−1

t
represent

the Mahalanobis distance of some point x from Xθ, and
Π
DXθ
G (p) = arg ming∈G DXθ (g) denote a function that com-

putes the closest point on G from p based on the Mahalanobis
distance. With a slight abuse of notation, let S(Xθ,G) denote
compatibility of the specified normal distribution Xθ with G,

S(Xθ,G) = P
(
DXθ

(
x) ≥ DXθ (Π

DXθ
G (p)

))
. (3)

where x ∼ Xθ. As Xθ is a 2-D Gaussian, equation (3) is
equivalent to S(Xθ,G) = exp

(
−DXθ (Π

DXθ
G (p))2/2

)
. This

value can also be viewed as a p-value for the null hypothesis
that Π

DXθ
G (p) is a sample drawn from Xθ.

We use S(Xθ,G) to determine S(wt,G). If Pt overlaps
the goal path polyline, we set S(wt,G) = 1. Otherwise,
S(wt,G) = maxp∈Pt S(Xθ,G). Assumption (ii) enables us
to determine S(wt,G) efficiently by considering the actor
polygon vertices alone, without the need to account for the
vertices of goal polyline. Then, we define T as the latest
time horizon t at which S(wt,G) ≥ α, as

T = max
{
t : S(wt,G) ≥ α, t ∈ {1, . . . ,H}

}
. (4)

2) Convergence of solution path to G: We let the solution
path interpolate between T and G up to horizon T , by setting
λt = λ0 for t = 1, . . . , T . After time step T , as there are
no longer any waypoints wt that are close to G, we make
the solution path converge to the goal path. This is done in
order to avoid attributing a large weight to learned models at
longer time horizons, where they are known to exhibit high
uncertainties and to produce suboptimal predictions.

Let f(t) be a non-negative, monotonically decreasing
function of time. For a fixed constant c > 0, we choose
the following schedule for waypoints of the solution path,

‖yt −ΠG(yt)‖ = cf(t), (5)

for t = T + 1, . . . ,H . Using eigenvalue decomposition for
the precision matrix Σ−1

t = QΛQ>, the closed-form for
the y update step in Section III-A, and the assumption that
λt � |Λ|∞, we solve (5) approximately to obtain

λt =
‖Σ−1

t

(
µt −ΠG(µt)

)
‖

cf(t)
. (6)

The assumption is reasonable because as the time horizon
increases position uncertainties increase as well, causing the
eigenvalues of the precision matrix to decrease. Note that we
only determine and set λt once, and it stays constant for the
remainder of the alternating optimization procedure. Lastly,
this gives the following schedule for λt when solving (2),

λt =

{
λ0, if t ≤ T,
λ0 +

‖Σ−1
t (µt−ΠG(µt))‖

cf(t) , otherwise,
(7)

where λ0 in the second case is included for continuity. We
found the approximation in (6) to be effective in practice,
and we set f(t) = 1

t−T in our experiments.



C. Extending solution path S beyond T
Let G′ represent the portion of G that was not used to

produce the first H points of S. To generate a solution path
{yt}Nt=H+1 beyond yH which may not lie on G, for t > H
we shrink the offset between yt and ΠG(yt) linearly with
a sampling distance s over a fixed distance of d along G′
(with s ≤ d). Lastly, we produce a full solution path S by
attaching the remaining goal path starting from yH+bd/sc.

IV. EXPERIMENTS

For the purposes of empirical evaluation we used 240
hours of data collected by manually driving in various traffic
conditions (e.g., varying times of day, days of the week,
in several US cities) with data rate of 10Hz, resulting in
∆t = 0.1s. We ran a state-of-the-art detector and Unscented
KF tracker on this data to produce a set of tracked vehicle
detections. We removed all non-moving actors from the
data, and separated the remainder into train/test/validation
subsets using 3/1/1 split, used to train learned models and
set parameters of the proposed method. We considered error
metrics for horizons of up to 6 seconds with 1s increments.

For lane association of vehicle actors we considered all
lanes within 100m radius from the actor position, and used as
G the one with the smallest average `2 distance to the ground-
truth trajectory when computing error metrics. To obtain a
short-term uncertainty-aware trajectory any learned trajectory
prediction model can be chosen, and we used a state-of-the-
art multi-modal RasterNet [8], [24], which uses BEV raster
images of actors’ surroundings as input. The model outputs
6s-long trajectories with a temporal resolution of ∆t = 0.1s
(H = 60). As the method outputs multiple trajectories, we
used the one that was closest to the goal path in terms of
the dynamic-time warping distance.

Given an intended spatial path, we used the pure pursuit
(PP) algorithm [28] to track the path and produce a spatio-
temporal trajectory used for computing error metrics. In par-
ticular, we run PP iteratively to predict the actor’s next state,
given the current one. We initialized the PP controller with
the actor’s state at t = 0 (including location, velocity, and
acceleration), used a lookahead distance of 5m, and made
all actors move with a predefined speed profile. Here we
used a simple scheme where the actor’s initial acceleration
is maintained for 2s, then decayed to zero with a jerk of
1m/s3, with the speed clamped between 0m/s and 15m/s.
We also imposed a turn radius constraint of 5m for regular-
sized vehicles and 10m for larger vehicles, and executed two
PP tracking steps within 0.1s to produce the next state.

As the proposed approach does not produce or modify the
temporal signature of a trajectory (i.e., longitudinal motion of
an actor), we focused solely on cross-track errors pertaining
to spatial offsets from time-aligned waypoints across our
approach and other baselines. The cross-track error of the
output trajectory at a particular time horizon t is defined
as the distance between the predicted waypoint at t and its
projection to the ground-truth track. If the projection lies at
one of the endpoints of the ground-truth track, we extend
the ground truth linearly to infinity based on the heading

direction at the endpoint, and recompute the error. To ensure
time alignment and to remove possible confounding factors
arising from longitudinal motion of actors across the compet-
ing methods, we retimed all learned model and ground-truth
trajectories in the same manner. More specifically, retiming
modifies a trajectory by recomputing arrival times for each of
the trajectory’s waypoints, based on the simple speed profile
described earlier which the actor is forced to follow.

A. Baselines and setup

To evaluate the performance of the proposed approach we
compared it to several baselines, comprising pure physics-
based models, control-based tracking algorithms, learned,
and hybrid models. For the physics-based model we used
a ballistic model that simply rolls out the current actor state
into the future. The control-based algorithm we consider
is pure pursuit described above, having it track G that
best matches the ground truth (denoted as PP). For learned
baselines we used RasterNet (RN) [8], [24], also introduced
previously. As the method outputs three modes, for metrics
we considered the mode with the lowest error. We also
considered several hybrid methods that are equivalent to US
where we do not take into account waypoint uncertainties.
In particular, we instead stitch the first n seconds of the
RN trajectory with a goal path by following the procedure
described in Section III-C, where we manually set the
breakaway time step as T = bn/∆tc. We denote these linear
decay-stitching baselines by LS(n), where n ∈ {1s, 3s, 5s}.

For our uncertainty-aware stitching approach, we set λ0 =
0.55, M = 10, α = 0.5, c = 1, s = 1m, and d = 10m. These
parameters were determined through a grid search based on
cross-track error metrics across various time horizons. Lastly,
to reduce onboard latency we approximated Π

DXθ
G (p) in (3)

by ΠG(p), found to work well in practice.

B. Quantitative results

1) Comparison to baselines: We report cross-track (CT)
errors across multiple time horizons in Figure 2(a) and Figure
3, where we compared the proposed US method to a number
of baselines. We separately provide results computed only on
turning examples in Figure 3, as left and right turns comprise
only about 6% and 5.3% of our data set, respectively, and
the results on these important maneuvers are lost when
considering only the aggregate metrics.

In Figure 2(a) we see that the physics-based ballistic
method severely underperforms, as it does not consider map
features. On the other hand, the PP method produces trajec-
tories that tend to stay as close as possible to the underlying
goal path while respecting vehicle turn radius constraints.
This is a reasonable prediction as vehicles usually do stay in
their lanes over longer time horizon, resulting in lower CT
error for 5s and 6s horizons. However, if we take a look at
the results computed only on left and right turns in Figure
3, we can see a higher CT error since real-world actors tend
to cut corners in turns which PP does not capture.

We can further see that RN does not perform well at
longer horizons, which was observed in other work as well



Fig. 2: Comparison of cross-track error metrics (in meters): (a) against baselines, (b) across various (λ0, α) values

Fig. 3: Comparison of cross-track error metrics (in meters) for: (a) left-turning; and (b) right-turning trajectories

[8]. However, at short-term horizons RN exhibits strong
performance and outperforms all other approaches. Learned
models perform well in this regime, as they demonstrate
greater ability to fit higher-order dynamics not explicitly
modeled by rule-based systems such as pure pursuit. The
LS(n) methods are a combination of RN in the short term and
PP in the long term, which is reflected in the results shown
in Figures 2(a) and 3. We see in Figure 2(a) that as the fixed
stitching horizon n increases the metrics at longer horizons
also degrade, as a longer portion of the RN trajectory is
kept. On the other hand, we see that explicitly accounting for
uncertainty through the US method leads to improvements
over all LS(n) methods where uncertainty is not considered
and the stitching horizon is fixed. The proposed method
exhibits very competitive performance across all horizons
compared to the baselines, as it successfully combines good
characteristics of short- and long-term-focused approaches.

2) Effect of varying stitching parameters: In Figure 2(b)
we provide an ablation study of the US method, exploring
the effect of various choices of (λ0, α) parameters. Note that
the best parameter setting of (0.55, 0.5) discussed previously
is also given to facilitate comparison. Setting the parameters
to (10, 0.8) causes S to be close to G, as any lateral deviation
from the goal path would be penalized heavily. Moreover, it
will also cause S to break away from T early on because
of the high α, causing the method to essentially fall back to
pure pursuit being run directly on G. Similarly, parameters
(0.01, 0.2) encourage S to be closer to the mean of the
learned uncertainty distributions, producing similar trajecto-

ries as the RN method. Thus, the proposed method can be
viewed as a generalization of short- and long-term methods,
which can be retrieved by tweaking the US parameters. We
also see that setting λ0 to be constant for all horizons, shown
as (0.55,−), performs poorly at longer horizons. This is
because using constant values for λt does not encourage S to
converge to G after T diverges from it, and further motivates
the proposed introduction of the compatibility score.

C. Qualitative results

In Figure 4 we give output trajectories of the competing
methods on a set of commonly executed maneuvers: left turn,
right turn, approaching intersection, and U-turn, respectively.

In both the left- and right-turn case the RN and the ground
truth (GT) trajectories cut corners, while PP makes the actor
follow the path exactly which does not capture reality well.
In addition, for longer horizons RN trajectories veer off the
actor’s lane into the neighboring lanes. As opposed to the
baselines we see that the US method preserves both the
short-term corner-cutting behavior and the long-term path-
following behavior, thus closely following the GT trajectory.

In the third case RN incorrectly predicts that the actor will
go straight, although G turns right. This causes US to break
away early from RN and converge smoothly to G, resulting
in improved prediction. In the U-turn case, both RN and GT
cut corners in the short term but the former quickly starts to
veer off the road. As seen before, PP makes the actor follow
G too closely, while the US trajectory combines the RN and
PP outputs to obtain a very accurate future trajectory.



Fig. 4: Comparison of baselines on commonly encountered scenarios; blue trajectory with uncertainties is the RN trajectory,
purple trajectory is the PP trajectory, black trajectory is the US trajectory, while green trajectory is the ground-truth track

V. CONCLUSION

In this study we addressed the critical problem of long-
term traffic motion prediction of vehicle actors. While the
existing work focuses either on short- or long-term perfor-
mance such that accuracy on the other prediction horizon is
sacrificed, we propose a method that obtains strong results
for a wide range of prediction horizons. This is achieved by
fusing short-term trajectories that are output by the state-of-
the-art deep-learned models on one side, and long-term lane
paths derived from a detailed high-definition map data on the
other. Moreover, uncertainty of actor’s short-term motion is
taken into account during the process, and is used to balance
the impact of the two trajectory sources in a principled and
consistent manner. We conducted a detailed evaluation of
the proposed approach using a large-scale, real-world data
collected by a fleet of self-driving vehicles, comparing the
method to the existing state-of-the-art engineered and learned
models. The results clearly indicate benefits of the proposed
US algorithm, and following offline tests the method was
successfully tested onboard an autonomous vehicle.
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